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Abstract. In this article we consider the numerical study of the effect 
increasing the ambient temperature of electronic device under external 
microwave heating. 

1 Introduction 

The problem of forecasting thermal conditions of technical equipment is the development 
of two promising methodologies related to development (PDfR - Probabilistic Design for 
Reliability [1]) and operation (DRM - Dynamic Reliability Management [2]) of modern 
electronic devices. The essence of these concepts is to identify the most significant factors 
affecting the service life of heat-loaded elements, followed by the development of 
mathematical models to predict the reliability of indicators based on the physics of bounce. 
As is known, the temperature is one of the key parameters. At the same time the thermal 
regime of technical facilities affects both the internal heat transfer and higher ambient 
temperature. 

2 Methods of analysis of temperature fields in the presence of 
local heat sources 

By modern methods of analysis of thermal simulation modes include devices with different 
software systems (eg, Flow Vision) [3]. There are also other approaches: a simplified 
mathematical model [4], the method of heating circuits (thermal resistance) [5], thermal 
monitoring [6], the finite element method [7], the finite difference methods [8], taking into 
account natural convection [9] radiation, together with the heat sink in the stationary and 
the cyclic operating conditions [10, 11]. 
  

                                                           
* Corresponding author: kevatp@tpu.ru 

     
 

 

 
DOI: 10.1051/01017 (2016), 

 2016-
72 7201017

HMTTSC
MATEC Web of Conferences matecconf/2016

 
 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative

 Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



3 Formulation of mathematical solving 

Simulation of temperature field for the effects of microwave heating on the thermal regime 

of the system “polymer-semiconductor-composite” carried out in the range of operating 

temperatures in two dimensional axes. 

In the two-dimensional formulation of the problem of heat transfer is reduced to the 

solution of non-stationary heat equation: 
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where: C - specific heat; - The density; T - temperature; t - time; - coefficient of thermal 

conductivity; Qheat - heat source; Qmicrowave - heat by microwave heating; x, y, z - coordinate. 

When setting the initial conditions it was believed that at the initial time the temperature 

is evenly distributed: 
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where: T0- the initial temperature. 

The boundary conditions taken into account convective and radiative heat transfer: 
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wherein: ɑ - the surface convective heat transfer coefficient of the EA member with the 

external environment; Tв- ambient temperature; - Stefan-Boltzmann constant; ε
pr

- 

Reduced coefficient of the surface and the surrounding black environment. 

Convective heat transfer coefficient depends on temperature and is determined for each 

point of the surface [9]. 
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Powered emissivity products and the surrounding surface of the medium is given by [9]. 
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The intensity of the heat (W) with exposure to microwave [9]: 
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4 The results of mathematical modelling

Temperature dependence of the maximum (curve 2, figure 1) and medium-temperature 

volume (curve 4, figure 1) without microwave heating at TB = 320 K and under the 

influence of electromagnetic waves are presented in figure 1. Analysis of the results of 

numerical studies show that in the initial time interval (up to 40), there are significant 

differences in the absolute values of  TM and Taver. However, at t = 100 s. to the differences 

in temperature estimates are not as large and ranges from 2 (3.4 curves in figure 1) to 5 K 

(curves 1.2 in figure 1). 

Fig. 1. Changes in the temperature characteristic of the system “polymer-semiconductor-composite’ 

with time (1.3-TM and Taver at E = 1900 V/m, f = 7 GHz, TB = 300 K; 2.4-TM, at TB = 320 K and 

without microwave heating). 

5 Conclusion 

It was found that at E = 1900 V/m in the frequency range of 3 - 7 GHz, the temperature 

increases from 10 to 25 K. The numerical study of the thermal regime of “polymer-

semiconductor-composite” system has shown that the effect of microwave waves 

comparable to the increase in ambient temperature 20 K or increased local heat over 30 %. 
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