СПИСОК ЛИТЕРАТУРЫ

- 1. Похил П.Ф., Беляев А.Ф., Фролов Ю.В. и др. Горение порошкообразных металлов в активных средах. М.: Наука, 1972. 372 с.
- 2. Проскуровская Л.Т. Физико-химические свойства электровзрывных ультрадисперсных порошков алюминия: Дис. ... канд. техн. наук. — Томск, 1992. — 172 с.
- 3. Ильин А.П., Громов А.А. Горение алюминия и бора в сверхтонком состоянии. -Томск: Изд-во Том. ун-та, 2002. — 238 с.
- 4. Громов А.А., Хабас Т.А., Ильин А.П. и др. Горение нанопорошков металлов. Томск: Дельтаплан, 2008. 382 с.
- 5. Ильин А.П. Об избыточной энергии ультрадисперсных порошков, полученных методом взрыва проволок // Физика и химия обработки материалов. -1994. -№ 3. C. 94-97.
- Ильин А.П. Особенности энергонасыщенной структуры малых металлических частиц, сформированных в сильно неравновесных условиях // Физика и химия обработки материалов. – 1997. – № 4. – С. 93–97.
- Ильин А.П., Тихонов Д.В., Толбанова Л.О. Энергонасыщенная структура поверхностных и приповерхностных слоев наночастиц металлов // Материалы науч.-практич. конф. материаловедческих обществ России. – М.: МИФИ, 2006. – С. 68–69.

- Назаренко О.Б. Электровзрывные нанопорошки: получение, свойства, применение. – Томск: Изд-во Том ун-та, 2005. – 227 с.
- Рипан Р., Четяну И. Неорганическая химия. Т. 2. М.: Мир, 1971. – 387 с.
- 10. Толбанова Л.О. Синтез керамических нитридсодержащих материалов сжиганием в воздухе смесей нанопорошка алюминия с нанопорошками W и Мо и порошком Cr: Дис. ... канд. техн. наук. Томск, 2007. 212 с.
- Ильин А.П., Яблуновский Г.В., Громов А.А. Об активности порошков алюминия // Физика горения и взрыва. 2001. Т. 37. № 4. С. 58–62.
- 12. Ilyin A.P., Tikhonov D.V., Tolbanova L.O. Threshold Phenomena in Nanopowders // Известия вузов. Физика. 2006. № 8. Приложение. С. 550—552.
- 13. Хауффе К. Реакции в твердых телах и на их поверхности. Ч. 2. – М.: Изд-во ИНЛИТ, 1963. – 276 с.

Поступила 24.06.2010 г.

УДК 541.16;621.762

АКТИВИРОВАНИЕ СПЕКАНИЯ ОКСИДНОЙ КЕРАМИКИ ДОБАВКАМИ НАНОДИСПЕРСНЫХ ПОРОШКОВ

С.В. Матренин, А.П. Ильин, Л.О. Толбанова, Е.В. Золотарева*

Томский политехнический университет *Тюменский государственный нефтегазовый университет E-mail: vm-s@mail.ru

Исследовано спекание керамики на основе Al_2O_3 и ZrO_2 , активированное добавками нанопорошков Al_2O_3 и Al. Показано, что добавка нанопорошка Al_2O_3 до 20 мас. % в крупнодисперсный порошок α - Al_2O_3 активировала спекание корундовой керамики: повышались ее плотность и микротвердость. Установлена возможность получения спеченной керамики из нестабилизированного ZrO_2 путем введения в исходный нанопорошк ZrO_2 добавки нанопорошка Al в количестве не менее 10 мас. %. При спекании прессовок из нанопорошков ZrO_2 с добавкой 20 мас. % нанопорошка Al в аммиачной плазме тлеющего разряда получен керамический материал с выраженным неоднородным химическим, фазовым составом и различной микроструктурой.

Ключевые слова:

Оксидная керамика, нанопорошок, активированное спекание, плазма тлеющего разряда.

Key words:

Oxide ceramic, nanopowder, activated sintering, glow discharge plasma.

Высокопрочные керамики на основе ZrO_2 и Al_2O_3 являются весьма перспективными материалами конструкционного и инструментального назначения. Это обусловлено, с одной стороны, постоянно возрастающими требованиями к таким свойствам материалов как высокая прочность, износостойкость, термостойкость, жаропрочность, инертность к агрессивным средам. С другой стороны, перспективность оксидных керамик связана с появлением и развитием технологий, позволяющих получать материалы с уникальным комплексом физико-механических характеристик, которые в полной мере удовлетворяют выше перечисленным требованиям [1, 2]. Тем не менее, широкому

практическому распространению прочных оксидных керамик препятствуют сложность и низкая производительность технологий горячего и горячего изостатического прессования, позволяющих получать материалы с максимально высокими прочностными характеристиками [3]. Относительно простая технология одноосного прессования с последующим свободным спеканием, как правило, не позволяет получать керамику с высоким уровнем механических свойств [4]. Поэтому проблема активирования спекания керамики имеет важное практическое значение.

Целью данной работы являлось исследование методов активирования спекания оксидных кера-

мик на основе Al_2O_3 и ZrO_2 добавками нанопорошков (НП) Al и Al_3O_3 .

В работе использовали НП Al_2O_3 и нестабилизированного ZrO_2 , полученные в условиях плазмохимического синтеза, а также НП Al, полученный в условиях электрического взрыва проводника в среде аргона.

Форму и размер частиц полученных порошков ранее исследовали с использованием электронной микроскопии в работах [5, 6]. Было установлено, что частицы плазмохимических порошков представляли собой сферы и шары размером 0,1...1 мкм, состоящие из кристаллитов с характерным размером 20...50 нм. Частицы НП Al также имели шаровидную форму, их размеры лежали в интервале 50...500 нм. Исследование технологических характеристик оксидных НП в исходном состоянии показало, что у них практически отсутствует текучесть в стандартных условиях, и они имеют крайне низкую насыпную плотность: 0,07 и 0,3 г/см³ для НП Al_2O_3 и ZrO_2 соответственно. В связи с этим данные НП практически невозможно использовать в качестве исходного технологического сырья без предварительной обработки. Помимо оксидных плазмохимических НП, в работе использовали крупнозернистый порошок оксида алюминия, основная фракция которого находилась в интервале -018+004, содержание фракций +018 и -004 — следы. Электровзрывной НП Al содержал 89,0...92,0 мас. % металла, среднеповерхностный диаметр частиц составлял 50...500 нм, а насыпная плотность равна 0,2 г/см³ [7].

Отжиг оксидных порошков проводили в высокотемпературной камерной электрической печи сопротивления. Смешивание порошков осуществляли в турбулентном смесителе в течение 1 часа. Образцы формовали в условиях одноосного прессования в стальной пресс-форме с помощью гидравлического пресса. Спекание проводили в высокотемпературной камерной электрической печи сопротивления в воздухе и в камере установки для спекания в тлеющем разряде.

В работе использовали следующие методики исследования: определяли насыпную плотность и текучесть порошков, плотность спеченных образцов с помощью гидростатического взвешивания, микротвердость с помощью прибора ПМТ-3 при нагрузке 1 H, микроструктуру, остаточную пористость, характер и распределение пор (металлографический микроскоп «Альтами-М»).

Крупнодисперсный порошок Al_2O_3 отжигали в воздухе при 1450 °C в течение одного часа для перевода γ - Al_2O_3 в α - Al_2O_3 . НП Al_2O_3 и ZrO_2 также отжигали в воздухе при 1000 °C в течение одного часа. В части исследованных составов НП Al_2O_3 и ZrO_2 являлись основными компонентами, поэтому для улучшения их технологических характеристик применяли механическую обработку. Порошки прессовали в цилиндры при 400 МПа, которые затем размалывали в конусной дробилке и измельчали в планетарной мельнице. В процессе обработки

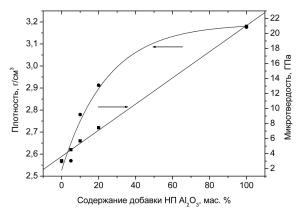

сферические частицы плазмохимических порошков разрушались и объединялись в жесткие агломераты. Плотность прессовок из обработанных НП увеличивалась более, чем на 15 % по сравнению с плотностью прессовок из исходных НП. НП Al_2O_3 и Al, использовавшиеся в качестве активирующих добавок, отжигу и механической обработке не подвергались, поскольку это могло привести к потере их активности. Порошок α - Al_2O_3 и агломерированные плазмохимические НП Al_2O_3 и ZrO_2 рассеивали на фракцию -006+004. Составы подготовленных шихт приведены в табл. 1.

Таблица 1. Составы порошковых шихт

Nie /	Состав шихт, мас. %			
№, п/п	α -Al ₂ O ₃	HΠ Al ₂ O ₃	HΠ ZrO ₂	HП Al
1	100	0	0	0
2	95	5	0	0
3	90	10	0	0
4	80	20	0	0
5	0	100	0	0
6	0	95	0	5
7	0	90	0	10
8	0	80	0	20
9	0	0	100	0
10	0	0	95	5
11	0	0	90	10
12	0	0	80	20

Из шихт получали образцы диаметром $12,8\pm0,01$ мм и высотой 5 ± 1 мм при давлении 300 МПа в условиях одноосного прессования. Образцы спекали в воздухе в соответствии со следующим режимом: время нагрева до $1600\,^{\circ}\text{C}-6\,^{\circ}\text{H}$, время изотермической выдержки при $1600\,^{\circ}\text{C}-1\,^{\circ}\text{H}$, охлаждение с печью до комнатной температуры в течение $8\,^{\circ}\text{H}$. Образцы, спрессованные из НП ZrO_2 с добавкой НП Al (составы 9-12), спекали также и в плазме тлеющего разряда.

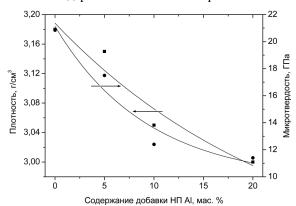

На рис. 1 приведены зависимости плотности и микротвердости керамики, спеченной из крупнозернистого порошка α -Al₂O₃ от содержания вводимых добавок НП Al_2O_3 . Добавка НП Al_2O_3 в порошок α -Al₂O₃ повышала плотность и микротвердость керамики. Такое активирующее влияние объясняется увеличением площади межчастичных контактов, которое вызвано добавлением НП Al_2O_3 , что в конечном итоге приводит к увеличению плотности спеченной керамики. Рост плотности корундовой керамики с увеличением содержания добавки НП Al₂O₃ удовлетворительно описывается линейной функцией в исследуемом интервале концентраций добавки (от 0 до 100 % НП). Полученный результат с учетом теории активированного спекания объяснен следующим образом. При спекании керамической смеси α -Al₂O₃ – HП Al₂O₃ механизмы активирования спекания обусловлены структурной и поверхностной активностью НП Al₂O₃. Структурная и поверхностная активность данного НП, определяемые дефектностью кристаллического строения, размером и формой частиц, обуславливали уменьшение энергии активации спекания, в результате чего повышалась плотность спеченного материала. При прочих равных условиях (температура спекания, времена нагрева, выдержки и охлаждения) в рассматриваемом случае повышение плотности определялось увеличением содержания НП Al_2O_3 . На рис. 2 также представлена зависимость микротвердости спеченной корундовой керамики от содержания добавки НП Al_2O_3 . Эта зависимость удовлетворительно описывается экспоненциальной функцией.

Рис. 1. Зависимости плотности и микротвердости корундовой керамики, спеченной из крупнодисперсного порошка α - Al_2O_3 от содержания добавки НП Al_2O_3

Эта зависимость объяснена следующим образом. При измерении микротвердости керамики, спеченной из α -Al₂O₃ «ч.д.а.» с малым содержанием добавки НП Al₂O₃ пирамида индентора часто попадала в близко расположенные к поверхности микрошлифа поры, вследствие чего был получен в среднем пониженный уровень значений твердости. С увеличением содержания НП Al₂O₃ в смеси повышалась плотность спеченной керамики и снижалась ее пористость, поэтому индентирование происходило, в основном, в зерна керамики.

В работе были проведены эксперименты по исследованию влияния добавки HП Al на структуру и физико-механические свойства керамики, спеченной из $H\Pi$ Al₂O₃. В работе [8] показано активирующее действие добавок металлических НП при спекании оксидных керамик. Практический интерес представляет вопрос о дополнительном вкладе в активирование спекания HП Al₂O₃, обусловленном добавлением НП Al. При добавлении в НП Al_2O_3 нанодисперсного алюминия наблюдалось снижение плотности спеченной керамики. Это, в свою очередь, приводило к снижению микротвердости образцов (рис. 2). Такие зависимости объяснены повышением пористости спекаемой керамики вследствие окисления добавки НП Al до α -Al₂O₃ в процессе спекания. Окисление сопровождалось значительным уменьшением удельного объема введенной добавки, вызванным существенным различием плотности Al (2,7 г/см³) и α -Al₂O₃ (3,96 г/см³), что наблюдалось в ряде экспериментов. При этом оказывалось не реализованным основное преимущество НП, как активатора спекания — возможность образовывать большое количество межчастичных контактов при очень небольшом его содержании в спекаемой прессовке.

Рис. 2. Зависимость плотности и микротвердости образцов, спеченных из НП Al_2O_3 , от содержания добавки НП Al

Известно [9], что получение спеченной циркониевой керамики возможно только путем ее легирования оксидами-стабилизаторами. Образующиеся твердые растворы на основе ZrO₂ не претерпевают полиморфного превращения тетрагональной модификации (t) ZrO_2 в моноклинную (m) при охлаждении спеченной керамики, которое сопровождается значительным (до 9 %) увеличением удельного объема. Наибольшим стабилизирующим эффектом обладает Y₂O₃, поэтому в настоящее время циркониевые керамики конструкционного и инструментального назначения легируют в основном Y_2O_3 . Следует отметить, что Y_2O_3 является относительно дорогим соединением, а сама технология введения оксидов-стабилизаторов в ZrO₂ достаточно сложна. Поэтому в работе исследована возможность получения спеченного керамического материала из нестабилизированного HП ZrO, с добавкой НП Al. В табл. 2. представлены результаты измерения плотности и микротвердости образцов такой керамики, спеченной в воздухе.

Таблица 2. Характеристики керамики, спеченной из нестабилизированного нанопорошка ZrO₂ с добавкой нанопорошка Al

Содержание добавки НП AI, мас. %	Плотность, г/см³	Микротвердость, ГПа
0	-	-
5	-	-
10	4,10	4,81
20	4,33	5,52

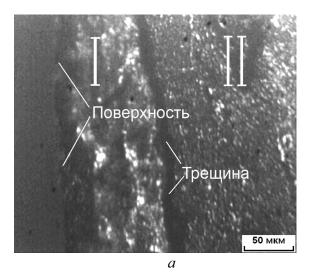
Образец, спеченный из нестабилизированного $H\Pi\ ZrO_2$ без добавки $H\Pi\ Al$, как и следовало ожидать, при охлаждении разрушился. Образец, спеченный с добавкой 5 % $H\Pi\ Al$ после охлаждения, сохранил форму, но имел глубокие трещины. Образцы, содержащие 10 и 20 % $H\Pi\ Al$, после охлаждения сохранили форму и не имели трещин. Изуче-

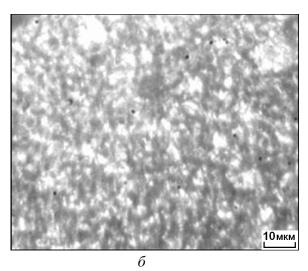
ние микроструктуры полированных шлифов спеченных образцов показало, что они имели значительную пористость: не менее 25 %.

Предложено следующее объяснение отсутствия разрушения нестабилизированной циркониевой керамики в процессе ее охлаждения после спекания. Во время нагрева и выдержки образцов, добавка НП Al, окисляясь, переходила в γ -Al₂O₃, и лишь затем в α -Al₂O₃. Очевидно, что количества Al₂O₃, образующегося в результате окисления добавки 10...20 % НП Al, недостаточно для формирования жесткой матрицы из α -Al₂O₃, которая бы препятствовала $t \rightarrow m$ -переходу кристаллитов ZrO₂ и сохраняла, таким образом, целостность спеченных образцов. Однако, если допустить, что в системе $Al_2O_3 - ZrO_2$ существует область взаимной растворимости компонентов γ -Al₂O₃ и t-ZrO₂, то в этом случае может происходить стабилизация ZrO₂ оксидом алюминия. Возможно, что механизм этой стабилизации аналогичен стабилизации ZrO_2 оксидом иттрия: радиус $Al^{+3}(0.057 \text{ нм})$ меньше, чем радиус Y^{+3} (0,106 нм), и возможно замещение иона Zr^{+4} (0,087 нм) на алюминий. Полученный результат представляет собой важный научный и практический интерес для технологии циркониевых керамик.

Прессовки из нестабилизированного НП ZrO₂ с добавкой НП Al спекали также в аммиачной плазме тлеющего разряда. Этот вариант активированного спекания был разработан авторами [10]. При достижении температуры спекания 1600...1650 °С на поверхности образца начинался локальный самопроизвольный разогрев до температуры свыше 2300 °С. Это свидетельствовало о протекании экзотермической реакции. В этих условиях происходила интенсивная усадка образца, инициируемая с поверхности, где наблюдался максимальный разогрев. Динамика этого процесса сходна с механизмом протекания самораспространяющегося высокотемпературного синтеза.

В структуре образцов ZrO_2 , спеченных в аммиачной плазме с добавкой 20 % НП Al, наблюдались три зоны, следующие друг за другом от поверхности образца, отличающиеся по микротвердости и пористости. Поверхностный слой толщиной около 100 мкм имел выраженную золотисто-зеленую окраску, характерную для ZrN_n , при n=0,9...1,0 (рис. 3, a). Экспериментальное значение микротвердости этого слоя соответствовало табличному (23 $\Gamma\Pi a$) [11].


Таким образом, есть основания предполагать, что на поверхности образца формировался слой фазы нитрида циркония. Приповерхностный слой (вторая зона) имел двухфазную структуру с размером кристаллитов 1...10 мкм (рис. 3, δ). Его микротвердость достигала 28 ГПа, что соответствовало значению микротвердости ZrN_n , при n=0,6...0,7, т. е. с большим дефицитом по азоту. Поверхностный (I) и приповерхностный (II) слои разделены трещиной, образованной при охлаждении спеченного образца вследствие различия коэффициентов термического расширения фаз, образующих слои. Приповерхностный слой плавно переходил в третью зону, по-видимому, состоящую из смеси оксидов циркония и алюминия, и, возможно, восстановленного циркония. Такая структура, очевидно, формировалась вследствие значительного температурного градиента по поперечному сечению образца во время спекания.


Полученный результат показывает, что нагрев прессовок из НП ZrO_2 , содержащих добавки НП Al в условиях аммиачной плазмы инициирует самораспространяющийся высокотемпературный синтез нитрида циркония по реакциям:

$$4Al + 3ZrO_2 = 2Al_2O_3 + 3Zr,$$
 (1)

$$Zr+N=ZrN.$$
 (2)

Температура начала синтеза, как уже отмечалось, находилась в интервале температур

Рис. 3. Фотографии шлифа циркониевой керамики с добавкой 20 % НП AI, спеченной в аммиачной плазме тлеющего разряда: а) поверхностный (I) и приповерхностный (II) слои, б) микроструктура приповерхностного слоя

1600...1650 °C. При достижении в зоне синтеза ZrN температуры свыше 2100 °C расплав образовавшегося в соответствии с реакцией (1) Al_2O_3 проникал в объем спекаемого образца. Также, авторы не исключают возможности протекания в описанных выше условиях реакции синтеза нитрида алюминия

Al+N=AlN,

хотя, с позиций термодинамики, реакция (2) приоритетна.

Выводы

Показано, что добавка нанопорошка Al_2O_3 до 20 мас. % в крупнодисперсный порошок α - Al_2O_3 дисперсностью 40...60 мкм активировала спекание корундовой керамики: повышались ее плотность и микротвердость. Активирующее влияние добавки нанопорошка Al в крупнодисперсный порошок α - Al_2O_3 на процесс спекания корундовой керамики не установлено. Установлена возможность получе-

СПИСОК ЛИТЕРАТУРЫ

- Nettleship L. and Stevens R. Tetragonal zirconia polycrystal (TZP) – a review // Int. J. High Technology Ceramics. – 1987. – № 3. – P. 1–32.
- Шевченко А.В., Рубан А.К., Дудник Е.В. Высокотехнологичная керамика на основе диоксида циркония // Огнеупоры и техническая керамика. 2000. № 9. С. 2–8.
- Лукин Е.С., Макаров Н.А. и др. Прочная и особопрочная керамика на основе оксида алюминия и частично стабилизированного диоксида циркония // Стекло и керамика. 2003. № 9. С. 32–34.
- Смирнов А.И. Конструкционная керамика // Итоги науки и техники ВИНИТИ. Сер. Порошковая металлургия. – 1990. – С. 64–106.
- Апаров Н.Н., Апарова Л.С., Слосман А.И., Матренин С.В. Влияние предварительной обработки на технологические свойства плазмохимических оксидных порошков // Огнеупоры. – 1994. – № 2. – С. 4–7.
- Назаренко О.Б. Электровзрывные нанопорошки: получение, свойства, применение // под ред. А.П. Ильина. – Томск: Изд-во ТПУ, 2005. – 148 с.

ния спеченной керамики из нестабилизированного ZrO₂ путем введения в исходный порошок ZrO₂ добавки нанопорошка Al в количестве не менее 10 мас. %. В процессе спекания прессовок из таких смесей, предположительно, происходило взаимодействие образующейся при окислении алюминия γ -модификации Al₂O₃ с t-фазой ZrO₂, аналогично процессу стабилизации ZrO2 оксидом иттрия. При спекании прессовок из нанопорошка ZrO₂ с добавкой 20 мас. % нанопорошка АІ в аммиачной плазме тлеющего разряда получен керамический материал с выраженным неоднородным химическим, фазовым составом и микроструктурой. Такая структура спеченного керамического материала формировалась в процессе спекания вследствие протекания реакций самораспространяющегося высокотемпературного синтеза ZrN_n , при n=0,6...1,0.

Работа выполнена в рамках реализации Φ ЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг., проект НК — 616 Π (8), ГК № Π -920.

- Ильин А.П., Яблуновский Г.В., Громов А.А. Об активности порошков алюминия // Физика горения и взрыва. 2001. Т. 37. № 4. С. 58–62.
- Хабас Т.А. Интенсификация процессов фазообразования и формирования структуры керамических материалов в системе MgO – Al₂O₃ – SiO₂ – С с добавками нанодисперсных порошков металлов: дис. ...докт. техн. наук. – Томск, 2005. – 350 с.
- Балкевич В.Л. Техническая керамика. М.: Стройиздат, 1984. – 256 с.
- Слосман А.И., Матренин С.В. Электроразрядное спекание керамики на основе диоксида циркония // Огнеупоры. 1994. № 9. С. 24–27.
- Андриевский Р.А., Спивак И.И. Прочность тугоплавких соединений и материалов на их основе. Челябинск: Металлургия, 1989. – 368 с.

Поступила 01.09.2010 г.