СПИСОК ЛИТЕРАТУРЫ

- Туманов С.Г. Новые пути синтеза и классификации керамических пигментов // Стекло и керамика. – 1967. – № 6. – С. 33–35.
- Пищ И.В., Масленникова Г.Н. Керамические пигменты. Минск: Вышэйшая школа, 1987. – 131 с.
- Pogrebenkov V.M., Sedel'nikova M.B., Vereshchagin V.I. Ceramic pigment based on calcium-magnesium silicates // J. Glass and Ceramics. – 1996. – № 53. – P. 30–32.
- Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. – 344 с.
- Погребенков В.М., Седельникова М.Б., Верещагин В.И. Керамические пигменты на основе талька // Стекло и керамика. – 1997. – № 11. – С. 17–20.

- Егоров-Тисменко Ю.К. Кристаллография и кристаллохимия. – М.: Изд-во КДУ, 2005. – 592 с.
- Ковба Л.М., Трунов В.К. Рентгенофазовый анализ. М.: Издво Моск. ун-та, 1976. – 185 с.
- Плюснина И.И. Инфракрасные спектры минералов. М.: Изд-во МГУ, 1977. – 176 с.
- Мананков А.В., Горюхин Е.Я., Локтюшин А.А. Волластонитовые, пироксеновые и другие минералы из промышленных отходов и недефицитного природного сырья. – Томск: Изд-во ТГУ, 2002. – 168 с.

Поступила 28.05.2010 г.

УДК 546.05/06+546.41?185

СИНТЕЗ И ИССЛЕДОВАНИЕ ОБЫЧНОГО И КАРБОНАТЗАМЕЩЕННОГО ГИДРОКСИЛАПАТИТА

Т.С. Петровская, Л.А. Рассказова*, К.С. Куляшова**, Н.М. Коротченко*, Ю.П. Шаркеев**, В.В. Козик*

Томский политехнический университет *Томский государственный университет E-mail: korotch@mail.ru

**Институт физики прочности и материаловедения СО РАН, г. Томск

Проведен жидкофазный синтез образцов гидроксилапатита, в том числе модифицированных карбонат-ионом. Определены элементный и фазовый состав продуктов синтеза, их растворимость в воде при 20 °С в сравнении с аллогенным (биологическим) гидроксилапатитом. Установлено, что в продукте синтеза с длительным выдерживанием в маточном растворе соотношение Са/Р наиболее близко к требуемому. Карбонатмодифицированные образцы по фазовому составу наиболее близки к аллогенному гидроксилапатиту.

Ключевые слова:

Гидроксилапатит, карбонатзамещенный гидроксилапатит, синтез, элементный и фазовый состав, растворимость.

Key words:

Hydroxylapatite, carbonat-replaced hydroxylapatite, synthesis, element and phase structure, solubility.

В последнее время в мире возрос интерес к получению материалов, способных заменить или восстановить костную ткань человека. В их числе материалы на основе различных фосфатов кальция. Наиболее распространенным является гидроксилапатит (ГА) $Ca_{10}(PO_4)_6(OH)_2$, представляющий собой основной неорганический компонент костной и зубной тканей. Гидроксилапатит проявляет свойства биологической совместимости, активно стимулирует рост новых клеток и тем самым восстанавливает костную ткань [1].

В медицинской практике часто применяют аллогенный (биологический) ГА, который получают из натуральных костей животных. Однако применение такого гидроксилапатита имеет ряд недостатков, основными из которых являются иммуногенность чужеродного материала, а также содержание тяжёлых металлов, которым свойственно накапливание в костях в течение жизни [1]. В связи с этим, существует необходимость замены аллогенного ГА на синтетический, который не только не уступает в своих свойствах аллогенному, но и имеет ряд преимуществ, в том числе в этических и медицинских аспектах. Наиболее известными методами синтеза ГА являются золь-гель метод, механохимический и ряд химических методов [1–3]. Последние являются наиболее приемлемыми из-за невысокой стоимости процесса и возможности получения чистого ГА. Химические методы получения ГА можно разделить на три типа:

- «сухие» основываются на применении твердофазных реакций в результате прокаливания при температурах 1000...1300 °С различных смесей соединений, содержащих ионы Са²⁺ и РО₄³⁻ в определенных соотношениях. Синтез проводится в атмосфере паров воды, которая служит источником ОН-групп. Этот тип методов получения ГА даёт оптимальное соотношение атомов Са/Р, но требует много времени и энергоемок.
- гидротермальные включают реакции, проходящие при высокой температуре и давлении. Синтез дает необходимую стехиометрию ГА, но проводится в золотых капсулах, в результате чего такой способ получения является сложным и дорогостоящим.

«мокрые» (жидкофазные) – основаны на образовании осадка гидроксилапатита в реакциях осаждения при смешивании водных растворов соединений, содержащих ионы Ca²⁺ и PO₄³⁻; pH растворов выдерживается выше 7.

Аллогенный ГА, входящий в состав минеральной компоненты костной ткани, является кальцийдефицитным, что связано с катионными и анионными замещениями в кристаллической решетке на биоактивные элементы и группы атомов (магний, калий, натрий, сульфат-, хлор-, фтор-ионы и др.) [4]. Карбонат-ион является одним из анионов, входящих в состав естественной костной ткани. Незамещенный гидроксилапатит, применяющийся в качестве биологически активного материала, имеет ряд значительных недостатков, выражающихся в низкой скорости биорезорбции (растворения), относительно слабой остеоиндукции (стимулирования образования новой кости), низкой трещиностойкости и малой усталостной прочности при физиологических нагрузках в организме [5]. Поэтому для улучшения вышеперечисленных свойств в состав гидроксилапатита дополнительно вводят карбонат-ионы.

В связи с этим целью данной работы является получение и исследование свойств гидроксилапатита, включая модифицированный карбонат-ионами (карбонатгидроксилапатит, далее по тексту – КГА), и сравнение их со стехиометрическим и аллогенным гидроксилапатитами.

В работе получены образцы гидроксилапатита (далее продукты синтеза 1, 2) с различным временем выдерживания осадка в маточном растворе [6], жидкофазный синтез которых основан на протекающей в растворе реакции (1):

 $10Ca(NO_3)_2 + 6(NH_4)_2HPO_4 + 8NH_4OH =$

 $=Ca_{10}(PO_4)_6(OH)_2+20NH_4NO_3+6H_2O_5$

а также образцы гидроксилапатита, модифицированного карбонат-ионами, с длительным выдерживанием (~63 ч) в маточном растворе. Синтез КГА с различным массовым содержанием карбонат-иона (продукты синтеза 3, 4) осуществлен по методике [2], основанной на реакции:

> $(10-x)Ca(NO_{3})_{2}+(6-x)(NH_{4})_{2}HPO_{4}+$ +xNaHCO_{3}+(8-x)NH_{4}OH= =Ca_{10-x}N_{ax}(PO_{4})_{6-x}(CO_{3})_{x}(OH)_{2}+ +(20-3x)NH_{4}NO_{3}+xNaNO_{3}+(6-x)H_{2}O,

где x -мольное содержание CO_3^2 -ионов (x=0,75; x=1).

Для приготовления исходных растворов использовались реактивы марки «х.ч.»: кальций азотнокислый четырехводный, аммоний фосфорнокислый двузамещенный, гидрокарбонат натрия десятиводный, а также водный раствор аммиака (плотность ρ =0,907 г/мл) и дистиллированная вода.

в

Рис. 1. РЭМ-изображения продуктов синтеза 1, 2, полученных: а) осаждением без старения осадка (продукт синтеза 1); б) осаждением с выдерживанием осадка (63 ч) в маточном растворе (продукт синтеза 2); в) аллогенный гидроксилапатит

Для идентификации полученных образцов проведены исследования их элементного состава (ренгенофлуоресцентный последовательный спектрометр Shimadzu XRF-1800), фазового состава (ренгеновский дифрактометр Shimadzu XRD 6000 с использованием Cu_{*ka*}-излучения и стандартных карточек ASTM), а также дисперсности (растровый электронный микроскоп Philips SEM 515) в сравнении с аллогенным ГА.

Для продуктов синтеза 1, 2 изучено влияние времени выдерживания осадка в маточном растворе на стехиометрию полученных образцов. На рис. 1 представлены электронно-микроскопические изображения продуктов синтеза 1, 2 (рис. 1, a, δ , соответственно) и аллогенного ГА (рис. 1, a). Видно, что частицы синтезированного и аллогенного ГА имеют кристаллическую огранку. Наблюдаются как крупные частицы размером до 500 мкм, так и мелкие.

На рис. 2 представлены гистограммы распределения частиц продуктов синтеза 1, 2.

Размеры частиц измеряли стандартным методом «секущей» по РЭМ-изображениям. Во всех случаях распределение частиц является одномодальным. Для продукта, полученного в синтезе 1, пик локализован в диапазоне 0...50 мкм. Продукт 2 имеет максимум распределения частиц в интервале 100...200 мкм. В обоих распределениях наблюдаются вытянутые «хвосты» в сторону больших значений до 500 мкм и более. Для сравнения приведена гистограмма аллогенного ГА, иллюстрирующая гранулометрический состав использованного для получения покрытий материала [7]. Как видно, распределение в этом случае локализовано в узком интервале 0...200 мкм.

Одним из основных требований к синтетическому гидроксилапатиту является достижение необходимой стехиометрии соединения, при которой соотношение n(Ca)/n(P) должно составлять 1,67. По результатам элементного анализа продуктов синтеза 1–4 и аллогенного гидроксилапатита, табл. 1, найдено количественное отношение n(Ca)/n(P) в полученных веществах и в образце аллогенного гидроксилапатита. Значения n(Ca)/n(P)позволяют судить о степени стехиометричности полученных веществ.

Таблица 1. Результаты элементного анализа продуктов синтеза 1-4 и аллогенного ГА

Προπνκτ	0		Р		Ca		С		Отноше-
синтеза	мас.	ат %	ние						
crimesu	%	ui. 70	n(Ca)/n(P)						
1	47,39	67,05	19,52	14,26	33,09	18,69	-	-	1,31
2	44,87	65,08	17,65	13,22	37,48	21,70	-	-	1,64
3	37,00	50,30	18,94	13,29	34,25	18,63	9,81	17,78	1,40
4	37,17	47,69	16,02	10,61	32,04	16,44	14,77	25,26	1,55
Алло-									
генный	44,07	64,27	18,53	13,96	37,4	21,77	-	-	1,56
ГA									

*Элементный анализ не учитывает наличия атомов водорода в структуре гидроксилапатита. Это связано с незначительным вкладом атомной массы водорода в общую массу молекулы, что позволяет пренебречь ею в ходе анализа.

Рис. 2. Гистограммы распределения частиц продуктов синтеза 1, 2 и аллогенного гидроксилапатита по размерам: а) осаждение без старения осадка (1); б) осаждение с 63-часовым выдерживанием осадка в маточном растворе (2); в) аллогенный ГА

Наиболее близкое к стехиометрическому соотношение n(Ca)/n(P), равное 1,64, имеет продукт синтеза 2; в продукте синтеза 1 оно значительно ниже: 1,31. Продукт синтеза 4 близок по значению n(Ca)/n(P) к аллогенному ГА.

Увеличение содержания карбонат-иона от x=0,75 до x=1,00 приводит к изменению элементного состава продуктов синтеза 3, 4: наблюдается понижение массовой доли кальция и фосфора с одновременным увеличением массовых долей углерода и кислорода (табл. 1).

Методом адсорбции азота с последующей дегазацией при давлении ~0,1 Па при 200 °С в течение одного часа были определены значения удельной поверхности порошков продуктов синтеза 1–4 (табл. 2). Относительная погрешность измерения удельной поверхности составляет $\Delta_{\pm}=10$ %.

Таблица 2. Оценка удельной поверхности продуктов синтеза 1-4

060000	Продукты синтеза					
Образец	1*	2*	3	4		
Масса, г	0,5060	0,3685	0,4292	0,48876		
$S_{yg(BET)}, M^2/\Gamma$	83,2	69,7	68,5	183		

*На стенках реактора образовался белый налет.

Из табл. 2 видно, что величины удельной поверхности для всех синтезированных образцов в значительной степени отличаются от ее значений для биологического ГА (S_{yd} =0,5 м²/г), а продукт синтеза 4 имеет наибольшее значение: S_{yd} =183 м²/г. Совместное рассмотрение значений удельной поверхности и гранулометрического состава полученных образцов позволяет прогнозировать получение более плотного материала, чем из аллогенного ГА, что в свою очередь требует применения специальных мер для формирования биоактивных покрытий, необходимой характеристикой которых является пористость.

Определение растворимости образцов 1–4 и аллогенного ГА в воде (pH 7) и в 0,1 М растворах (H,Na)Cl (pH 2,0...5,0) при 20 °C проводили химическим методом по данным трилонометрического титрования иона кальция. Согласно уравнению:

$Ca_{10}(PO_4)_6(OH)_2 = 10Ca^{2+} + 6PO_4^{3-} + 2OH^{-}$

выражение для значения произведения растворимости ПР принимает вид:

$$\begin{split} \Pi P_{Ca_{10}(PO_4)_6(OH)_2} = & [Ca^{2+}]^{10} \cdot [PO_4^{3-}]^6 \cdot [OH^{-}]^2 = \\ = & 1,87 \cdot 10^{15} \cdot [Ca^{2+}]^{18}. \end{split}$$

Таким образом, определив концентрацию ионов кальция в насыщенном растворе, можно рассчитать соответствующие значения произведения растворимости ПР, а также показателя произведения растворимости рПР (табл. 3).

На рис. 3 приведена зависимость показателя произведения растворимости от pH среды. Как видно, с увеличением кислотности среды растворимость всех образцов возрастает (кривые a-e), однако растворимость аллогенного ГА (кривая d) менее зависима от pH среды.

Таблица 3. Характеристика растворимости продуктов синтеза 1−4 и аллогенного ГА при температуре 20 °C (рН 7)

Продукты синтеза	ПР	рПР	
1	4,174·10 ⁻²¹	20,38	
2	9,075·10 ⁻⁴¹	40,04	
3	4,195.10-40	39,38	
4	3,195.10-38	37,49	
Аллогенный ГА	2,870·10 ⁻³⁶	35,54	

По результатам рентгенофазового анализа определен состав кристаллических фаз продуктов синтеза 1-4 в сравнении с аллогенным ГА. В продукте синтеза 2, дополнительно выдержанном в маточном растворе, кристаллическая фаза на 95,27 % состоит из чистого ГА и на 4,73 % - из β -Ca₃(PO₄)₂, а в продукте синтеза 1 на 47,37 % из ГА и 52,63 % из β -Са₃(PO₄)₂. В продуктах синтеза 3, 4, как и в аллогенном материале преобладает ГА. Во всех продуктах синтеза присутствует, по-видимому, некоторое количество аморфной фазы (табл. 4). В продуктах 3 и 4 определяется структура нестехиометрического состава $[Ca_{10}(PO_4)_4(OH)],$ которая образуется в результате анионного замещения в гидроксилапатите и, по-видимому, является промежуточной при образовании карбонат-замещенного гидроксилапатита.

В табл. 5 приведены параметры элементарных ячеек выделенных фаз, рассчитанные методом наименьших квадратов [8].

Совокупность полученных данных показывает, что продукты синтеза представлены разными типами кристаллических структур, формирование которых зависит не только от состава реагентов, но и времени проведения реакции. Последнее влияет и на гранулометрический состав получаемых продуктов: с увеличением времени выдержки в растворе увеличивается размер частиц. Очевидно, что па-

Таблица 4. Фазовый состав (мас. %) порошков продуктов синтеза 1-4 по результатам рентгенофазового анализа

Фазы продуктов синтеза	Ca ₅ (PO ₄) ₃ (OH)	$Ca_3(PO_4)_2(2\beta)$	Ca ₁₀ (PO ₄) ₆ (OH) ₂	Ca ₁₀ (PO ₄) ₄ (OH)*
1	40,85	52,63	6,52	-
2	95,27	4,73	-	-
3	87,81	-	-	12,19
4	83,00	-	-	17,00
Аллогенный ГА	86,98	-	13,02	-

*Фаза нестехиометрического состава.

	Продукты синтеза						
Фаза	2	3	Л	Аллогенный			
	Z		4	гидроксилапатит			
Ca ₅ (PO ₄) ₃ (OH)	<i>а=b=</i> 94,218 нм	<i>а=b=</i> 94,155 нм	<i>а=b=</i> 94,176 нм <i>с</i> =68,802	<i>а=b=</i> 94,173 нм <i>с</i> =68,967			
	<i>с</i> =68,813 нм (тетрагон.)	<i>с</i> =68,906 нм (тетрагон.)	нм (тетрагон.)	нм (тетрагон.)			
$Ca_3(PO_4)_2(2\beta)$	<i>а=b=</i> 104,352 нм <i>с</i> =374,029	4,352 нм <i>с</i> =374,029 <i>а=b=</i> 104,401 нм _		_			
	нм (тетрагон.)	<i>с</i> =373,158 нм (тетрагон.)					
		<i>а</i> =94,905 нм	<i>а</i> =95,142 нм	<i>а</i> =94,162 нм			
Ca ₁₀ (PO ₄) ₆ (OH) ₂	-	<i>b=</i> 187,480 нм <i>с</i> =69,083 нм	<i>b=</i> 188,168 нм	<i>b=</i> 188,669 нм			
		(монокл.)	<i>с</i> =68,325 нм (монокл.)	<i>с</i> =68,898 нм (монокл.)			

Таблица 5. Параметры элементарной решетки кристаллических фаз продуктов синтеза 2–4 по результатам рентгеноструктурного анализа

раметры элементарных ячеек продуктов синтеза 3, 4 в большей степени совпадают с параметрами аллогенного ГА. Анализ результатов, приведенных в табл. 4 и 5, позволяет сделать вывод о том, что по фазовому составу продукты синтеза 3 и 4 более близки к биологическому ГА. В области значений рН 7 наибольшую растворимость демонстрирует продукт синтеза 1, что обусловлено, его фазовым составом. Другие продукты, в составе которых преобладает гидроксилапатит, в том числе карбонатмодифицированный, близки по растворимости к аллогенному ГА.

Рис. 3. Зависимость показателя произведения растворимости рПР от рН среды для продуктов синтеза: а) 1; б) 2; в) 3; г) 4 и д) аллогенного ГА

СПИСОК ЛИТЕРАТУРЫ

- Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. – М.: Наука, 2005. – 204 с.
- Чайкина М.В. Механохимия природных и синтетических апатитов. – Новосибирск: Изд-во СО РАН филиал «Гео», 2002. – 223 с.
- Чайкина М.В. Механохимический метод переработки некондиционных фосфатных руд // Труды ГИГХС. Специальные методы обогащения руд горнохимического сырья. – М.: Изд-во ГИГХС, 1985. – Вып. 68. – С. 121–136.
- Данильченко С.Н. Структура и свойства фосфатов кальция с точки зрения биоминералогии и биоматериаловедения // Вісник СумДУ. Серія Фізика. Математика. Механіка. – 2007. – № 2. – С. 33–59.
- Ковалева Е.С., Шабанов М.Б. Биорезорбируемые порошковые материалы на основе Са_{10-х}Na_x(PO₄)_{6-x}(CO₃)_x(OH)₂ // Актуаль-

Введение в гидроксилапатит карбонат-ионов позволяет увеличить его растворимость при обычных условиях, причём с увеличением содержания CO₃²-иона (*x* от 0,75 до 1) растворимость вещества увеличивается, что может быть связано с возни-кновением микронапряжений и микродеформаций в кристаллической решетке гидроксилапатита при вхождении в нее карбонат-иона.

Выводы

- Проведен синтез образцов гидроксилапатита с различным временем выдерживания осадка в маточном растворе и образцов карбонатзамещенного гидроксилапатита с исходным содержанием карбонат-иона в стехиометрической формуле 0,75 и 1,0.
- 2. Определены элементный и фазовый состав продуктов синтеза, их дисперсность, пористость и зависимость их растворимости от pH растворов при 20 °C. С увеличением кислотности среды растворимость полученных образцов увеличивается. Введение карбонат-иона позволяет увеличить растворимость образцов и приблизить ее к растворимости природного гидроксилапатита.
- Карбонатмодифицированные образцы по фазовому составу наиболее близки к природному гидроксилапатиту и включают как кристаллическую, так и аморфную фазы, что подтверждено результатами рентгеноструктурного и рентгенофазового анализа.

ные проблемы современной неорганической химии и материаловедения: Матер. VII конф. молодых ученых. – 23–25 нояб. 2007. – Звенигород, 2007. – С. 19–20.

- Рассказова Л.А., Куляшова К.С., Коротченко Н.М. Синтез и методы исследования гидроксилапатита, имеющего важное значение для медицины. // Материаловедение, технологии и экология в третьем тысячелетии: Матер. IV Всерос. конф. молодых ученых. – 19–21 окт. 2009. – Томск, 2009. – С. 256–259.
- Петровская Т.С. Силикофосфатные стекла как компонент биоактивных материалов // Стекло и керамика. – 2002. – № 12. – С. 34–37.
- Савицкая Л.К. Методы рентгеноструктурных исследований. Томск: Томский гос. ун-т, 2003. – 258 с.

Поступила 17.09.2010 г.