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Abstract. A new approximate algorithm for calculating a stress-strain state of viscoelastic 

bodies is used. The algorithm is based on the derivation of the expressions of time-effective 

modules. These modules are obtained by iterative changes, compressing the fork of Voigt-

Reuss. As an example the analytic solution about the action of a concentrated force on the 

viscoelastic half-space is compared with the approximate solution. Numerical calculations are 

performed for a wide range of relaxation characteristics of a viscoelastic half-space. Results of 

the comparison of stresses and displacements with the analytic solution give coincidence 

within 3…15 %. 

1. Introduction 

Calculations of the stress-strain state of linear viscoelastic bodies are associated with the solution of 

the system of integral-differential equations of equilibrium for given stresses or displacements on the 

border [1]. Approximate approaches are used in connection with the complexity of numerical 

implementation of such decisions. The most famous of them are: a) the Scheper method [2], b) the 

method of quasi constant operators [3], an iterative method [4], the approximation method of Il’yushin 

[1]. An approximate method of the solution based on the concept of time-effective modules [5] is used 

in the present work.  

The purpose of this work is to carry out the calculations of the stress-strain state for a viscoelastic 

body with new time-effective characteristics [6] by the example of Boussinesq's problem. 

2. The action of a concentrated force on the viscoelastic half-space 

Exact solutions of the problems of linear viscoelasticity can be obtained on the base of known 

analytical solutions of elasticity problems. According to the method of Volterra, the elastic constants 

are replaced by the corresponding integral operators. Then, decoding is performed – some operator 

function is transformed to an integral equation with the unknown nucleus and the calculation of 

integral is performed by a given time-function load. 

We consider the elastic solution of the Boussinesq’s problem [7] about the action of force P on a 

half-space. We have the following axially symmetric distribution of the components (displacements 

and stresses) in cylindrical coordinates ( , )r z : 
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Here ,r z  are the radial and axial coordinates of an arbitrary point of a half- space,
2 2 2R r z  , 

,G  are resiliently instant Poisson's ratio and shear modulus. 
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Axial 
z and shearing 

rz stresses do not depend on the elastic constants, therefore, they will not 

depend on time. 

We define material operators of shearing relaxation 
*G and creep 

* 1G 
 as: 
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Here ,   are the function parameters of relaxation and creep. 

We need to make substitutions 
* *,G G   in (11) for the construction of an analytical solution 

of the problem and then we have to decipher the function of operators 
* *,G . We assume that the 

volumetric relaxation is absent, 
*

0K K const   

We introduce the following operators: 
*

* *
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Here К0 is the bulk modulus. Then operator 
* is expressed by the operator of related creep *

1/2g as 

follows: 
* * *

1/2

1
(1 )

2
g   . The product of two integral operators of Volterra type enters the last 

relation. We use the transformation of the product of two operators into their difference by formula 

* * *

1/2 1/2

1
1 .

2
g g         (4) 

Then we obtain: 

* * * * * * 1 * * * *

1 1/2 2 1/2 3 1/2

0 0

1 1 1 3
( , ) , ( , ) ( ), ( , ) 2 .

2 2
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As one can see, all three operator functions are expressed in terms of the operator of related creep 

by Il’yushin. 
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Thus, formulas (5) in conjunction with (3) and (4) give the analytic solution for the problem on 

loading of the viscoelastic half-space by force ( )P t . 

We obtain approximate solutions on base *( ), ( ), ( )V RG t G t G t by replacements: 
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where the index accepts values 1, 2, 3k  . 
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   1 2 3 *( ) ( ), ( ) ( ), ( ) ( )L C V Rg t g t g t g t g t G t G t G t    ,    (8) 

where ( ), ( )L Cg t g t  are known modules of Lagrange and Castigliano. 

2. The analysis of numerical results 

Numerical calculations of analytical and approximate solutions for Boussinesq’s problem were made 

for three cases, where parameter  that determines the ratio of the resiliently instant module to long-

termed module 0 /G G  , takes the values equal to 3, 5, 10. 

1) 
1 10.0138 min , 0.0069 min , 3,       

2) 
1 10.0276 min , 0.0069 min , 5,       

3) 
1 10.0621 min , 0.0069 min , 10.       

The boundary load was set as step function 0( ) ( )P t P h t , where 0 100 MPa.P   The values of the 

elastic constants are 0 0120 MPa, 360 MPa.G K   The volume content of one component which 

properties are determined by time-effective characteristics of Castigliano’s  type, has magnitude  

0.8  . Curves of changes in time-effective modules of Voigt ( )VG t , Reuss ( )RG t  and 

( ), ( 1, 2, 3)kg t k   are shown in Figure 1. 

 
Figure 1. Curves of values for time-effective modules. ( ), ( )V RG t G t  are evaluations of Voigt 

and Reis, 1 2 3( ), ( ), ( )g t g t g t are modules defined by (8), 20, 0.8   . 
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The curves of the time variation of the relative deviations of displacements u  and stresses ,r   , 

obtained on the basis of efficient modules ( ), 1, 2,3ng t n  , are shown in Figures 2-4. Figures 2-4 

illustrate the temporal character and the deviations of the approximate solutions against analytical 

solutions for the chosen values 3, 5,10  . 

  

 

Figure 2. Graphs expressing changes of deviations 

for displacementsu  (3.a) and stresses ,r    

(3.b-c.). Calculations for case 3   
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Figure 3. Graphs expressing changes of deviations 

for displacementsu  (4.a) and stresses ,r    

(4.b-c.). Calculations for case 5   

  

Figure 4. Graphs expressing changes of deviations for displacements u  (5.a) and stresses  
r  (5.b.). 

Calculations for case 10  . 

 

3. Discussing the results 

Calculations of the stress-strain state of a viscoelastic half-space (Boussinesq problem) with the help 

of the approximate method have a feature. It is an error in the calculation of stresses and displacements 

of different magnitudes. So, for a step-by-step load, the error of the calculation for displacements is 

practically zero when using time-effective modules of Castigliano's type. An opposite pattern is 

observed in the calculation of the stress: in this case, the calculations with effective modules of 

Lagrange’s type give the minimum error. In this connection, we can use mathematical techniques 

applied in the mechanics of composite materials: a selection of the optimal value for the specific 

volume content of a component from a position of the minimum error for calculations of stresses and 

displacements; administering an effective time module obtained by compressing the fork of Voigt-

Reuss. 

 

4. Conclusions 

1. The comparison of analytical and approximate solutions gives the following picture for the 

distribution of errors. The calculations of stresses and displacements give the minimal error (2…3 %) 

under 3  . The deviations for displacements are less than 8 % under 5  . Under 10   deviations 

for stresses and displacements are less than 15 %. 

2. Value 0.8   corresponds to the minimum magnitude of the error in the calculation of stresses and 

displacements. 
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