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Abstract. This paper focuses on the creating of a mathematical model of a solar array 

deploying process during ground tests. Lagrange equation was used to obtain the math model. 

The distinctive feature of this mathematical model is the possibility of taking into account the 

gravity compensation system influence on the construction in the deploying process and the 

aerodynamic resistance during ground tests. 

1. Introduction

An obligatory stage of the spacecraft creation is the testing of its subsystems [1]. The gravity 

compensation stands are used for ground testing of the solar array deploying process. Mathematical 

modeling of the solar arrays deploying process during ground tests is carried out to assess the 

implementation of the stand weightlessness features of the deployable elements and minimize the 

impact of added masses and other elements of the stand on the solar array’s drives [2, 3]. Math model 

include kinematic and dynamic models of the solar arrays and dynamic models of the stand tracking 

systems. The requirements to the stands increase with developing of the space constructions and 

complication of the solar array structure. It leads to the necessity of creation of the more precise 

mathematical models. 

The article considers the method of the mathematical modeling of the solar arrays deploying 

process, which is directed at the applied task solution of describing the deploying process for more 

often useable types of the solar array construction. The distinctive feature of this mathematical model 

is the possibility of taking into account the gravity compensation system influence and the 

aerodynamic resistance on the construction in the deploying process during ground tests. 

2. Selection of a Solution Approach

There are three approaches of the computing modeling of the solar array deploying process. 

The first approach consists in drawing up the differential equations of the mechanical system and 

their analytical decision. In this case a special mathematical software is used [4-6], which allows 

carrying out all the necessary operations in a symbolic form. The numerical values of parameters are 

substituted in the resulting symbolic expressions. This approach was applied for describing the 

deploying process of solar arrays in work [7]. The disadvantages of this approach include the high 

costs of computer performance.  

MEACS2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 124 (2016) 012103 doi:10.1088/1757-899X/124/1/012103

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:aktomilin@tpu.ru


The second approach is called algorithmic. It consists in numerical integration of the differential 

equations. It is possible to construct a calculation algorithm of dynamic and kinematic movement 

system characteristics using the set parameters and initial conditions. This approach is widespread in 

the applied mechanics and robotics. The algorithms of this approach are based on the physical laws 

and principles, such as D'Alembert principle, Lagrange equations, and others [8]. An example of the 

second approach of the solar arrays deploying process modeling is in work [8]. 

The third approach consists in the block diagram creating [9, 10] or using the mechanical 

assemblies, which are realised by means of CAD applications [11]. This approach is the most popular 

and easiest way of computer modeling, as it reduces the possibility of mistakes in the model 

composition. 

Let us apply the second approach of modeling of the solar arrays deploying process during ground 

tests. We have a holonomic system with n degrees of freedom, which is not relieved from the 

stationary connections. This system consists of the units with known mass and inertial parameters 

which are consistently connected with the fifth class kinematic couples. The system dynamic could be 

described by Lagrange equations [6]: 
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where W  – the kinetic energy of the system, qi
 – the generalized coordinates, Qi

 – the generalized

forces. 

The kinetic energy of system W  is the sum of kinetic energies iW  of its components: 
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The number of units is equal to the number of degrees of freedom. 

In this article we will consider the active suspensory gravity compensation system [12]. The 

working principle of the active gravity compensation system is applied to each unit mass center of the 

weight compensation forces. These forces are generated by the electromechanical actuators. The main 

requirement for the gravity compensation system is the lack of the additional forces and torques due to 

interaction of the suspensions and solar arrays. For this purpose, all trajectories and velocities of the 

mass centers could be accurately calculated for all units of the solar array structure. The calculation 

and the change of the compensation forces are performed in real time in accordance with the 

parameters of the motion of the structure. 

3. Differential Equations of the Movement
We will form the differential equations of the movement in a horizontal plane for the solar arrays of 

the ‘Express-2000’ platform (Figure 1). Angles , 1,4ii   are taken as the generalized coordinates.
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Figure 1. A schematic representation of the solar arrays. 

The first unit (rod) makes a rotary motion, the other units make the plane-parallel motions. Let us 

write the expressions for the kinetic energies of the units: 
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where Ji
 – the central torques of the inertia, ( )ti  – the angles velocities, mi

 – the masses, ( )V ti
 –

the linear velocities of the unit mass centers. 

The corresponding torques of inertia of the units are: 
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,
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We express squares of the linear velocities of the unit mass centers through the generalized 

coordinates and the generalized velocities: 
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The rotation angles of the units are accepted as generalized coordinates. Therefore the generalized 

forces are represented as the torques of the external and internal forces. The spring torques of 

deploying systems, the aerodynamic torques, the torques of the joint dry friction and the tension 

torques of the gravity compensation cables impact on the units. As a result the generalized forces take 

the following form: 
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where , 1,4SiM i   – the spring torques of deploying systems, , 1,4AiM i   – the aerodynamic

torques, , 1,4FiM i   – the torques of a joint dry friction, , 1,4CiM i   – the resulted torques, which

are created by the respective compensation cables as a result of imperfections in the process of the 

gravity compensation. 

We substitute expressions (2) - (6) in formula (1). The obtained expression can be presented in the 

short form: 

,Π(φ,ξ)φ+b(φ,φ,ξ) =M (7) 

where Π(φ,ξ) – the matrix function of a 44  dimension, b(φ,φ,ξ)  – the vector function of the 

fourth dimension, M  – the vector of torques, which are applied to a four-dimensional body, ξ  – the 

vector of solar array parameters. 

When the unit achieves a standard position, the corresponding locking mechanism operates. The 

additional torque (a locking torque) appears in the hinge device. This torque holds the adjacent units in 

a determined position. We assume that this torque is directly proportional to the angular position of the 

adjacent units relative to each other. 

For the considered model of the solar array deploying the locking torques are: 
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where , 1,4Lik i  – the angular stiffness of the appropriate locking mechanism.

4. An Algorithm of Differential Equations Solving

It is necessary to determine the system movement by the set of operating influences and initial 

conditions. We need to solve a system of nonlinear differential equations of the second order (7) for 

accomplishing the formulated task. 

It can be done by numerical integration of this system. The accelerations are defined and the new 

values of the generalized coordinates and velocities are extrapolated from set initial values of the 

generalized coordinates and velocities to the next time point. The solution is a multiple performance of 

this cycle calculations. 

We use the forth order Runge–Kutta method for solving equation system (7). We present equations 

(7) in the form of Cauchy, i.e. in the form of the first order differential equation system, for using the 

Runge-Kutta method: 
,ΑX B (9) 
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It is necessary to carry out checking on the performance of the locking operations during the 

numerical integration process and to apply the additional torques to the model when it is necessary. 

The algorithm of numerical integration is presented in Figure 2. 

5. Original Assumptions

Modelling always implies certain assumptions which simplify the real system. We use the following 

assumptions: 

 the solar array panels are the absolutely rigid bodies;
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 the gravity compensation stand perfectly compensates the gravitational forces during the solar

array deploying;

 the hinge devices do not have a backlash and do not create additional friction torques;

 the locking devices do not have a backlash and is performed at the moment of transition to the

operating position;

 the aerodynamic torques are linear functions of the angular velocities of the respective panels;

 the deploying process occurs without the synchronizing devices.

We need to take into account the structure and parameters of the locking mechanisms and hinge 

devices for more accurate modeling. That requires more detailed information about these devices. 

The coefficients of the aerodynamic torques depend on the density of environment (air), the square 

area of panels and the drag coefficients [13]. The drag coefficient can be found by the computer 

simulation or experimentally. 

It is necessary to check the adequacy of the model to the real process of the solar array deploying. 

Begin

Represent the 

equations in 

the form of 

Cauchy

 The initial 

conditions 

initialization

i >= N

Set integration 

parameters 

(step, number 

of steps)

i++;

Counting of 

the variable 

values 

at i step

Checking the 

system for 

locking 

conditions 

Output of 

results

End

Yes

No

А

A

B

B

Figure 2. A block diagram of the numerical integration of Runge-Kutta method. 

6. An Algorithm Checking on Adequate

We create the model and obtain the numerical solution of the deploying process parameters. The solar 

array panels of the spacecraft platform ‘Express-2000’ are used for checking. We will set some 

numerical values, which are length and weight of the panels: 

1 2 3 4

1 2 3 4
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l m l m l m l m
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(10) 

Let us represent the spring torques of the hinge devices in the form of: 
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( ) 8 2 , 1,4.Si iM where i         (11)

The drag coefficient of the panels equals: 0.01.  The function of the aerodynamic torque 

assumes: 

( ) 0.01 , 1,4.М where iAi i i    (12) 

We will obtain the following system of equations substituting numerical values (10) - (12) into (9): 
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We use a numerical integration algorithm, which is shown in Figure 2. The calculations are made 

in the Mupad mathematical package of the Matlab software. The results are the sets of graphs. The 

graphs show the dependence of the generalized angles on time (Figures 3 and Figures 4). 

Figure 3. The functions of the first and second hinge angles from time dependence appropriately. 

Figure 4. The functions of the fourth and fifth hinge angles from time dependence appropriately. 

We can find the kinematic and dynamic characteristics of the motion using these results. In 

particular, the trajectories of the unit mass centers in the plane are presented in Figure 5. 

Figure 5. The trajectories of the unit mass center motions in the plane 

7. Conclusion

The results allow considering the model as adequate: 

 the system is stable and reaches desired conditions;

 the trajectories of the unit mass center motions correspond to reality.
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These calculations and figures should be considered in the programming motions of the suspension 

system carriages for the absence of the additional forces and torques due to the errors of gravity 

compensation. 

This model can be developed and improved, bringing it closer to the real mechanism. In particular, 

it is possible to take into account the flexibility of the solar array panels and its impact on the 

properties of the gravity compensation system. 
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