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Abstract. The condition of bearings, which are essential components in mechanisms, is crucial 

to safety. The analysis of the bearing vibration signal, which is always contaminated by certain 

types of noise, is a very important standard for mechanical condition diagnosis of the bearing 

and mechanical failure phenomenon. In this paper the method of rolling bearing fault detection 

by statistical analysis of vibration is proposed to filter out Gaussian noise contained in a raw 

vibration signal. The results of experiments show that the vibration signal can be significantly 

enhanced by application of the proposed method. Besides, the proposed method is used to 

analyse real acoustic signals of a bearing with inner race and outer race faults, respectively. 

The values of attributes are determined according to the degree of the fault. The results confirm 

that the periods between the transients, which represent bearing fault characteristics, can be 

successfully detected. 

1.  Introduction 

Feature extraction of mechanical fault signals is vital for early fault diagnosis of mechanical 

equipment. In a rotating machine, a rolling bearing is a key component in various electromechanical 

devices, and it plays an important role in the entire system. Any defects in bearings, regardless of size, 

will lead to a series of failures in the parts of the connection. The non-linear and non-stationary 

characteristics of the fault vibration signals and the interference of the random noise complicate the 

feature extraction process. Allowing total characteristic of the system state, the signal processing 

method is generally applied to fault diagnosis [1]. Currently many methods are used to analyze fault 

vibration signals, such as time-domain synchronous average analysis, an development of the analysis 

method [2], singular value decomposition (SVD) [3], spectral kurtosis [4-5], wavelet (packet) 

transformation, fuzzy pattern recognition, neural networks, genetic algorithms, and empirical mode 

decomposition (EMD) [6-9]. 

2.  The vibration characteristics of rolling bearings 

Vibrations measured on the body of the rolling bearing are generated by four major sources [10]: 

• the rotation of bearing elements; 

• the resonance of bearing elements and their mounting; 

• acoustic emission; 

• external vibration. 

The rotation of bearing elements consists in the following. Each element of bearing (an inner ring, 

a cage, rolling elements and an outer ring) has a characteristic frequency at which the vibrational 

energy is excited due to cyclic stresses or periodic attacks on a defect. A set of characteristic 

frequencies can be defined for each type of the bearing with original geometry. In practice, ideal 
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geometry is a rare phenomenon, and there are usually additional frequency components generated by 

inaccuracies such as lobing, out-of-roundness of the ring and different sizes of the rolling elements. 

The resonances of bearing elements. Each bearing member has a proper frequency that may be 

varied during assembly and element loading in the presence of a lubricant. Proper fluctuations excite 

load changes that occur at specific frequencies, and under the influence of irregular contact in 

defective areas. 

Acoustic emission. Acoustic emission is due to vibrations excited by the movement of the material 

at the atomic level. When the material deforms, dislocations are generated, and their subsequent 

movement leads to an unsteady stress wave. In rolling bearings significant local stresses occur in the 

areas of elastic-hydrodynamic loading and this stress can be a source of active radiation of elastic 

waves. 

External vibration. Bearings are usually a single natural connection between rotating and stationary 

units of machinery and therefore can be considered as a main place of vibration transmission. This 

vibration may occur on the rotating member under the influence of unbalance, gearing, impeller blades 

and other bearings. In combination with radiation in a fixed structure, they provide a complete picture 

of the vibration measured on a bearing housing. 

3.  Browse vibratory monitoring methods of bearing condition 

The main method of the vibration data analysis for diagnosis of bearing damage is to monitor changes 

in root mean square levels (hereinafter referred to as a RMS level) and the spectral density 

ofacceleration. The RMS level increaseswith the development of damage [10]. 

Refinement of a simple measurement of the RMS level is enabled by the analysis of changes in 

different octave or third-octave frequency bands; more details can be obtained from the narrow-band 

frequency ranges. 

Currently it is a well established fact that impulse vibration can be seen in bearings with fatigue 

damage and chipping. Changes in the maximum level of vibration in the high frequency range of 

10 kHz are a good indicator of incipient damage, and the ratio of maximum vibration to RMS is 

independent of changes in load and speed (crest factor). 

The measured values of the RMS level, the maximum level, the spectral density and a shock pulse 

depend on the load on the bearing, speed, seating density, lubrication and bearing clearance. 

Consequently, it is difficult to determine the condition of the bearing by a separate measurement, 

except when there is a significant amount of additional information. The ratio of the maximum level to 

RMS provides a more direct assessment of the bearing condition with minimal reference to previously 

obtained information, because this method is less sensitive to changes in operating conditions. 

For evaluation of vibration characteristics of rolling bearings a series of tests has been completed 

outside the bearing life, in the range from new bearings prior to the mass of fatigue failure. 

4.  Probability ofthe bearing vibration function 
The amplitude response of vibration signal X(t) (which is considered to be a stationary random 
process) can be expressed in terms of the instantaneous probability density [11]. This function is 
assessed by the length of stay in each signal of the plurality of amplitude windows, and for a typical 
window width and amplitude x and width △x. Instantaneous probability can be written as 

.    (1) 

The solution of equation (1) for all X with small △x gives the probability density estimate of X. The 
logarithmic scale change increases the likelihood of low probability, which is important for the 
detection of bearing damage. At the early stages of testing, when the bearing is damaged, i.e. 
0.067LB10 in (3.35 h), the probability density of an inverted parabola indicates normal or a Gaussian 
distribution (in a linear scale, it would have a more familiar bell shape). Incipient damage in 1.4LB10, 
causes a distinct change in the tail of the distribution curve. This is consistent with the observation that 
can be made by studying the behavior of the peak-factor, where the measured maximum acceleration 
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level increases, but the RMS level remains relatively unchanged. The tail of the distribution curve 
initially expands with increasing operating time and the development of a damage. This characteristic 
can be enhanced by calculating the integral of the probability density, which gives the probability of 
event X(t) > X0 (probability of exceeding a predetermined level): 

–
-

.    (2) 

The result is that the information on the probability signal exceeds a specific value of amplitude X0. 
An obvious measure of the bearing condition is obtained by comparing the probabilities for specific 
levels of amplitude. Levels above 3σ provide the most relevant information. 

5.  Statistical vibration acceleration moments of a bearing housing 
The shape of the probability density is described by consistency of statistical moments, and these 
moments are determined by generalized integral 

-
, ,   (3) 

the first and the second of which are well known: n = 1 gives a mathematical expectation, n = 2 – 

dispersion. They are similar to the first and the second mechanical moments, i.e. the coordinate of a 

central axis and the moment of inertia of a plane figure correspond to the shape of the probability 

density. 

Odd moments (i.e. n = 1, 3, 5, ...) provide information about the position of the maximum density 

with respect to the median value. Even moments (i.e. n = 2, 4, 6, ...) indicate the spread of the 

distribution. 

Moments (n > 2) can be normalized by eliminating expectation  and dividing it by standard 

deviation σ, raised to the power of the order of time, i.e. by σ
n
. For example, the third central moment 

is: 

-
,     (4) 

-
,     (5) 

where is defined as asymmetry,  – excess. 

The first six moments of the measured accelerations housing units have been studied for testing of 
bearing durability. They are evaluated using less precise, but a more practically convenient operator of 
averaging over time 

- .    (6) 

Odd moments are close to zero, indicated on the distribution symmetry of the acceleration 

amplitudes, while higher even moments are very sensitive to impulsive signals associated with damage 

to the bearing. The normalized fourth moment (or excess) is a measure of compromise between 

slightly lower sensitive moments and hypersensitive higher moments. For the intact bearing it is close 

to 3 (± 8 %), RMS and maximum levels vary respectively between ± 50 and ± 65 % over the same 

range of load and speed. 

Some common waveforms have a specific, but ambiguous excess value [12]: 

• 1.0 – square wave; 

• 1.5 – sine wave; 

• 3.0 – wave with a Gaussian distribution. 

Thus, the measured excess value for the intact bearing is equal to three points for the Gaussian 

distribution of acceleration amplitudes. 

Changes in excess, RMS and maximum levels of acceleration in the process of durability testing 

during 1.6LB10 showed that the value of the excess increases markedly above three immediately after 

1.23LB10, and this increase is consistent with the change of the maximum level, but far ahead of the 
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change of RMS. Maximum is reached in the vicinity of 1.47LB10, and at that time the RMS level 

increases significantly. 

6.  A change of excess in different frequency bands with damage development 

The value of excess increases rapidly near 9 LB10, reaching at 9.6 LB10 the maximum value of 6.7. At 

this point the lesion is located on the inner ring and has the form of a fatigue crack. 

At first, a subsequent rotation of excess declined, but then it rose again to a maximum of 6.7 at 11.3 

LB10. Then the change has become quite chaotic, and excess has found a tendency to return to a level 

equal to three. Appropriate acceleration versus time clearly shows that at an early stage of 

development of damage in 9.1 LB10 (454 h), transient vibrations are generated by packets (one for 

each revolution of the inner ring). This pattern persists until 13 LB10 (653 h), followed by a quiet 

period between packets, then it begins to fade, and the packages become less distinct. The amplitude 

of the acceleration is normalized with respect to the RMS level, and it is important to note that 

between 3LB10 (149 h) and 13.15 LB10 (657 h) the RMS level increases from 0.53 g to 19.1 g. 

The disappearance of a clearly discernible pattern of unsteady shock vibration occurs with 

increasing damage. Initially the fatigue crack length is much less than the circumferential distance 

between two rollers, whereby the system is subjected to discrete shock loading. The shock loading 

becomes more continuous, and consequently bursts become a seeming continuous signal due to the 

damage extent and exceeds the distance between adjacent rollers. When damage captures more than 

60 % of the inner ring, it is always in the loading zone, which leads to continuous shock loading and 

vibration bursts with a set of the indistinguishable pattern. It is at this stage that excess is reduced to 3 

(or the value inherent in undamaged bearings), so at first glance it seems that this circumstance 

prevents the application of the proposed method for the defects detection. However, information about 

the extent of the defect can be extracted by the observing of excess changes in selected frequency 

bands. This conclusion is illustrated by examining the value of excess in four frequency bands at 

certain moments of the durability test. Excess equals 3 in all frequency bands when a defect is absent 

for 0.06 LB10 (3 h), i.e. the instantaneous distribution of acceleration amplitude is Gaussian. A marked 

increase of excess occurs in the lower frequency band with defect nucleation at 9.1 LB10. With 

increasing operating time (amplification defect) the excess value in the low band drops again to 3 and 

the maximum value is moved to the higher frequency band. At 13.15 LB10the damaged area exceeds 

60 % of the inner ring and captures a greater number of rollers and a maximum of the selected 

frequency bands available. The importance of these changes can be assessed by analyzing the 

acceleration versus time for each band at a particular point in the test. In the frequency range of 3 Hz 

to 5 kHz, it is difficult to identify any specific time-dependent pattern, but in the band range of 

5...10 kHz one can see the frequency of bursts corresponding to the frequency of passage of the rollers 

on the inner ring. At higher frequencies, the quiet periods between bursts of consecutive packets 

appear once again during each revolution of the inner ring. 

Thus it can be seen that in this method the initial lesion causes changes mainly in the low 

frequency band, while more advanced damage to the greatest extent affects the high frequencies. 

However, the degree of damage can be defined only by monitoring the excess distribution in selected 

frequency bands. This situation provides a unique opportunity to determine the condition of the 

bearing of a set of measurements of excess. If all values are close to 3, the bearings are not damaged. 

Deviation from three indicates a damage, the dimensions of which can be specified from the shift of 

the distribution excess maximum towards lower or higher frequencies [13]. 

7.  The proposed mechanism for transfer of discrete frequency pulses with increasing bearing 

damage 

The vibration acceleration of a bearing housing is a result of a complex interaction between the 

compelling forces and a transfer characteristics design. Building an accurate model, which would 

allow one to study the development of defect from the transfer of frequencies, requires a full 

understanding of the driving forces at different stages of bearing damage, as well as the dynamic 
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characteristics of the structure [14]. The system simulation is necessary using the idealized 

characteristics of the driving forces and structures, because this full information is absent. 

A condition of a ‘new’ bearing is characterized by compelling force that gradually decreases in 

amplitude with increasing frequency, and is a combination of the dynamic characteristics of the 

bearing and a machine. Small surface cracks occurring under generation of fatigue damage 

dramatically change the distribution of loads by contacting a loading area that can be modeled in the 

form of a pulse power sine half-wave. If such a waveform summarizes the background noise, the 

characteristics of its impulse will occur only at low frequencies. Consequently, the time-dependent 

excitation of the structure will occur only in this region, it indicates the excess above 3.Broadband 

background noise still dominates at high frequencies so the excess value is equal to three. 

The damage is distributed by deepening and expanding the initial crack in conjunction with 

formation of additional cracks and surface spalling. The transition to an intermediate state is simulated 

by sine half-waves, but with increased amplitude and recurrence frequency. It causes an increase at the 

level of the spectrum at all frequencies. Now impulsive characteristics are distinguished above the 

background noise in the higher frequency scale, and the value of excess increases in this area. With 

increasing damage the frequency of impact repetition reaches the value when the time between beats is 

not sufficient for the natural damping of the structure reaction. The resulting interaction between 

successive bursts has random character, and the resulting signal has the Gaussian distribution of 

amplitudes in the low frequency band. However, the impact of energy at high frequencies will have a 

relatively low repetition rate and therefore generates more discrete reaction designs, which can be 

identified by analyzing a signal with an appropriate band pass filter. Therefore, the development of 

damage to the value of the low-frequency excess returns to 3, and the value of the high excess remains 

high. 

The basic premise of this model is to ensure that: 

a) the relative levels of shock loading are mixed in background noise; 

b) the frequency of shock repetition is comparable to the time decay response of the structure. 

Consequently, the area in which discrete bursts with defect nucleation appear for the first time 

depends on the excitation spectrum of the background and the nature of damage. 

8.  The classification of the damage extent 

The terms ‘nascent’ and ‘development’ damages have been used earlier, but their definitions have not 

been given. 

The nascent damage refers to damage at the macroscale, which in the case of fatigue is a primary 

surface crack, and not previous microscale movement of dislocations within the material. The rate of 

transition in the development of damages defined as a state, in which the damage is continuously in 

contact with rollers in a loading area, depends mainly on the particular nature of damage to an element 

and a load. If damaged, the outer ring of continuous contact will occur when the extent of damage 

exceeds the distance between successive rollers and the inner ring, for continuous contact occurs when 

damage covers 60...70 % of the circumference (for pure radial load). Damage to a single element alone 

rarely increases and the continuous contact can be an interaction result of elements damage. It should 

highlight a fact that the absolute area of contact should not be a major factor in predicting failure rates. 

The intensity of the spread depends to a large extent on the intensity of the impact and frequency of 

their recurrence. And since these factors result in transfer of frequency corresponding to the maximum 

excess, then it is obvious that a predisposition to failure can be predicted by the instantaneous values 

of excess aggregate. 

Conclusion 

It is shown that values of excess in selected bands are potentially a powerful tool for quantitative 

evaluation of the bearing condition. The main advantages of this parameter are insensitiveness to 

changes in speed and load bearing and an ability to indicate damage extent and the tendency to 

damage spread. ‘Maximum operating time of failure’ cannot be determined by this method. However, 
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the obtained information allows one to estimate a bearing condition. This evaluation together with 

such factors as production schedules, the effects of secondary injury, availability of spare parts, allows 

one to take a decision to replace the bearing. 

The method is applicable to all types of bearings, which is confirmed by laboratory and field tests. 

Particular difficulties arise in explaining the results of split bearings and bearings operating under 

conditions close to cavitation. However, by revising the frequency bands and interpretation of the 

measurements it is still possible to determine the condition of the bearing, but with less sensitivity and 

reliability. 

The results of this study are the beginning of the solution of the contradiction of the ‘best’ 

frequency ranges for detection of bearing damage. Discrete bursts are normally associated with a 

defect and occur in different frequency bands with different degrees of damage. This feature can be 

explained qualitatively by considering the relative levels of damage associated with the disturbance 

and background noise, so the efficiency of detection of damage depends on the level of background 

noise. Simple rules for evaluating detection effectiveness depending on the position of the sensor can 

be formulated, but in the meantime placing the sensor as close as possible to the bearing can be 

recommended. 

The size of damage is determined beforehand on the basis of the absolute spalling area. A more 

reasonable interpretation, reflecting the rate of spread of damage, should take into account this area 

due to the frequency of its contacting loading area. 
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