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Abstract. Simulation of flux-peaking effect of the 255 MeV positrons channeled in (220) Si 

crystals is performed in the frame of classical and quantum mechanics. Comparison of the 

results obtained using both approaches shows relatively good agreement. 

1.  Introduction 

The flux-peaking effect (FPE) is one of the known orientation effects at channeling of positively 

charged particles. A detailed review of the FPE was given in [1].Theoretical investigation of the FPE 

has been carried out on the basis of kinetic equations for the particle distribution functions or 

numerical solution of classical equation of motion [2]. In this work we perform analysis of FPE using 

both classical and quantum methods as in work [3]. We use computer code “Basic Channeling with 

Mathematica©” BCM–1.0 [4], which was successfully applied to describe recent theoretical [5-10] 

and experimental results [11-15], obtained at SAGA Light Source. Calculations were performed for 

255 MeV positrons channeled along (220) planes in a thin Si crystal. 

2.  Classical description 

For the calculation of every individual charged particles trajectory it is necessary to solve classical 

equation of motion. Under the channeling condition the longitudinal component of relativistic particles 

velocity ||  is nearly equal to the speed of light c. The transversal component of velocity is much less 

than the longitudinal one:  /1/;||   cx  (  denotes the relativistic factor).Thus, 

equations of motion are reduced to the non-relativistic equation with the replacement of the particle 

mass m to the relativistic mass m : 
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Where x is the transversal coordinates, z the longitudinal coordinate, U(x) here describes the potential 

energy of the particles in the field of periodically arranged crystal planes. 

The initial conditions for this system contain the positron entrance point into the crystal   00 xx 

and transversal components of initial velocity: 
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where θ is the incidence angle i.e. the angle between positron momentum and channeling plane. The 

point of entry of particles were uniformly distributed within a period of change the function 

U(x)(within one potential well). For the numerical simulation of the equation (1) we use computer 

code “Basic Channeling with Mathematica©” BCM–1.0 [4]. This code computes numerical solutions 

of the classical equations of relativistic particles using the Doyle-Turner potential for the 

crystallographic planes [9]. Simulated trajectories of 255-MeV positrons in 5μm Si crystal and 

potential energy of positrons in the (220) crystal planes electric field are shown in figure 1. Only 50 

trajectories are presented. The incidence angles for all positrons are the same. 

To simulate the angular divergence of positron beam the procedure described in Ref. [5] is used. 

For each point of entry, 20 values of the incident angle θ are generated randomly with a normal 

distribution. The standard deviation of the distribution had the value 0.1 mrad≈θc/4 (θc is the critical 

channeling angle). Thus, 10 000 trajectories are calculated for different entry points within one period 

of the planar channeling potential (figure 1(a)). Then, using these trajectories we obtain 2D spatial 

distribution of the positrons inside the crystal.  

 

(a) (b) (c) 
 

   

Figure 1. Simulated trajectories of 255MeV positrons in 5μm Si crystal and potential energy of 

positrons in the electric field of the crystal planes. (a) (220) interplanar potential energy, (b) 50 

simulated trajectories for incidence angle =0.0, (c) 50 simulated trajectories for incidence angle 

=c2. 

3.  Quantum description 

The channeled particle wave function )(xi was calculated using computer code “Basic Channeling 

with Mathematica©” BCM–1.0 [4]. This code computes numerical solutions of the Schrödinger 

equations with relativistic mass [10] for relativistic particles using the Doyle-Turner approximation for 

the crystallographic planes potential [9].  

The conventional wave packet ),( tx  based on the wave functions )(xi  we have chosen as  
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where )(iP  is the initial population of the transverse sub-barrier energy levels: 
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Here   is the positrons initial angle of incidence, xk the transverse wave vector component, d the 

interplanar distance, 
i  the eigenvalues of Schrödinger equation. 

In addition, the probability density of positrons wave packet was obtained by analogy with the free 

particles Gaussian wave packet: 
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where mi,

~
 is the Fourier transform of wave function )(xi , g reciprocal lattice vector. 

4.  Results of simulation 

The spatial distribution of the 255 MeV positrons channeled in a 5 μm thick Si crystal along (220) 

planes are shown in figure 2 obtained using classical approach. Left column represents spatial 

distribution for parallel positron beam. In the right column spatial distributions of positrons inside the 

crystal for beam with angular divergences are shown. It is clearly seen that number of maximum of 

spatial distribution equal 6 for crystal thickness 5 μm and angle of incidence θ=0
o
 (see, in figure 2(a)). 
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Figure 2. Spatial distribution of the 255 MeV positrons channeled in (220) Si crystal 

for incident angle θ=0
o
and θ=θc/2=0.012

o
=0.2 mrad. (a, c) parallel positron beam (no 

angular divergence), (b, d) beam with angular divergences equals 0.1 mrad≈θc/4. 

 

For beam with angular divergence the quantity of maximum does not change but it became wider (see, 

in figure 2(b)). Spatial distributions of positrons for incident angle θ=θc/2 are shown in figure 2 (c,d). 

In this case the spatial distribution has specific “zigzag” shape. This is due to the form of positron 

trajectories which are determined interplanar potential which is close to parabolic (see, in figure 1).  

 

 

Probability density of positrons wave packet calculated using formula (4) are shown in 

figure 3(a,c). The shape of the probability density is more particular than in the case of classical 

approach but the number of maxima is the same as for classical spatial distribution (see, in figure 

2(a)). The probability density of positrons calculated using Gaussian wave packet are sown in figure 

3(b, d). It is seen that the form of probability density resembles the classical spatial distribution 

calculated for incident angle θ = θc/2.  

5.  Conclusions 
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Figure 3. Wave packet probability density of the 255 MeV positrons channeled in (220) 

Si crystal for incident angles θ=0
o
 and θ=θc/2. (a, c) The conventional wave packet

),,( tx ; (b, d) the Gaussian wave packet ),,( txG . 
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Simulation of flux-peaking effect (FPE) of the 255 MeV positrons channeled in (220) Si crystals is 

performed in the frame of classical and quantum mechanics using computer code “Basic Channeling 

with Mathematica©” BCM–1.0. Comparison of the calculation results of the positron beam spatial 

distribution and the wave packet probability density shows relatively good agreement. This is, mainly, 

confirms the classical model validity. 

However, there are some features: the positron beam “zigzag” shape spatial distribution occurs if 

angle of incidence is not zero, while a similar distribution for the wave packet probability density 

occurs only for a Gaussian wave packet. In our opinion, such result means, that the Gaussian wave 

packet is the most appropriate model of the classical spatial distribution if incident angle of positrons 

is comparable to the critical angle of channeling. 

On the contrary, a good coincidence of classical and quantum results on the flux-peaking effect 

simulation allows us to conclude that the choice of method is determined by the description of the 

problem. If we need to estimate the numerical values of the beam parameters, you should use the 

classic approach. If you need to obtain detailed description of beam spatial distribution, then use the 

quantum approach. 
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