1. ПРЕДПОСЫЛКИ И ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ СИСТЕМ «ИНТЕЛЛЕКТУАЛЬНОЕ МЕСТОРОЖДЕНИЕ» НА НЕФТЕГАЗОДОБЫВАЮЩИХ ПРОМЫСЛАХ РОССИИ

1.1. Современные проблемы функционирования нефтегазодобывающего комплекса России

Топливно-энергетический комплекс (ТЭК) — сложная межотраслевая система добычи и производства топлива и энергии (электроэнергии и тепла), их транспортировки, распределения и использования. От развития ТЭК во многом зависит рост, масштабы и технико-экономические показатели промышленного комплекса России. Близость ресурсов и эффективность их разработки — одно из главных требований к организации промышленности. Однако, месторождения энергетического сырья расположены неравномерно по территории России. 80% сырьевых запасов топливно-энергетических ресурсов сосредоточено в восточных районах России, а основные потребители энергии находятся в европейской части РФ, (Таблица 1.1), что обусловливает дальность перевозок и, в связи с этим, увеличение себестоимости продукции.

Таблица 1.1 - Удельный вес федеральных округов России в добыче топливных ресурсов, % (2015г) [1].

Ресурсы	нефть	газ	уголь
Центральный федеральный округ	5,44	0,67	0,06
Северо-Западный федеральный округ	1,80	2,62	3,85
Южный федеральный округ	0,34	0,14	1,58
Приволжский федеральный округ	21,61	3,75	0,14
Уральский федеральный округ	58,69	86,99	0,65
Сибирский федеральный округ	8,09	1,28	83,88
Дальневосточный федеральный округ	4,03	4,55	9,83

Деятельность российского нефтегазового комплекса (НГК) выступают основой обеспечения платежного баланса страны, поддержания курса национальной валюты, формирования в экономике инвестиционных ресурсов. Экономика России по-прежнему зависит от доходов нефтегазовых компаний, за счет которых формируется 50% федерального бюджета и около 70% поступлений от экспорта[3].

В настоящее время наблюдается спад добычи в одном из крупнейших нефтедобывающих регионов России — Ханты-Мансийском автономном округе (таблица 1.2). В 2015 году добыча составила 253 млн тонн, а по прогнозам администрации округа в 2016 составит 250,9 млн тонн. Высокаяобводненность добываемой нефти и понижение коэффициента извлечения нефти негативно сказываются на уровне добычи [1].

Таблица 1.2 - Добыча нефти в регионах России, млн. т

Регион	Заянварь - сентябрь 2015,	В % к 2014
Ханты-Мансийский АО	189,9	97,9
Ямала- Ненецкий АО	28,5	106,1
РеспубликаТатарстан	24,6	100,3
Оренбургская обл.	17,1	100,4
Красноярский край	16,1	121,4
Республика Башкортостан	11,5	103,2
Самарская обл.	11,4	103,4
Пермский край	10,6	102,9
Респулика Коми	10,2	100,4
Сахалинская обл.	10,1	96,1
Ненецкий АО	9,6	95,4
Томская обл.	8,6	94,8
Иркутская обл.	8,3	113,6
Удмуртская республика	8,1	100,4
Республика Якутия (Саха)	5,5	110,9

Основным регионом нефтедобычи по-прежнему остается Западная Сибирь. Основные работы в этом регионе нацелены на поддержание объемов добычи. Тяжелые нефти Западной Сибири (их сосредоточено здесь 54%) являются наиболее ценным сырьем для переработки (моторное и котельное топливо, масла). Однако проекты по еè добыче с традиционным подходом к управлению и разработке из-за высокой себестоимости, скорее всего, будут заморожены.

Следует выделить ряд важнейших проблем развития нефтегазового России, к которым в частности относятся:

1. Снижение объемов геологоразведочных работ(ГРР).

Затраты на поисково-разведочное бурение (ПРБ) списываются на себестоимость, а для нефтяных компаний, все силы которых брошены на рост капитализации, а не на развитие отрасли, выгодно снижать эти затраты.

Увеличение объемов ПРБ невозможно без развития других видов ГРР, предваряющих и обосновывающих выбор тех или иных объектов поискового бурения. В первую очередь это относится к сейсморазведке — основному методу поиска объектов, перспективных в нефтегазоносном отношении. По объемам работ российская сейсморазведка, как и ПРБ, находится в стадии стагнации (Рисунок 1.2), хотя многие геофизические предприятия, работающие на суше и море, оснащены современными техническими средствами. Но они недостаточно обеспечены работой на отечественном рынке ГРР [5].

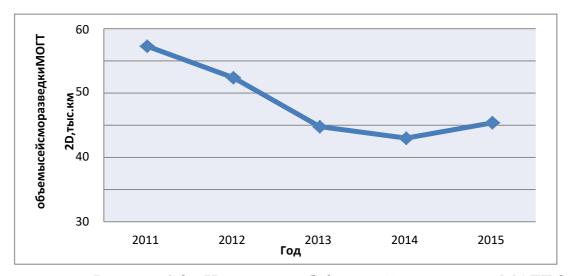


Рисунок 1.2 - Изменение объемов сейсморазведки МОГТ 2D

Снижение объемов геологоразведочных работ приводит к уменьшению количества открытий новых месторождений и ухудшению качества геологопромысловых данных. В такой ситуации компании вынуждены обращаться к уже разведанным, но ранее не рентабельным для разработки месторождениям трудноизвлекаемой нефти, а также искать методы по повышению экономической эффективности на уже разрабатываемых проектах.

2. Трудноизвлекаемые запасынефти.

На настоящее время доля активных запасов составляет всего 38,9% (Рисунок 1.3), в то время как доля низкопроницаемых коллекторов, высоковязких нефтей и подгазовых зон преобладает среди промышленных категорий запасов [6].

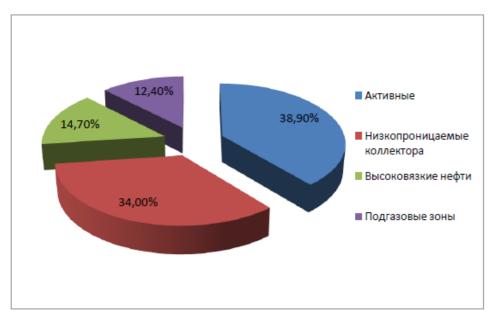


Рисунок 1.3 - Структура текущих запасов нефти промышленных категорий в России

На основе проанализированных данных [7,8,9] выделены возможные категории запасов, относимые к трудноизвлекаемым (Рисунок 1.4).

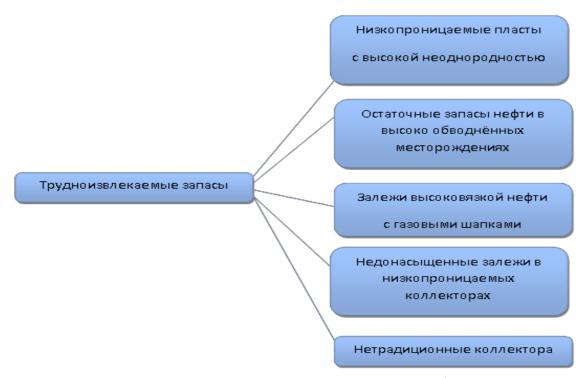


Рисунок 1.4 - Трудноизвлекаемые запасы нефти

Удельный вес месторождений трудноизвлекаемыхнефтей неуклонно растет и начинает преобладать в структуре запасов некоторых регионов. Наиболее остро стоит вопрос об экономически выгодном освоении месторождений тяжелой нефти на уже давно разрабатываемых промыслах на территории Европейской части России (Рисунок 1.5) [10].

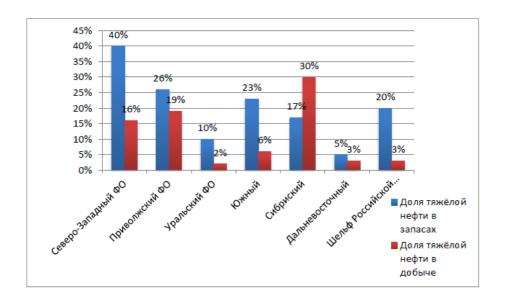


Рисунок 1.5 — Распределение удельных весов запасов и добычи тяжелых нефтей РФ по федеральным округам (ФО),%

В структуре общих запасов доля трудноизвлекаемой нефти составляет 60%. В соответствии с такой динамикой качества запасов нефти (Рисунок 1.6) отмечается существенное ухудшение структуры извлекаемых запасов по величине проектной нефтеотдачи.

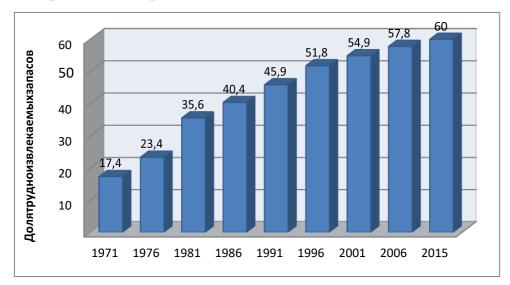


Рисунок 1.6 - Динамика доли трудноизвлекаемых запасов в России

В настоящее время доля трудноизвлекаемой нефти в составе общих запасов нефти России стремительно увеличивается [11]. Годовой темп прироста разведанных извлекаемых запасов нефти в целом составил 1,25% в 2014г., в то время как тяжелой нефти — 1,52% и высоковязкой -3%. По данным оценкам [12] на сегодняшний день добывается около 20 млн. тонн нефти в год, что составляет всего 0,2% от общего объематрудноизвлекаемой нефти на территории России.

Сдерживающим фактором для начала активной разработки месторождений с трудноизвлекаемыми запасами является относительно высокая себестоимость — 20 долларов США за баррель, в то время как себестоимость традиционной нефти составляет всего 3-7 долларов США за баррель [23].

За счет вовлечения в разработку запасов трудноизвлекаемой нефти Россия может не только поддерживать среднегодовой уровень добычи (Рисунок 1.7), но и обеспечить лидирующее положение по производству углеводородов в мире.

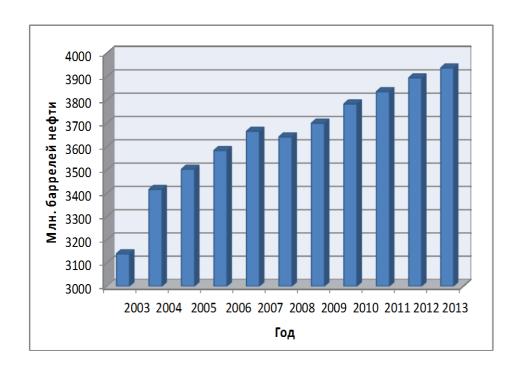


Рисунок 1.7 - Добыча нефти в России [22,13]

3. Коэффициент извлечения нефти(КИН).

На фоне вынужденного обращения нефтедобывающих компаний к запасам трудноизвлекаемой нефти выработанности И росту крупных месторождений нефти наблюдается уменьшение среднего значения проектных коэффициента извлечения нефти. КИН величин является основным эффективности показателем применяемых технологий разработке углеводородных месторождений.

Один из факторов, существенно снижающий КИН, — это обводненность нефтяных залежей. Современный уровень обводненности российских нефтей достигает 84% (в среднем по миру обводненность составляет 75%). Это означает, что в продукции добывающих скважин воды в 5 раз больше, чем нефти. Если в 2014г было добыто 510 млн. т. нефти, то вместе с ней на поверхность извлекается 2,5 млрд м³ воды. На отделение и очистку попутной воды в нашей стране тратится более 7 млрд. долларов США [17]. Кроме того, при средней цене нефти более 60 долларов США за баррель экономически эффективно применение капиталоемких технологий ИМ, которые способны увеличить КИН больше чем на 10% [14,15].

В части увеличения КИН перед российскими нефтяными компаниями стоят следующие задачи [16]:

- 1) Массово применять существующие технологии увеличения нефтеизвлечения, которые при цене нефти более 60 долларов США/баррель обеспечивают КИН более 0.4.
- 2) Регулировать свойства глинистых минералов для увеличения производительности скважин и для увеличения КИН. При этом может быть достигнут КИН равный 0,5-0,55.
- 3) Применять технологии снижения обводненности продукции, ставя задачу снизить обводненность до 75% (водонефтяной фактор станет равен3).
- 4) Стимулировать недропользователя к повышению КИН путем льготирования нефтедобычи в период низкой и отрицательной рентабельности добычи нефти на основе актуальных проектных документов.
- 4. Рост себестоимости добычи нефти на разрабатываемых месторождениях

В российском (и мировом) нефтедобывающем секторе наблюдается рост себестоимости не только для осложненных геологическими условиями запасов, но и для добычи традиционной нефти в связи с увеличением эксплуатационных затрат.

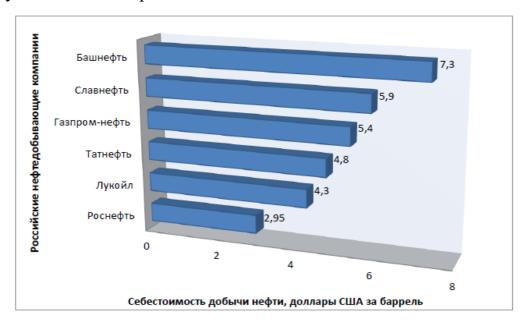


Рисунок 1.8 - Себестоимость добычи нефти по российским компаниям (долл.США за баррель)

Период относительно невысокой себестоимости добычи нефти в России заканчивается. Традиционные месторождения сильно выработаны (иногда больше 80%). Себестоимость добычи на новых месторождениях в 2-3 раза выше, чем на традиционных территориях. Сегодня себестоимость добычи в Западной Сибири – 5-6 долларов США, в Восточной Сибири – до 15 долларов США (Рисунок 1.9) [17].

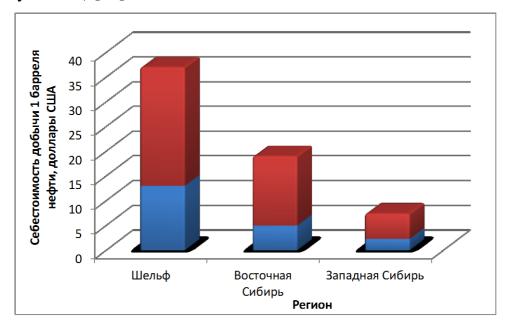


Рисунок 1.9 - Минимальная и максимальная себестоимость нефтедобычи по регионам, доллар/ баррель

Рост себестоимости в настоящее время обусловлен рядом факторов:

- 1) Крупные разрабатываемые месторождения (в течение 50 лет) входят в позднюю стадию разработки. Из-за бесконтрольной разработки ради максимизации добычи компании не заботились о стабильной эксплуатации в течение всего срока жизненного цикла месторождения, что привело к значительному росту эксплуатационных затрат;
- мощностей требуется 2) Для наращивания применение методов нефтеотдачи, которые приводят к большим повышения вложениям. Внедрение новых технологий происходит, однако в настоящее время нет единой четко спланированной системы, предполагающей оптимизацию организации и управления производством;

- 3) Высокий уровень обводненности скважин значительно сказывается на качестве нефти и приводит к дополнительным расходам на еè переработку и очищение;
- 4) Так же стоит отметить, что бурение дополнительных эксплуатационных скважин, с целью повысить уровень добычи, приводит не только к значительным инвестиционным вложениям, но и к падению пластового давления. В дальнейшем, снова понадобится применение методов повышения нефтеотдачи для восстановления приемлемых значений давления.

На современном этапе компаниям необходимо разумно применять высокие технологии, интегрированные в единую систему, что позволит не только повысить нефтеотдачу, но и в будущем стабильно разрабатывать месторождение на всем сроке эксплуатации.

1.2. Целесообразность внедрения систем «интеллектуального месторождения» в условиях существующих проблем нефтегазодобывающего комплекса

Многие иностранные компании ДЛЯ подержания своего уровня конкурентоспособности, зачастую и для выживания, ищут новые стратегические ориентиры, внедряют инновационные технологические решения и более эффективные системы управления [18].

Так, например, показательным является развитие технологий добычи нефти из битуминозных песчаников на территории Канады. За прошедшие 15 лет удельные издержки добычи битуминозной нефти за счет оптимизации управленческих подходов и правильному выбору технологических решений разработки сократились в 3-4 раза [19,20].

В настоящее время в нефтяной отрасли России наблюдается нехватка инновационных технологий. Без масштабного применения новых технологий невозможно дальнейшее поддержание уровня нефтедобычи. Освоение новых нефтегазодобывающих регионов таких как арктический шельф и Восточная Сибирь, а также добыча на глубоких горизонтах Западной Сибири требуют использования технологических и организационно-управленческих новшеств.

Развитие и упрочнение конкретных позиций компаний нефтедобывающей отрасли в России связано также и с повышением эффективности и качества менеджмента, необходим комплекс мер по реорганизации компаний.

Реорганизация компаний позволит тщательнее управлять комплексными технологиями на месторождении [21], а также позволит заниматься более эффективно заниматься такими направлениями как стратегическое и перспективное планирование.

Крупные мировые нефтедобывающие компании тратят значительные финансовые средства на развитие науки и создание мощных программных комплексов для проектирования разработки нефтегазовых залежей, что

позволяет осваивать месторождения с трудноизвлекаемыми запасами и внедрять дорогостоящие технологии. На рисунке 1.10 представлен удельный показатель, отражающий отношение затрат на НИОКР к объему добычи (доллар США/т.у.т). По рисунку видно, что российские компании значительно отстают от зарубежных.

Рисунок 1.10 - Удельный показатель затрат на НИОКР к добыче нефти [18]

Таким образом, перед отраслью стоит большое количество разнородных проблем, решение которых стоит искать в использовании технологий нового поколения и современных методов управления.

В мировой практике для повышения эффективности функционирования нефтегазовых промыслов, осложненных геологическими, технико-экономическими или управленческими условиями, внедряют систему технико-технологических решений, получивших название — «интеллектуальное месторождение (ИМ)».

Как показывает мировая практика, система ИМ позволяет повысить добычу, сократить расходы, связанные с эксплуатацией и техническим обслуживанием, обеспечить увеличение прибыли (таблица 1.3).

Таблица 1.3 – Результаты применения системы ИМ иностранными компаниями [23,24,25,26,27]

Заказчик	Расположение	Направлениепроекта	Результаты
Chevron	Нигерия Agbami - нефть	Проект ТЭО (технико- экономическое обоснование)	Снижение на 50 млн. долларов США капитальных затрат на трубопроводы и систему сбора нефти
Pemex	Мексика Muspac - нефть	Оптимизация добычи	Увеличение годовой прибыли на 55,76 млн. долларов США, сокращение годовых операционных затрат на 600 тыс. долларов
Devon	Канада Тотту Lakes - газ	Проект реконструкции месторождения	Увеличение годовой прибыли на 5 долларов США, количество скважин на бурение сократилось с 11 до 4
ONGC	Индия Mumbai High - нефть	Оптимизациидобычи и газлифта	Снижение количества газа на газлифт на 40%, увеличение добычи нефти на 3000 барр./сутки
Statoil Hydro	Норвегия Snorre B - нефть	Оптимизация добычи	Оптимизация водогазового заводнения с сохранением всех ограничений, Повышение добычи на 8%, рост прибыли на 10%
Petrobras	Эквадор Block 18 - нефть	Планирование разработки	Выбор скважин на бурение боковых стволов и ГРП с учетом ограничений по добычи и пласту - повышение добычи на 20% по сравнению с прошлым планом

Благодаря систематизированному подходу к использованию сложных технологий с предварительной апробацией на модели, постоянной оптимизации технологического проекта разработки и использованию современных контрольно- измерительных приборов и аппаратуры, прирост среднегодовой чистой прибыли нефтегазового предприятия, использующего технологии ИМ может быть достигать 20% [28,29].

Таким образом, анализируя мировую практику применения систем ИМ, можно допустить факт целесообразности внедрения технологий ИМ как решения, отвечающего объективным проблемам нефтедобывающего комплекса России.

1.3. Проблемы формирования эффективных систем управления на нефтегазовом предприятии

Нефтегазовые предприятия, внедряющие и использующие технологии ИМ, должны ориентироваться на систему менеджмента, способную быть гибкой и иметь высоко адаптивный характер. Организация бизнеса, безусловно, претерпит изменения, где уже должны быть использованы проектные и процессные подходы к управлению. Кроме того, изменятся требования к квалификационным характеристикам менеджеров и уровню их компетенций, повысится качество управленческих решений.

Система управления нефтедобывающим предприятием включает два взаимодополняющих вида управленческой деятельности: стратегическое управление и оперативное управление [30,31].

Для системы управления организацией необходимо[33]:

- разработать миссию организации и определить цели развития;
- распределить функции производства и управления;
- распределить задания между работниками;
- установить порядок взаимодействия работников и последовательность выполняемых ими функций;
 - приобрести или модернизировать технологию производства;
 - наладить систему стимулирования, снабжение и сбыт;
 - организовать производство.

Осуществление перечисленных мероприятий требует создания системы управления, которая должна быть согласована с системой организации производства.

Структура управления представляет собой совокупность устойчивых связей объектов и субъектов управления организации, реализованных в конкретных организационных формах. Структура управления включает функциональные структуры, схемы организационных отношений, организационные структуры и систему обучения или повышения квалификации

персонала [38].

Управление стоимостью направлено на качественное улучшение стратегических и оперативных решений на всех уровнях организации за счет концентрации усилий всех лиц, принимающих решения, на ключевых этапах в цепочке создания стоимости. Из множества альтернатив выбирается максимизация стоимости компании, которая может быть достигнута и путем активного внедрения новых технологий и в частности технологий ИМ.

С другой стороны, управление стоимостью является лишь составной частью стратегии нефтегазового предприятия. Она не учитывает необходимости принятия решений, не приносящих максимальной прибыли, но играющих стратегически важную роль для имиджа компании в части социально ориентированной политики [34].

Рассмотрим ещè один способ управления нефтегазодобывающим предприятием процессно-целевой подход.

Процессно-целевой подход позволяет определять и управлять ключевыми процессами и результатами деятельности нефтяной компании, а также направлять усилия на достижение единой цели. На рисунке 1.11 представлен укрупненный процессно-целевой подход к управлению нефтяной компанией.

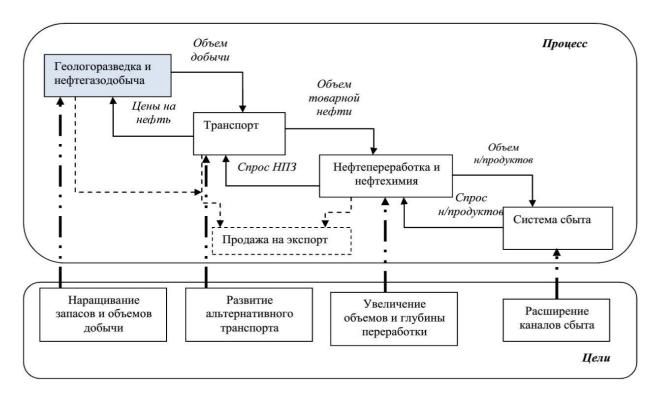


Рисунок 1.11 - Укрупненный процессно-целевой подход к управлению нефтяной компанией [35]

Используя основу процессно-целевой подход, необходимо за рассматривать технологическую инфраструктуру, формирующуюся различными подсистемами. Зависимость нефтяной компании OT блоков «Нефтегазодобыча» «Геологоразведка» И предопределяет необходимость первоочередного достижения целей нефтяной компании

поданному направлению. Производственная деятельность этих блоков сосредоточена на:

- 1) развитии минерально-сырьевой базы;
- 2) освоении месторождения;
- 3) эксплуатации месторождения;
- 4) выводе месторождения из эксплуатации.

В качестве преимуществ процессно-целевого подхода можно отметить концентрацию усилий сотрудников на достижении общей цели, что способствует еè более быстрому достижению, а также выделение ключевых процессов и более качественное управление промыслом. Недостатком данного подхода к управлению является большое количество данных, которые

необходимо анализировать, что приводит к временным затратам и может отвлечь специалистов от более срочной работы.

Российские нефтегазовые предприятия нуждаются В усовершенствовании и развитии собственной уникальной системы управления с учетом сложных технологических особенностей отрасли. Система управления дисбаланс, возникающий между должна ликвидировать существующем организации производства И менеджмента на нефтегазовом уровнем предприятии, имеющим как правило инертный и консервативный характер и необходимостью управления сложным высокотехнологичным производством [36,37]. Кроме того, руководство нефтегазовых предприятий должно найти разумный компромисс между краткосрочными и долгосрочными целями и связать работу вспомогательных и основных бизнес процессов, а также перераспределить объемы поступающих данных для контроля в режиме реального времени. Внедрение технологий ИМ будет требовать соответствие системы управления поставленным задачам и предусматривать реорганизацию структуры управления с использование новых подходов к принятию решений. управленческих

ВЫВОДЫ К ГЛАВЕ 1

- 1. Современное состояние нефтедобывающей отрасли России характеризуется общим снижением коэффициента нефтеотдачи, высокой выработанностью месторождений, необходимость вовлечения в промышленное освоение трудноизвлекаемых запасов, включая морские углеводородные ресурсы.
- 2. В условиях роста себестоимости добычи углеводородов и необходимости разработки трудноизвлекаемых запасов нефтегазовые предприятия нуждаются в применении высоких технологий, что позволит не только повысить нефтеотдачу, но и в будущем стабильно разрабатывать месторождение на всем сроке эксплуатации.
- 3. Исходя из проанализированного состояния нефтедобывающей отрасли России, целесообразно использовать систему ИМ как подход к управлению высокотехнологичными проектами, обеспечивающий решение стратегических задач оптимизации производства на всем жизненном цикле месторождения. Технологии ИМ позволяют эффективно использовать производственные мощности, повысить производительность скважин и труда, обеспечить высокий уровень природоохранной деятельности и промышленной безопасности.
- 4. Анализ мирового опыта функционирования нефтяных промыслов с системой ИМ показывает, что ее внедрение приводит к увеличению проектного КИН до 20% и скорости принятия управленческих решений до 40%, уменьшению эксплуатационных затрат до 50%, приросту прибыли до 40%. Прогноз использования системы ИМ в России на фоне возрастающей потребности в использовании инноваций и спада нефтеотдачи предусматривает прирост производительности методов увеличения нефтеотдачи на 30-40%.
- 5. На основе проанализированных подходов к управлению сложными технологическими системами, таких как управление стоимостью и процессно- целевой метод, установлено, что необходимо разработать новые принципы.