СПИСОК ЛИТЕРАТУРЫ

- Witt W., Loffler M. The electromagnetic Gun-CCloser to Weapon System Status // Military Technology. – 1998. – № 5. – Р. 80–86.
- Носов Г.В. К расчету параметров и эффективности преобразования энергии рельсотроном // Известия Томского политехнического университета. 2007. Т. 310. № 2. С. 70–73.
- Носов Г.В. Расчет импульсных источников тока с индуктивными накопителями энергии // Известия Томского политехнического университета. – 2007. – Т. 311. – № 4. – С. 72–76.
- Носов Г.В. Генерирование мощных импульсов тока электромашинными источниками с изменяющейся индуктивностью // Известия Томского политехнического университета. – 2005. – Т. 308. – № 7. – С. 68–70.
- Асиновский Э.И., Лебедев Е.Ф., Леонтьев А.А. и др. Взрывные генераторы мощных импульсов электрического тока / под ред. В.Е. Фортова. – М.: Наука, 2002. – 398 с.
- Глебов Й.А., Кашарский Э.Г., Рутберг Ф.Г. Синхронные генераторы кратковременного и ударного действия. – Л.: Наука, 1985. – 224 с.

- Импульсные системы большой мощности / под ред. Э.И. Асиновского. М.: Мир, 1981. 248 с.
- Индуктивный генератор импульсов тока: пат. на ПМ 87847 Рос. Федерация. № 2009118719/22, заявл. 18.05.09: опубл. 20.10.09, Бюл. № 29. – 4 с.: ил.
- Дьяконов В.П. Mathcad 8/2000: Специальный справочник. СПб.: Питер, 2000. – 592 с.
- Электротехнический справочник: в 3 т. Т. 1. Общие вопросы.
 Электротехнические материалы / под общ. ред. проф. МЭИ
 В.Г. Герасимова и др. М.: Энергоатомиздат, 1985. 488 с.
- Лившиц А.Л., Отто М.А. Импульсная электротехника. М.: Энергоатомиздат, 1983. – 352 с.

Поступила 02.09.2010 г.

УДК 621.311.016.361

ОПТИМИЗАЦИЯ РЕЖИМА РЕАКТИВНОЙ МОЩНОСТИ ДАЛЬНЫХ ЛЭП С ПРОМЕЖУТОЧНЫМИ СИСТЕМАМИ

В.И. Готман, А.В. Глазачев

Томский политехнический университет E-mail: mo@elti.tpu.ru

Рассматриваются закономерности регулирования напряжения и реактивной мощности дальних электропередач сверхвысокого напряжения с промежуточными системами по условию обеспечения минимальных потерь. Указан диапазон нагрузок, в пределах которых возможен режим согласованного регулирования напряжения, обеспечивающий максимальный КПД электропередачи. Исследуется влияние потерь при коронировании на зоны согласованного регулирования напряжения.

Ключевые слова:

Дальние электропередачи, промежуточные системы, согласованное регулирование напряжения, натуральная мощность, коронирование, компенсирующие устройства.

Key words:

Long-distance power line, intermediate system, coordinated voltage control, line natural load, corona effect, compensating units.

Введение

Несмотря на большое число глубоких и обширных работ по регулированию напряжения и реактивной мощности дальних линий электропередач (ДЛЭП) сверхвысокого напряжения, думается, что особенности, которые накладывают промежуточные системы (ПС), не позволяют считать эти вопросы исчерпанными. Не освещались ранее также вопросы, связанные с учетом коронирования проводов и его влияния на распределение напряжения и целесообразность применения глубокого регулирования напряжения в электропередачах сверхвысокого напряжения. Разработанное в последние годы новое поколение управляемых шунтирующих реакторов, статических тиристорных компенсаторов и конденсаторных батарей существенно расширяет возможности их применения для реализации согласованного регулирования напряжения

и реактивной мощности в указанных электропередачах.

В связи с чрезмерной загрузкой высоковольтных ДЛЭП собственной реактивной мощностью и связанной с этим резкой неравномерностью распределения напряжения и тока целесообразно при помощи поперечных компенсирующих устройств (КУ) делить линию на участки. Компенсирующие устройства позволяют исключить переток реактивной мощности с одного участка на другой и проводить автономное регулирование реактивной мощности каждого участка.

Промежуточные системы в силу объективных условий в общем случае делят электропередачу на неравные участки с независимым характером изменения их активных мощностей. Эти особенности предопределяют более сложный закон регулирования напряжения и характер его распределения в электропередаче. Компенсирующие устройства целесообразно совмещать с узлом подключения промежуточных систем, что снижает общие затраты. Правильное в экономическом отношении регулирование напряжения электропередач с промежуточными системами возможно лишь при связанном регулировании напряжения всех участков схемы по условию минимума суммарных потерь.

Закономерности регулирования напряжения и реактивной мощности

Для исследования принята схема с одной промежуточной системой (рис. 1) с учетом того, что КУ установлены на передающем, приемном концах ДЛЭП и в узле подключения ПС. Участки электропередачи представлены обобщенными постоянными четырехполюсников, компенсирующие устройства – поперечными проводимостями. В основе анализа оптимизационного режима лежит функционал суммарных потерь активной мощности в элементах схемы: двух участках ДЛЭП и трех КУ

$$\Delta P_{\Sigma} = \Delta P_{1KV} + \Delta P_{JI} + \Delta P_{2KV} + \Delta P_{JI2} + \Delta P_{3KV}$$

$$S_{\Gamma 1} U_{1} S_{H1} S_{K1} S_{K2} S_{H2} S_{K2} U_{3} S_{HA\Gamma}$$

$$IKY [A_{1}] J_{KY} [A_{2}] J_{KY} S_{\Pi C} J_{KY} [A_{2}] J_{KY}$$

Рис. 1. Схема ДЛЭП с промежуточной системой

Потери мощности на первом участке определяются режимными параметрами его конца: $P_{\rm K1}$ – активной, $Q_{\rm K1}$ – реактивной мощностями и U_2 – напряжением на втором – параметрами начала $P_{\rm H2}$, $Q_{\rm H2}$, U_2 ; потери в КУ выражены через тангенс угла потерь (tg $\varphi_{\rm KY}=k_{\rm II}$)

$$\Delta P_{\rm KY} = k_{\rm \Pi} Q_{\rm KY}.$$

Реактивная мощность компенсирующего устройства $Q_{\rm ky}$, определяется условиями баланса в узле его установки.

Минимизация функционала потерь по независимым режимным параметрам

$$\partial P_{\Sigma} / \partial Q_{\text{K1}} = 0, \ \partial P_{\Sigma} / \partial Q_{\text{H2}} = 0, \ \partial P_{\Sigma} / \partial U_{2} = 0$$

позволяет получить условия оптимального регулирования потоков реактивной мощности участков электропередачи Q_{mK1} , Q_{mK2} , мощности КУ и напряжения в узле подключения ПС:

$$U_{2\eta} = \sqrt[4]{\frac{(P_{\rm K1}g_2)^2 + (P_{\rm H2}g_1)^2}{2(g_1g_2)^2}},$$
 (1)

$$Q_{mK1} = -U_{2\eta}^2 b_{m1}, \quad Q_{mH2} = U_{2\eta}^2 b_{m2},$$

где

$$g_1 = \sqrt{\frac{H_1 + H_2}{2M_1} - 0.5 \left(b_{m1}^2 + \frac{M_2}{M_1} b_{m2}^2 \right)}$$
(2)

 эквивалентная активная проводимость первого участка электропередачи;

$$H_{1} = \operatorname{Re}(\dot{A}_{1}\hat{C}_{1}) - k_{\Pi}\operatorname{Im}(\dot{A}_{1}\hat{C}_{1}),$$

$$M_{1} = \operatorname{Re}(\dot{B}_{1}\hat{D}_{1}) - k_{\Pi}\operatorname{Im}(\dot{B}_{1}\hat{D}_{1}),$$

$$b_{m1} = \frac{\operatorname{Im}(\dot{B}_{1}\hat{C}_{1}) + k_{\Pi}[\operatorname{Re}(\dot{B}_{1}\hat{C}_{1}) - A_{1}^{2} + \gamma_{1}]}{2[\operatorname{Re}(\dot{B}_{1}\hat{D}_{1}) - k_{\Pi}\operatorname{Im}(\dot{B}_{1}\hat{D}_{1})]}$$

– эквивалентная реактивная проводимость;
 γ₁=1-tgφ₁, φ₁ – фаза мощности со стороны источника питания узла 1.

Функционалы b_{m2} , g_2 получаются заменой в формулах b_{m1} и g_1 цифры 1 на 2.

В режимах до натуральной мощности емкостная генерация в электропередаче превосходит потери реактивной мощности в ней, что приводит к повышению напряжения в средней части участков. Вследствие этого реактивные мощности в конце участков линии носят индуктивный характер, в начале – емкостной. Для потребления избытка реактивной мощности в качестве КУ выступают шунтирующие реакторы. Представленные выше зависимости $U_{2\eta}$, Q_{mK1} , Q_{mH2} соответствуют условию максимального КПД электропередачи η_{Σ} =тах для произвольных значений P_{K1} и P_{H2} . При этих условиях закономерность регулирования мощности шунтирующего реактора в узле 2 определяется выражением:

$$Q_{2\rm KY} = -U_{2\eta}^2 (b_{m1} + b_{m2}).$$

Аналогичные по своей физической сущности соотношения получаются для отправного и приемного концов участков 1 и 2 схемы так, что мощности реакторов в этих узлах определяются выражениями:

$$Q_{1KY} = P_{H1} tg \varphi_1 - Q_{mH1}, \quad Q_{3KY} = Q_{mK2} - P_{K2} tg \varphi_2.$$

Дополнительного снижение мощности и потерь в КУ можно добиться выбором закона регулирования реактивной мощности элементов схемы, связанных с узлами установки КУ: в узле 3 за счет полного или частичного потребления Q_{mK2} приемной системой; в узле 2 за счет потребления части Q_{2KY} промежуточной системой; на передающем конце регулированием генераторами $\cos \varphi_1$. Для обеспечения максимального КПД (η_{Σ}) требуется согласованное регулирование напряжения, т. е. общий уровень напряжения электропередачи должен регулироваться в строгом соответствии со значениями активной мощности графика транзита (1).

В частности, при сбалансированной ПС по активной мощности $P_{K1}=P_{H2}$ выражения (1), (2) упрощаются и принимают вид:

$$U_{2\eta} = \sqrt{P_{\text{KI}}/g_{\Im}}, \text{ где } g_{\Im} = \frac{\sqrt{2g_1g_2}}{\sqrt{g_1^2 + g_2^2}}$$
 (3)

и дополнительно при условии $[A_1] = [A_2]$

$$g_{\mathfrak{I}} = g_{\mathfrak{I}} = g_{\mathfrak{I}} = g_{\mathfrak{I}} = g_{\mathfrak{I}} = \sqrt{\frac{\operatorname{Re}(\dot{D}\widehat{C}) - k_{\Pi}\operatorname{Im}(\dot{D}\widehat{C})}{\operatorname{Re}(\dot{B}\widehat{D}) - k_{\Pi}\operatorname{Im}(\dot{B}\widehat{D})}} - b_{m}^{2}.$$

Как следует из (3) при неравных длинах участков ЛЭП согласованное регулирование напряжения необходимо и для сбалансированной по активной мощности ПС, поскольку эквивалентная проводимость g_3 определяется параметрами обоих участков.

Распределение напряжения при согласованном регулировании

В режиме минимальных потерь соотношение напряжений по концам участков электропередачи можно характеризовать коэффициентами перепада напряжений:

$$k_{U12} = U_{1\eta} / U_{2\eta}, \quad k_{U23} = U_{2\eta} / U_{3\eta}.$$

Эти коэффициенты определяются постоянными четырехполюсников $[A_1]$, $[A_2]$, коэффициентом потерь k_{Π} в КУ и зависят от соотношения активных мощностей участков $k_P = P_{H_2}/P_{K_1}$. При сбалансированной ПС ($k_p=1$) оптимальные перепады на всем интервале согласованного регулирования напряжения являются величинами постоянными и положительными, т. е. *k*_{U12}>1 и *k*_{U23}>1. Для $P_{\rm KI} \neq P_{\rm H2}$, наряду с положительными перепадами при $k_p \leq 1$, возможны и отрицательные перепады напряжений. Это характерно для работы промежуточной системы в режиме выдачи активной мощности когда $k_P > 1$. Для заданных $[A_1, A_2]$ и k_{\prod} можно определить расчетные значения $k_{P(PACH)}$, соответствующие равенству напряжений по концам участков. Числовые значения $k_{P(PAC4)}$ в функции длин участков для ЛЭП-500 кВ с маркой провода (ЗАСО-500) и ЛЭП-1000 кВ с маркой провода (4АСО-1000) при $\cos \varphi_1 = 1$ и $\cos \varphi_2 = 0.92$ приведены в табл. 1.

<i>U</i> _{НОМ} , кВ	<i>к</i> п, отн. ед.	I _{лэп} , км	I _{лэп} , км	Nyy	k _{P(PACH)}
500	0,01	400	200	1	2,85
			200	2	3,54
		1500	750	1	1,44
			750	2	1,48
		1050	750	1	1,42
			300	2	1,81
		1050	300	1	2,71
			750	2	3,05
1000	0,005	400	200	1	1,33
			200	2	1,47
		1500	750	1	1,09
		1500	750	2	1,10
		1050	750	1	1,09
			300	2	1,10
		1050	300	1	1,22
			750	2	128

Таблица 1. Значения к_{RFAC4}, в функции напряжения и длин участков электропередачи

По результатам расчетов можно отметить, что для любого сочетания длин участков $k_{P(PAC4)}$ второго участка больше $k_{P(PAC4)}$ первого участка; с повышением класса напряжения значения $k_{P(PAC4)}$ уменьшаются. Для электропередачи с несбалансированной ПС могут иметь место три характерных сочетаний оптимальных перепадов напряжения:

- промежуточная система является дефицитной (в узле 2 осуществляется отбор мощности) и k_p<k_{p(PACY. уЧ.1)}, k_{p(PACY. уЧ.2)} – при этих условиях на обоих участках положительный перепад, который возрастает с уменьшением k_p;
- k_{P(PAC4, Y4.1)} < k_P < k_{P(PAC4, Y4.2)} в этом случае на первом участке отрицательный перепад напряжения, на втором – положительный; большую вероятность такого сочетания имеют ДЛЭП с относительно короткими равными участками или неравными участками при l_{y4.1} < l_{y4.2};
- при k_P>k_{P(PAC4. уч.1)}, k_{P(PAC4. уч.2)} на обоих участках отрицательный перепад напряжения, возрастающий по мере усиления неравенства.

Режимы промежуточных систем, обеспечивающих максимальный КПД электропередачи

Исходя из условия баланса мощности в узле подключения промежуточной системы $P_{\Pi C} = P_{K1} - P_{H2}$, её режим по активной мощности можно характеризовать параметром $k_p = P_{H2}/P_{K1}$. Выше выявлены условия, обеспечивающие минимальные потери в схеме считая, что P_{K1} и P_{H2} для любого момента являются величинами произвольными и независимыми. Оптимальное соотношение k_p , обеспечивающее максимальный КПД $\eta_{\Sigma max}$ электропередачи можно определить из условия $d\eta_{\Sigma}/dk_p=0$, которое дает

$$k_{P\eta} = g_{2\eta} / g_{1\eta} , \qquad (4)$$

где $g_{1\eta} = \sqrt{\frac{H_1}{M_1} - b_{m1}^2}$ и заменой индекса 1 на 2 по-

лучаем $g_{2\eta}$.

Выражение (4) указывает на то, что для достижения $\eta_{\Sigma max}$ режим промежуточной системы должен носить вынужденный характер и определяется соотношением длин примыкающих участков. Для $k_{P\eta} = P_{H2}/P_{K1} = g_{2\eta}/g_{1\eta}$ условия связанного регулирования напряжения электропередачи по минимуму суммарных потерь совпадают с условиями автономного оптимального регулирования для каждого участка в отдельности; напряжения узлов электропередачи определяются выражениями:

$$\begin{split} U_{1\eta} = \sqrt{P_{\text{H}1}/g_{1\eta}}, \ U_{2\eta} = \sqrt{P_{\text{K}1}/g_{1\eta}} = \sqrt{P_{\text{H}2}/g_{2\eta}}, \\ U_{3\eta} = \sqrt{P_{\text{K}2}/g_{2\eta}}. \end{split}$$

В противном случае условия минимума потерь всей электропередачи и каждого участка в отдельности не идентичны. Для ДЛЭП с несколькими промежуточными системами условия $\eta_{\Sigma max}$ имеют место при соблюдении для любых смежных участков соотношений:

$$\frac{P_{K1}}{P_{H2}} = \frac{g_{1\eta}}{g_{2\eta}} \dots \frac{P_{K(n-1)}}{P_{Hn}} = \frac{g_{(n-1)\eta}}{g_{n\eta}} = idem$$

При этих условиях имеет место режим согласованных нагрузок, характерными особенностями которого являются: линейная зависимость реактивных мощностей на концах участков от соответствующих значений активных мощностей; потери активной мощности и активная мощность участка имеют линейную связь; $\eta_{\Sigma max}$ определяется только обобщенными постоянными участка и коэффициентом потерь в КУ и не зависит от передаваемой мощности. Это позволяет полосу нагрузок, соответствующую регулировочному диапазону трансформаторов, передавать с неизменным максимальным КПД.

Оптимальные режимы электропередач при учете потерь на корону

При неизменности обобщенных постоянных участков электропередачи А, В, С, D и коэффициента k_{Π} значения b_{mi} , g_i остаются неизменными по величине и знаку на всем интервале согласованного регулирования напряжения. Расчеты показывают, что при отсутствии коронирования проводов оптимальным режимам электропередач 500, 750, 1000 кВ с длинами участков 200...1000 км при $k_{\Pi}=0,005...0,010$ соответствует индуктивный характер реактивной мощности в конце участков и емкостный – в начале. В качестве компенсирующих устройств выступают реакторы, что соответствует отрицательным значениям b_{mi}, при этом предельные значения активных мощностей участков по условиям ограничения напряжения на уровне U_{ном} не превосходят натуральной мощности некомпенсированной ЛЭП.

Несколько иная картина имеет место при коронировании проводов. Потери мощности на коронирование можно приближенно учесть погонной активной проводимостью g_{0к}, равномерно распределенной вдоль линии (участка линии) и зависящей как от погодных условий, марки и конструктивного исполнения фазных проводов ЛЭП, так и расчетного уровня напряжения [6]. Зависимость g_{0K} в функции напряжения не линейна и близка к квадратичной. Для наиболее тяжелых погодных условий «дождь» — «изморось» для ЛЭП-500 кВ с маркой провода (ЗАСО-500) при изменении напряжения в диапазоне 400...525 кВ погонная проводимость изменяется в интервале $g_{0K} = (0, 11...0, 22) \cdot 10^{-6} \, \text{См/км};$ для ЛЭП-1000 кВ с маркой провода (4АСО-1000) при изменении U=850...1050 кВ проводимость $g_{0K} = (0, 11...0, 32).10^{-6} \, \text{См/км}.$ При указанных условиях параметры четырехполюсников А, В, С, D зависят от проводимости короны и, следовательно, являются функцией распределения напряжения на участках электропередачи; в равной мере это относится и к эквивалентным проводимостям b_{mi} и $g_i(g_{in})$.

В пределах одного класса напряжения по мере увеличения U от нижнего возможного уровня до верхнего эквивалентная реактивная проводимость b_{mi} уменьшается по абсолютному значению за счет возрастания потерь на корону и, проходя нулевое значение, меняет знак с отрицательного на положительный; при последующем возрастании напряжения проводимость b_{mi} увеличивается (рис. 2). Таким образом, при согласованном регулировании напряжения, начиная с некоторого значения передаваемой мощности, оптимальному режиму соответствует емкостный характер реактивной мощности в конце участков и индуктивный в начале. При этих условиях КУ носят емкостный характер. Активные проводимости g_i в отличие от реактивных всегда являются величинами положительными и по мере возрастания уровня напряжения увеличиваются.

Рис. 2. Зависимости b_m, g_n=f (U) ЛЭП-500 кВ при I=500 км

Для участка электропередачи ЛЭП-500 длиною 500 км (погодные условия «дождь» – «изморось») эквивалентная проводимость b_{mi} проходит через ноль при U=500 кВ (рис. 2); для ЛЭП-750 кВ – при *U*=720 кВ; для ЛЭП-1000 кВ – при *U*=850 кВ. Эти результаты свидетельствуют о том, что для ЛЭП-500; 750 кВ даже при наличии коронирования верхняя граница оптимальной мощности равна или незначительно превышает натуральную мощность; для ЛЭП-1000 кВ область нагрузок, в которой возможен режим максимального КПД, превышает натуральную мощность. Увеличение потерь на корону g_{0K} приводит к возрастанию проводимостей b_{mi} и $g_i(g_{in})$ и увеличению области режима больше натуральной мощности. Для сравнения отметим, что для участка *l*=500 км электропередачи 500 кВ при отсутствии коронирования $b_m = -8,3 \cdot 10^{-4}$ См, $g_\eta = 16,2 \cdot 10^{-4}$ См; при наличии потерь на корону эти проводимости для уровня напряжения U=500 кВ составляют: $b_m=0, g_n=35, 5\cdot 10^{-4}$.

Зоны оптимального регулирования режимных параметров

Как отмечалось выше, для обеспечения максимального КПД требуется согласованное с активной мощностью участков электропередачи регулирование напряжения в узловых точках схемы. Современные мощные трансформаторы имеют диапазон регулирования $\pm(10...12)$ % $U_{\rm HOM}$. Применительно к высоковольтным электропередачам 500...1000 кВ, в которых верхний предел по условиям изоляции ограничен на уровне $1,05U_{\rm HOM}$, более целесообразно иметь трансформаторы с асимметричным диапазоном регулирования: (+5...-20) % $U_{\rm HOM}$. Благодаря этому имеются реальные возможности в некотором диапазоне изменения активной мощности транзита вести режим минимальных потерь или близкий к нему режим.

Были проведены исследования режимов максимального КПД ДЛЭП-500, 750, 1000 кВ при вариации исходных условий. Для примера на рис. 3 приведены зоны возможных оптимизационных режимов ЛЭП-500 кВ в функции длины участков при условиях: промежуточная система сбалансирована, длины участков и их коэффициенты четырехполюсников одинаковы $[A_1] = [A_2]$, диапазон регулирования напряжения на всех подстанциях составляет $(0,8...1,05)U_{HOM}$, потери на корону отсутствуют, k_{Π} =0,01. При указанных условиях имеют место положительные перепады напряжений на обоих участках ЛЭП ($k_{U12}>1, k_{U23}>1$).

Интервал мощностей между границами 2, 3 соответствует в полной мере условиям режима минимальных потерь. Граница 2 определяет нагрузки ДЛЭП, при которых напряжение узла 1 достигает $U_1 = 1,05 U_{HOM}$; при последующем возрастании мощности верхнего предельного значения достигает напряжение U₂=1,05U_{НОМ} и в последнюю очередь $U_3 = 1,05 U_{HOM}$, что соответствует границе 1.

Таким образом, для нагрузок зоны 1-2 осуществляется последовательное ограничение напряжения узлов 2, 3, в результате возможна частичная реализация оптимизационных режимов. Граница 3 определяет мощности, при которых напряжение узла 3 достигает возможного нижнего предела $U_3=0,8U_{\text{HOM}}$, при этом $U_1, U_2>0,8U_{\text{HOM}}$. При последующем снижении мощности на предельном нижнем уровне фиксируется напряжение $U_2=0.8U_{HOM}$ и в последующем $U_1=0,8U_{HOM}$, что определяет границу 4. Зона 3-4 определяет режимы с минимально возможными отклонениями от оптимального.

По результатам проведенных исследований ДЛЭП – 500, 750, 1000 кВ можно отметить, что:

- диапазон нагрузок, при которых возможен оптимальный или частично оптимальный режим, сужается по мере увеличения длин участков ЛЭП:
- с возрастанием класса напряжения зона максимального КПД расширяется и сдвигается в область больших нагрузок; напротив, зоны частично оптимального режима сужаются, в особенности, при учете коронирования;
- наличие коронирования приводит к увеличению зоны согласованного регулирования в среднем более чем в два раза и одновременно сдвигает ее в область больших нагрузок.

Интервалы мощностей, при которых возможны оптимальные режимы ДЛЭП с одной промежуточной системой при согласованном регулировании напряжения в пределах $(0,8...1,05)U_{HOM}$, составляют лля:

ЛЭП-500 кВ

- (0,1...0,3)...(0,97...0,66) *Р*_{нат} без короны;
- (0,3...0,46)...(1,4...1,2) *Р*_{нат} при наличии короны; ЛЭП-750 кВ
- (0,13...0,3)...(0,73...0,6) *Р*_{нат} без короны;
- (0,33...0,47)...(1,4...1,2) *Р*_{НАТ} при наличии короны.

Зоны оптимального перехода ЛЭП-500 кВ без коро-Рис. З. нирования

Большее число в круглых скобках соответствует участкам ДЛЭП 200 км, меньшее – 1000 км.

В табл. 2 представлены сравнительные результаты снижения потерь мощности при согласованном регулировании напряжения. Расчеты проведены для ДЛЭП с одной сбалансированной промежуточной системой; длины участков приняты равными; передаваемая мощность выражена в относительных единицах на базе натуральной, которая составляет:

- ЛЭП-500 кВ (ЗАСО-500)*P*_{НАТ}=900 МВт;
- ЛЭП-750 кВ (4АСО-700) *P*_{НАТ}=2400 MBт; ЛЭП-1000 кВ (4АСО-1000) *P*_{НАТ}=3920 MBт.

Габлица 2.	Показатели снижения потерь для условии согла-
	сованного регулирования напряжения: δP – сни-
	жение потерь при согласованном регулировании
	напряжения в диапазоне (0,81,05) U _{ном} по срав-
	нению с режимом $U_1 = U_2 = U_3 = U_{HOM} = const, %$

P*	<i>U</i> , кВ								
	500		750		100		1000*		
	I		I			II		II	
	δΡ, %								
0,4	37,0	43,0	59,8	64,8	85,0	83,5	21,5	18,7	
0,5	31,3	34,5	53,5	54,5	78,4	77,5	13,1	10,5	
0,6	25,2	25,4	47,0	51,0	70,7	71,0	6,2	5,6	
0,7	17,9	17,1	39,0	43,3	62,0	63,0	3,2	2,2	
0,8	10,7	10,4	31,0	35,0	54,0	54,0	1,7	0,8	
0,9	6,2	4,8	22,0	25,6	46,7	44,4	-	-	
1,0	3,1	2,5	15,2	17,4	40,5	34,2	-	-	
1,1	2,0	0,8	8,4	9,8	35,1	25,4	-	-	
1,2	1,2	0,0	3,5	3,5	24,6	18,4	-	-	

Примечания: I соответствует длине участка 300; II - 500 км; *без коронирования

Эффективность режима максимального КПД оценивается показателем

$$\delta P = \frac{\Delta P_{0\Sigma} - \Delta P_{1\Sigma}}{\Delta P_{0\Sigma}} 100 \%,$$

где $\Delta P_{0\Sigma}$ – потери мощности в электропередаче для режима $U_1 = U_2 = U_3 = U_{HOM} = \text{сonst}; \Delta P_{1\Sigma}$ – потери для режима согласованного регулирования напряжения в узлах 1-3 в диапазоне $(0,8...1,05)U_{HOM}$.

Выводы

- 1. В дальних электропередачах напряжением 500, 750, 1000 кВ согласованное регулирование напряжения при отсутствии коронирования позволяет снизить уровень потерь до 35 % и при коронировании – до 50 %.
- 2. При отсутствии коронирования значения активных мощностей, для которых возможны ре-

СПИСОК ЛИТЕРАТУРЫ

- 1. Антипов К.М., Окин А.А., Портной М.Г. и др. Основные направления нормализации уровней напряжения в основных электрических сетях Единой энергосистемы России // Электрические станции. - 1995. - № 9. - С. 15-18.
- 2. Кочкин В.И. Управляемые шунтирующие реакторы для высоковольтных линий электропередачи // Энергетик. - 1999. -№ 5. - C. 27-31.
- 3 Вишняков Н.Г., Киракосов В.Г., Кочкин В.И. и др. Статический тиристорный компенсатор на подстанции 220 кВ «Могоча» АО Читаэнерго // Вестник ВНИИЭ. – 1996. – № 3. – C. 8-12.

жимы минимальных потерь, находятся в пределах натуральной мощности. С повышением класса напряжения электропередачи и увеличением потерь на корону зоны оптимального регулирования сдвигаются в область больших мощностей; верхней границе зоны минимальных потерь могут соответствовать мощности нагрузок, превышающие в 1,5 раза натуральную мощность.

- 3. Для обеспечения согласованного регулирования напряжения диапазон регулирования напряжения трансформаторов должен обосновываться экономически соответственно конкретным условиям. Наличие промежуточных систем на дальних электропередачах благоприятствует практической реализации режимов согласованного регулирования напряжения.
- 4. Маслов А.А., Нечаев О.П., Федотов А.И. Высоковольтные тиристорные вентили для статических компенсаторов реактивной мощности // Вестник ВНИИЭ. – 1997. – № 6. – С. 15–18.
- 5. Кочкин В.И., Нечаев О.П. Применение статических компенсаторов реактивной мощности в электрических сетях энергосистем и предприятий. - М.: Изд-во НЦ ЭНАС, 2000. - 248 с.
- 6. Александров Г.Н. Коронный разряд на линиях электропередачи. – М.: Энергия, 1964. – 240 с.

Поступила 01.07.2010 г.

УДК 621.316.13:621.314

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ И МОЩНОСТИ ИСКАЖЕНИЙ

А.Ю. Иванов, Г.Я. Михальченко, С.Г. Михальченко, В.В. Русанов, А.В. Федотов

Томский государственный университет систем управления и радиоэлектроники E-mail: msg@ie.tusur.ru

Обсуждаются вопросы разработки новых технологий компенсации не только реактивной мощности в распределительных сетях электрической энергии, но и мощности искажений, эмитируемой в сеть нелинейными нагрузками. Основное внимание концентрируется на вопросах решения задачи компенсации современными средствами силовой электроники и моделирования электромагнитных процессов.

Ключевые слова:

Распределительные сети, реактивная мощность, мощность искажений, компенсация, полупроводниковый преобразователь. Key words:

Distributive networks, reactive power, distortion power, compensation, semiconductor converter.

Введение

В литературе по энергетическим системам широко представлены материалы по создаваемым и уже реализованным технологиям компенсации реактивной мощности [1-3]. Под технологией компенсации реактивной мощности понимается процесс управления реактивной энергией для повышения качества электроэнергии, поскольку большинство таких проблем можно решить, контролируя реактивную мощность в текущем време-