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Abstract. Electron energy structure, positron spectrum and positron characteristics of -Ti and 

-TiH0.125 were calculated. Self-consistent calculations of the band structure were performed 

by the linear muffin-tin orbital method in the atomic sphere approximation. Modelling has 

been made on low content of hydrogen into -Ti with expanded close-packed hexagonal cell 

inclusive 8 titanium atoms. Variation of sphere radiuses permitted to consider anisotropy and 

spherical symmetry of potential. Positron potential and positron wave function were calculated 

on a base of self-consistent electron density. Then positron probability of existence into TiHx 

lattice and lifetime were founded. Theoretical calculation indicated a satisfactory agreement of 

positron characteristics absolute values with the experimental data is achieved but the tendency 

of values with hydrogen defects increasing is not. The reason of divergence is discussed. On 

the basis of experimental data and theoretical calculations it was shown that different hydrogen 

atom states demonstrate the different influence in the lifetime spectra. 

1.  Introduction 

Metals are the most important structural material. In many branch there is actual thread of hydrogen 

corrosion of metals. Well operation of oil and gas, operation of equipment in chemical and nuclear 

industry are the most risk because hydrogen and hydrogen containing medium makes up a large share 

of the working environment. Modification of the physical and mechanical properties of metals and 

alloy materials by hydrogen is significant problem. The used materials must combine the resistance to 

high stresses with acceptable high temperature deformation. However hydrogen influence on it 

strength characteristics depends from material analysis. At the same time visible surface change could 

be unobserved. But sample even having super difficult configuration requires precise diagnostic which 

would not destroy construction of sample. 

Nondestructive and contactless methods, possibility to measure parameters of samples under 

different temperatures coupled with fast response to local change of electron density defines positron 

diagnostics as one of the unique method among traditional analysis of structure of matter. For metals 

and allows positron annihilation technique reveals the electron momentum distribution and Fermi level 

energy that largely determines their mechanical, electrical and magnetic properties [1]. Moreover 

positron spectroscopy is sensitive to define structure, cause and concentration of spots and extended 

defects, to investigate the disrupt blanket on metals, alloys, semiconductors and ionic crystals [2]. In 

that case positron annihilation method is useful as for nature and concentration of impurities analysis 

as for study of electron structure modification because of any factors. Now it is the defect 

spectroscopy tool. In [3, 4] the annihilation of positrons has been studied by angular distribution on 
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annihilation photons method (ADAP) and lifetime has been measured in metal hydrides. In [5] 

hydrogen influence on the dynamic of defect formation (crater and crack) in -titanium has been 

investigated by sight with scanning microscopy and with average positron lifetime measurement. 

Ab initio electron-positron structure and positron characteristics were calculated mainly for metals 

and alloys which has simple crystal structure. More compound one require improved calculation 

methods of electron density which is the basis for construction of the positron spectrum. Even less 

there are first principle calculation of hydrogen-containing compounds. In [6] electron and positron 

characteristics of tungsten changing with impact of hydrogen and helium were calculated by 

augmented plane wave method. Quasi-free positron lifetime ab initio for titanium hydride (TiH2) was 

obtained by [7]. In this work we study influence of the atomic hydrogen on electron structure of 

titanium and its positron characteristics. Absorbing hydrogen at the standard pressure -Ti crystal 

lattice extends, ratio c/a of the hexagonal closely packed (HCP) lattice parameter decreases. Dilution 

of hydrogen in metal shows uneven distribution from surface to volume. That explains differing 

degree of destruction of -Ti on a surface and in a volume. Thus, after 360 minutes electrolytic 

hydrogenation of titanium samples “the traces of destruction” in the form of increased dislocation 

concentration were emerged [5]. However the whole crystal fracture within atomic hydrogen 11.10-

5ат% H was not observed. 

In this paper we calculate electron structure, positron spectrum and positron characteristics of -Ti 

and -TiH0.125 and compare them with experimental one. Comparing calculated electron structure 

results with different models crystal potential of pure titanium and titanium with a hydrogen impurity 

we try to make more exact the positron annihilation characteristics. An attempt to interpret the 

thermalized positron behavior in crystal by ab initio method was made. 

2.  Method of calculation 

Band structure of metal hydrides was calculated by the self-consistent linear muffin-tin orbital method 

in the atomic sphere approximation (LMTO-ASA) adjusted for overlap. Ceperley and Alder 

approximation was used for the exchange-correlation potential [8]. The self-consistency procedure 

was applied at 90 k-pontes in the irreducible part of the Brillouin zone for HCP lattice. The self-

consistency was regarded to have been achieved by the variation energy eigenvalues from iteration to 

iteration did not exceed 3 mRy and the presser which was calculated at each iteration by Pettifor 

formula [9] was less than 1 kbar. Wigner–Seitz (WZ) sphere radii were identical and equal to average 

WZ-radius. The projection of the expanded HCP cell on the XOY plate is in figure 1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.    Project of expanded HCP 

cell to XOY.  

         –  Ti  in z=0 plane, 

         – Ti  in z=c/2 plane, 

         – E in z= c/4 and z= 3c/4 planes, 

    H – H-defect in oct-pore 

            (1/4;3/12;c/4). 
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Crystal lattice was simulated by repeating hexagonal extended cells which contain 8 titanium atoms 

(lattice parameter of titanium: а=0.2952 х 2 nm, с=0.4684 nm [10]). Hydrogen atoms placed in octal 

pore with coordinate (1/4;3/12;c/4). The others 7 octal pores were filled up empty spheres having 

zero electron density in order to consider the crystal potential anisotropy. The atoms positions of the 

expanded cell are in table 1. 

 

Table 1. Coordinates of atoms in expanded cell per unit lattice parameter a. 
  

atom X  Y  Z 

Ti 0.000000  0.000000  0.000000 

0.500000  0.000000  0.000000 

-0.25000  0.233020  0.000000 

0.250000  0.433020  0. 000000 

0.000000  0.288680  0.396828 

-0.25000  0.721680  0.396828 

0.250000  0.721680  0.396828 

0.500000 0.288680  0.396828 

H 0.250000 0.144340  0.198414 

Empty sphere (Е) 0.750000  0.144340  0.198414 

0.000000  0.289000  0.198414 

0.500000  0.289000  0.198414 

0.250000  0.144340  0.595242 

0.750000  0.144340  0.595242 

0.000000  0.289000  0.595242 

0.250000 0.289000  0.595242 

 

Used method of electron structure calculation demands to input addition empty spheres because 

LMTO assumes spherical symmetry of potential within the atomic spheres and zero potential out of 

spheres. That admission is not true for the most of crystals especially for dielectrics and semi-

conductors. However, it could be corrected by putting the additional atomic spheres in void of cell 

which possess high symmetry enough. Thus we can solve some problems: to decrease the overlap, to 

increase spherical symmetry of potential, to decrease the volume between the spheres. The calculation 

of the hydrogenizes titanium in HCP lattice was carried out with two variants of atomic spheres radii 

which were equal to each other’s (RTi=RH=RE=2.4233 a.u.) and increased titanium radius (RTi=2.8000 

a.u., RH=RE=1.8670 a.u.). 

The positron states problem have been solved on basis of two-component density functional theory 

[11, 12]. Positron potential and positron wave function were calculated on a base of self-consistent 

electron density. It was considered the approach of low positron density, positron-electron correlation 

potential was depending on electron density only and was not perturbed by positron. Using this 

potential single-particle Schrödinger equation was solved by LMTO-ASA method and positron wave 

function was found. It was used calculating probability of positron distribution to atomic spheres, 

annihilation rate and lifetime. 

3.  Discussion of results 

Electron band structure and lower positron band of TiH0.125 with equaled atomic sphere radii are in 

figure 2. Filled levels of the valence band is here only. The presence of hydrogen defect leads to 

formation of the separated lower band. The Fermy energy is upper and the occupied part of the 

valence band is increased. There is the band gap. Band structure of -Ti and TiH
0.125

 is similar in every 
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Figure 2. Electron structure (dashed lines) and the lowest 

energy positron band (solid line) of TiH0.125.. 

 

respect of -Zr and ZrH1.5 [13]. But numerical and scale of characteristics differs.  

The positron band is similar to the lowest valence electron band that agrees well with theoretical 

representation about quasi-free positron state in solid. Positron energies at G point are -0.200, -0.301 

and -0.211 Ry for Ti, TiH
0.125 

(equal atom spheres) and TiH
0.125

(different atom spheres), respectively. 

Electron band structure and positron band peculiarity is kept when the ratio of the atomic spheres is 

changed. It should be noted that increasing of the atomic sphere titanium radius and decreasing of the 

hydrogen and empty spheres radii insignificantly reduces the atom spheres overlap. But the values of 

characteristics (bottom and width of the valence band, energy values of the symmetrical points) shifted 

by an amount greater than the accuracy of the calculation. Comparative energy data are in the table 2. 

 

Table 2. Electron band structure values of pure and hydrogenize -Ti. Fermy energy EF (Ry), the 

occupied part of the conduction band EF-Г1 (Ry), terms Г1 and Г4 (Ry). 

-TiHx -TiH 

RTi =3.0532 a.u. 

-TiH
0.125

 

RTi=RH=RE=2.4233 a.u. RTi=2.8000 a.u.; RH= RE=1.8670 a.u. 

EF (Ry) -0.0526 0.0680 0.0046 

EF-Г1 (Ry) 0.4744 0.5978 0.6393 

Г1 (Ry) -0.5270 -0.5198 -0.6347 

Г4 (Ry) -0.2680 -0.3006 -0.2112 

 

The calculated positron characteristics and experimental the first component of positron lifetime is 

in table 3. The calculated value of thermalized positron lifetime agrees with the experimental one. 

However, the calculated trend of lifetime decrease with defects increase in -titanium disagrees with 

the experiment [14]. In this connection the band structure and positron lifetime was calculated with 

E,Ry 

-0,5 

-0,4 

-0,3 

-0,2 

M G K A L M H 
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corrected potential. Titanium radius of the atomic sphere was enlarged and hydrogen radii of the 

atomic spheres were diminished. The radii change significantly affected on the charge redistribution in 

atoms. The charge increased in titanium spheres and decreased in defect sphere and void (table 3). As 

a result probability of positron distribution in titanium sphere and annihilation increased from there. It 

was caused lessening of positron lifetime in the hydrogenated titanium. The other reason of 

disagreement of the experimental trend with theory would be swelling of titanium sample at its 

hydrogenation which was obtained by experiment. It could not be considered by theory. 

 

Table 3. Positron lifetime (ps), probability of positron distribution W (%) to atomic spheres (S), 

electron charge Q (el.) in atomic spheres and  probability of electron-positron annihilation (%). 

 -Ti -TiH
0.125

 -TiH
0.125

 SIC-TiH
1.0

 

(ps) [14] 150 154 (TiH
0.01

)   

(ps) 158.1 154.5 149.8 163.5 

atom  

spheres 

radii (a.u.) 

3.0532 RTi=RH=RE=2.4233 
RTi=2.800 

RH= RE=1.867 
RTi=RH=RE=2.0656 

sphere Ti Ti H E Ti H E Ti H E 

W (%) 100 32.25 4.90 62.85 59.87 1.93 38.20 10.05 23.72 66.23 

(%) 100 42.19 5.35 52.46 64.79 2.24 32.97 16.68 27.97 55.35 

Q (el/at) 22 20.47 2.48 1.48 21.28 1.35 0.75 19.68 1.64 0.84 

 

In order to take account of the volume cell increasing by hydrogenation electron structure and 

positron lifetime were calculated for TiH1.0 in cubic phase and lattice parameter a=0.4397 nm. 

Elementary cubic cell with 16 atoms per cell was designed like HCP and discussed in [7]. The 

calculation showed that positron redistributed into hydrogen trap a lot, although charge of hydrogen 

sphere changes lightly. 

Note that experimental positron lifetimes of the first and the second components showed the slight 

increase of the first component 1 together with decrease of the corresponding intensity I1. It could be 

explained that density of free electrons is not changed a lot by hydrogenation. For the hydrogen 

charged samples the second component decreases together with increase of the corresponding intensity 

compared with the original titanium samples: 2=369 ps, 362 ps, 321 ps, 331 ps for 0 min, 60 min, 120 

min, 360 min hydrogen charged titanium, respectively [14]. It could be explained that positron 

annihilation increases from region of the vacancy-type defects which are trapping hydrogen atoms. In 

that case electron density of vacancy defect increases. It have to lead to the lifetime decreasing of 

positron trapped by the defects. 

4.  Conclusion 

Thus, in the present work the detail investigations of electron band structure of -Ti and hydrogen 

charged titanium -TiHх to x=1 were performed. The positron states and annihilation characteristics 

were calculated in frames of LMTO-ASA method, which allows us to analyze the contributions of the 

different electron states in electron-positron annihilation process in titanium samples as well. There is 

the satisfactory agreement with experimentally measured the delocalized positron lifetime, but not the 

tendency. It can be connected with either experiment or calculation method precision. To analysis the 

localized positron it is necessary to use the method which allows to model the soft core.  
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