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Abstract. This article presents analysis of FCC single crystals local areas reorientation under 
compression. The reorientation process was examined at different scales, from sample size 
scale to that of dislocation substructure. It has been found that disorientation in meso and 
macro levels is determined by accumulation of misorientation at the level of dislocation 
subsystem. Our research allows quantifying of accumulated misorientation magnitude. The 
results of this study illustrate interrelation of rotational and translational deformation modes 
both at the same scale level and various scale levels. 

1.  Introduction 
During plastic deformation, there are two constantly interacting processes that specify translational 
and rotational components of plastic deformation. At early stages of experimental investigation of 
plastic deformation phenomenon, only one process was observed and described because of 
imperfections of research methods and facilities [e.g. 1,2]. 

X-ray analysis made it possible to monitor crystals' reorientation, and development of optical and 
electron microscopy - to observe glide dislocations. It has been established that both processes are 
closely related, but the reorientation is the most characteristic for large-scale plastic deformations and 
higher dislocation densities [3-5]. While deformation starting, changes in a defect-free crystal are 
performed because of dislocation glide. However, in some cases, the reorientation process can be 
initiated at an early stage of deformation. This phenomenon is known as twinning mechanism, which 
occurs if a certain crystallographic orientation, low stacking fault energy and temperature are 
involved. 

All facts aforesaid refer to the entire range of crystalline materials, which are investigated not only 
by physics and chemists, but also geologists and other scientists and engineers. This approach is 
applicable to the study of deformation processes in single crystals with FCC lattice. Despite its 
apparent simplicity (no grain boundaries) single crystals are sufficiently complex objects because of 
anisotropy properties and aspects of symmetry. Therefore, the plastic deformation is traditionally 
considered at different scale levels; that enables to explore certain aspects of the phenomenon. 
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Investigations of plastic deformation in single crystals is important for basic science and for practical 
application, if extrapolating the data to a single grain of a polycrystalline aggregate or a small set of 
single crystals. It determines the relevance of this research. In this way, the purpose of the work is 
examination of misorientation development at various scale levels in relation to shearing strain 
processes. This phenomenon is examined in FCC samples of pure metals (aluminum, nickel, copper). 

2. Materials and method 
FCC single crystals (copper, aluminum, nickel) were examined. Stacking fault energy (SFE) is large 
enough in aluminum and nickel, so, in these materials, cross dislocation glides are rather frequent. 
SFE of copper is lower; however, it also has a cellular dislocation substructure within the second stage 
of strain hardening curves. Deformation of these materials is performed at room temperature along 
octahedral gliding planes. Compressive strain was performed by Instron ElectroPuls E10000 testing 
machine at a rate 1.4·10-3 sec-1 at room temperature. Graphite lubricant was used to reduce friction 
force. Strain relief pictures were examined under Leica DM 2500P optical microscope and Tescan 
Vega II LMU raster electron microscope. To determine the misorientation of local areas electron 
backscatter diffraction (EBSD) attachment to a microscope Tescan Vega II LMU was used. 

3. Experimental results and discussion  
Let's begin examination of misorientation in single crystals with laws' descriptions starting with a 
macroscopic level. Crystallographic orientation changes are closely related to samples' shape changes 
while plastic deformation. The latter depends on the strain pattern and on work-piece shape to which 
deformation is applied. Laboratory experiments enabled us to determine a load pattern (compressive 
strain) and a sample form (tetragonal prism). On the one hand, factor of shape's effect on compressive 
strength was identified and eliminated (sample is stable with the ratio of height to width equal to two). 
On the other hand, deformation with friction is complicated by difference in stress condition patterns 
in the end faces (uneven hydrostatic compression) and the central part of the sample (uniaxial 
compression). Let's examine the results of experiments that were performed on samples - tetragonal 
prisms, subjected to compression with mechanical friction. Gliding crystallography was examined as if 
developing according to the systems {111}<110>. Single crystals were oriented relative to 
compression axis along corner lines of a standard stereographic triangle with a set of various side 
faces. 

Previously, the authors performed systematization of strain relief structural elements, depending on 
crystallographic orientation of compression axes and side edges. Proportions of strain relief structural 
elements were determined; that clarified how zones of these elements, at macro- and meso-level, were 
involved in plastic deformation of investigated single crystals [6]. Magnitude of plastic deformation 
heterogeneity of [111] nickel single crystals was determined experimentally for examined 
crystallographic orientations of various side faces at various scales, considering strain relief formation 
and compressive stress distribution [7]. It was found that localization zones do not occur within 
deformation domains. Development of inner structures occurs in such a way to reduce the strain 
heterogeneity and approximate an average deformation value to that of local deformation. Interface 
areas of neighboring deformation domains and end-face deformation areas are deformation 
localizations areas. The domain interface area has different glide systems; in end-face areas 
deformation is increased because of material transfer while mechanical friction. The role of stress 
distribution nature in plastic deformation inhomogeneity is shown in [6,7]. 

We consider single crystals with a ratio of height to width equal to two. Samples with such an 
aspect ratio show the greatest stability under compression in the case of isotropic materials. In the case 
of single crystals shear anisotropy has its own individual impact. As part of the problem statement, 
let's examine how compression axes' and lateral faces' crystallographic orientation affect sample 
stability while being compressed. Various crystallographic orientations of compression axis along the 
long sample axis determine various resistances to deformation, depending on orientation of close-
packed planes and shear directions in the volume [6]. It's been found that the greatest stability of the 
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sample under compression is achieved when the sample symmetry axis, relative to the compression 
axis, coincides with gliding systems arrangement symmetry, relative to this axis. This feature depends 
on the crystallographic orientation of the side faces. Besides orientation of lateral sides affects 
development of single crystal volume deformation and causes its discontinuity. 

The most detailed investigations of deformation heterogeneity were carried out on nickel [7]. 

 It's been found that at the macro level in single crystals with compression axis [ 111 ] deformation 
occurs more inhomogeneous for samples - tetragonal prisms.  In this case, deformation axis orientation 
significantly reduces possibility of symmetric shear relative to side faces and macro-stripes forming 
large deformation domains. Intense folding deformation occurs in neighboring domains. 

Development of compressing deformation contributes to changing in single crystals' [ 111 ] 
orientation; that is expressed at the macro level in sample shape curving and crystallographic 
reorientation of its parts. 

Studies have shown that the sample body is divided several reoriented fragments [8]. A lattice 
orientation is less changed in the central fragment. In adjacent fragments reorientation is more 

pronounced. Crystal lattice orientation [ 101 ] is heavily biased. The lattice rotation occurs about the 
axis [110]. In end-face fragments changes of crystal lattice orientation are not observed. 

 

           

  а)   b)   c)   d) 

Figure 1. Formation of reorientation areas relative to axes X, Y, Z (a-c), standard stereographic 
triangle (d), nickel e = 22% 

 
With further increase of strain (22%),  reorientation areas' macro-fragmentation is not changed 

(Fig. 1). Fragments' reorientation degree increases uniformly.  Crystal lattice orientation remains 
practically unchanged in end-face fragments. Central fragment's lattice reorients in the direction [101] 
relative to the deformation axis X. It's been noted that the largest reorientation areas are observed 
relative to the compression axis X, and almost are not observed relative to the axis Z. Such nature of 
reorientation in different areas of the single crystal is conditioned by several reasons. Original 
orientation in end-faces is permanent, if the scheme is implemented non-uniform compression due to 
friction, which hinders the development of deformation processes in these areas. Fragments, located 
on borders of regions with different stress state patterns, are reoriented the most intensively with less 
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deformation. This is caused by force-moment effect on a selected body, as values of stress tensor 
components vary in neighboring areas of this body. Reorientation is lagged in the central fragment. 
Reorientation of areas within single crystals of nickel, copper and aluminum occurs likewise. 

Trusov’s investigations [9-11] show that non-uniform stress field activates various sets of glide 
systems. In a local area, only one possible glide system operates in a certain time.  Meanwhile, 
according to Taylor criterion, crystal body deformation can occur only under effect of five 
independent glide systems. In practice, usually, effects of more than three or four glide systems in 
local material volumes are not observed. In general, this is insufficient for any deformation. Therefore, 
this disadvantage should be compensated by reorientation of crystal areas. Based on this approach, the 
authors of [12] proposed a crystalline solid flow model, where disadvantage of active glide systems is 
complemented by rotary modes. We observe the same phenomenon in the above experiment on copper 
and nickel.  

Compressive strain is not effective while deforming by six still loaded with shear systems in FCC 

single crystals with orientation of compression axis [ 111 ] [7]. In such crystals deformation has a 
number of distinctive features. First, deformation occurs by shear with formation of macroscopic 
deformation bands systems. Second, the deformation bands systems are localized in certain areas of 
the crystal, which do not provide its complete deformation. Third, number and location of still loaded 
with shear systems do not provide orientation stability while deformation. Because of this, the single 
crystal is divided for disoriented fragments.  

Primarily, a single crystals central area reorientation occurs. Reorientation in this body starts a 
mechanism of rotary deformation and also involves additional shear systems, being not active before. 
This is an illustrative interrelationship of translational and rotational modes of deformation on the 
same scale level. 

Experiments prove that deformation domains should be sorted as translational and rotational ones 
[13]. Boundaries between of translational and rotational domains differ from grain boundaries of a 
polycrystalline sample. The difference is in the length and width of the boundaries, as well as in 
continuous transfer from one strain domain to another. In [14] authors identify these boundaries as a 
separate element of structural deformation with their geometric and structural parameters. Depending 
on domain orientation relative to applied stress, displacement deformation vectors have 
multidirectional or reverse directions in adjacent domains. Prevailing shearing orientation in the single 
crystal is always directed towards free side faces.  

Areas of different deformation domains are clearly observed in the picture of displacement vectors' 
fields [14]. Comparison of deformation domain areas and spatial distribution of strain tensor 
components (shear and rotary) indicates an increase of all tensor components at the boundaries of 
deformation domains. This proves that increase of shear strain provides increase of rotational 
component. Thus, resulting deformation is higher at domains' boundary, if compared with that within a 
separate domain. 

Data obtained with EBSD-analysis indicate accumulation of misorientation in domain boundaries. 
Our studies have found that misorientation increases when approaching the deformation domain 
boundary and significantly increases in the boundary. 

Accumulation of misorientation in deformation domain depends on deformation mechanism at a 
meso-level. Previous studies [6] show that, depending upon single crystals' orientation,   domain 
deformation occurs as a shearing along parallel shear planes with formation of slip bands in the form 
of meso- or macroscopic deformation bands. If moderate deformation degree, macroscopic 
deformation bands are shearing and do not lead to reorientation of mesoareas within the domain. With 
increase of strain degree, accumulation of dislocations' like-sign over-density occurs in local areas of 
the crystal, which contributes to development of misorientation. In addition, in the surface area, 
misorientation effect is manifested as deformation folds. Fig. 2 a-b represents the area of folds 
formation. EBSD-analysis is carried out in cross-section. It allows you to explore the disorientation 
with distance from the surface. 
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In this case we observe crystal local areas' reorientation in places of folds' forming. Geometric 
image of boundaries (Fig. 2a) illustrates distribution and magnitude of disorientation boundaries in the 
areas occupied by various types of structural relief elements. Color corresponds to value of 
misorientation angles (Fig. 2b). Here it is necessary to make a certain topical excursus. The boundaries 
are drawn with the program, which implies a certain disorientation interpolation on a segment, 
perpendicular to the boundary line. Thus, the boundaries, interpreted with the program, are diffused in 
a certain domain, determined by the area of interpolation. We can see that, for a given degree of 
deformation, disorientation angles do not exceed 5°...10°. There is disorientation magnitude to 5 ° in 
reoriented stripes; and larger angles along their boundaries (Fig. 2d). Consequently, folding 
contributes to formation of new boundaries within the single crystal. 

 
 

 

a)       b) 

 

 

с)       d) 

Figure 2. Geometric image of boundaries (a), standard stereographic triangle (b), frequency of angles 
misorientation distribution (c), transverse angles misorientation distribution 1-2 (d), Nickel, 
e = 16% 

With use of EBSD-analysis observed disorientations were compared to disorientations of 
dislocation subsystem's level. EBSD record was conducted with a certain minimum grade value of 1 
pixel = 5.5 microns. So, if disorientation boundary, after processing, goes along the boundary between 
adjacent pixels, then disorientation is at a distance of 5.5 microns. Nickel dislocation structure has the 
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form of dislocation cells (Fig. 3a) in the initial degree of deformation. While increase of strain, 
dislocation over-density is accumulated in the boundaries of dislocation cells as is evidenced by 
change in contrast between adjacent cells or groups of cells (Fig. 3). Contrast changes usually become 
apparent when disorientations' magnitudes are 0.5. This can be verified either with electron 
microscope analysis or direct measuring with the goniometer, locating the tilt angle at a certain 
orientation of the tilt axis in the foil plane. Size of the dislocation cell is 0.5 microns at the 
deformation degree being examined [15]. That is, 11 dislocation cells are placed in one pixel, which 
give the accumulated disorientation 5.5 observed in the experiment. Thus, EBSD-defined 
misorientation magnitude agrees with that of disorientation, accumulated during deformation in 
cellular dislocation substructure. 

 

  
a)       b) 

Figure 3. Cellular dislocation substructure (a) and its misorientation accumulation diagram (b) 

Over-density accumulation varies in cell walls of finite thickness. Depending on like-sign 
dislocations' distribution at the boundary, it has various magnitudes of disorientation while 
transitioning across the boundary; and transforms sequentially into blocked, fragmented and then sub-
grain structure. Volumes, bounded with disorientations, constitute structure elements which can be 
subjected to reorientation under certain conditions. In fact, it occurs, in particular, under conditions of 
material super-plastic flow, when the grain boundary gliding or microporosity formation facilitates 
rotation of grains in the boundary. 

At meso-level, individual rotational defects of very significant magnitudes can be observed, 
mainly those of disclination type. There are many studies that interpret phenomena in the dislocation 
structure as manifestations of disclination formations. By now, findings of investigations, obtained 
while experimenting with metallic materials, are incomplete. It is our belief that a disclination loop, 
experimentally obtained (by authors), is rather valuable; the loop was formed in iron-nickel ordered 
alloy with compression axis orientation [001] [16]. Magnitude of azimuthal disorientation, determined 
by splitting of reflexes on an electron diffraction pattern, is 10 °. In this case, disclination loop 
formation facilitated "knife-edge" shear boundary formation in the rest of the crystal volume, which 
resulted in a shift of dislocation cell wall by 0.2 ... 0.4 micron. Earlier authors classified this 
phenomenon as a mechanism for destruction of stable cellular structure of the ordered alloy. The 
experimental results also illustrate interrelation of translational and rotational deformation modes at 
the level of mesodefects of the dislocation-disclination subsystem. Deformation mechanism is a 
parallel action of two "knife-like" edges, which share cell boundaries in opposite directions. After the 
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strong shear ceases, within the crystal a large-scale disclination loop is formed; which has a large 
misorientation angle between loop interior part and surrounding matrix. 

4. Conclusions 
Thus, analysis of scientific papers and authors’ own results show interrelation of disorientation 
processes at different scale levels.  Accumulation of misorientation at dislocation subsystem's level 
(lower scale level) leads to accumulation of misorientation at meso- and macro-levels. Our research 
allows quantifying of accumulated misorientation magnitude and monitoring of crystallographic 
orientation changes in deformation elements at all scales. Furthermore, the results of this study 
illustrate interrelation of rotational and translational deformation modes both at the same scale level 
and various scale levels. 
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