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Abstract. A method for mapping a two-dimensional color image of the microstructure of the
material to a complex network is proposed. Each image elements is assigned to node network. A
weighted combination of distance metrics – the Euclidean distance and the Manhattan distance
– defines whether there is or not an edge between corresponding nodes. The first metric is used
to calculate the spatial distance between the picture elements (pixels), the second metric takes
into account the contrast between the brightness of pixels in the gray scale. On the basis of the
topological properties of the constructed network the edge pixels were detected that allows us
to identify the border areas in the microstructure of materials. The proposed method can be
used in automated systems of materialographic analysis.

1. Introduction
There are many problems from different areas can be solved by the application of algorithmic
graph theory. Basic and applied research in material science, engineering and medicine can use
a network model as a prototype of a real network. Many studies are conducted on network
models in which the number of nodes as well as the number of edges incident to them can be
changing in time [1] or at a constant number of nodes of the graph the number of edges changes
[2], that affects the network characteristics.

We note a number of studies addressed to image processing in the context of networks with
constant topology. In the paper [3] a visualization approach of complex three-dimensional
structure of osteocyte networks based on the voxel skeleton was proposed. This network topology
includes three entries: nodes, links, and cells. A cell is a connected region with a defined distance
and a size restrictions. A node is a cluster of voxels with more than two neighbors each, and a
link or branch (if connected to one node only) is a group of connected voxels with two neighbors
each. In the paper [4] a model for mapping a grayscale image into weighted undirected network
is proposed. The conversion of images into complex networks concentrates mainly on the weight
of corresponding edge, and edges in that network depend on both the Euclidean distance and
the gray-level difference. This model is based on the weighted combination of the Euclidean
distance and gray-level similarity between pixels. In the paper [5] proposed a graph based
algorithm of grayscale image processing. Every pixel is represented by one vertex in weighted
graph, the weight of each edges is defined by function in which absolute difference of intensities
and distance between a pixels pair are taken account.

The aim of this paper is to research the materials microstructure based on complex networks
and their topological properties. To achieve the identified aim it is necessary to solve the
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following problems: a) to map a color image into a complex network, b) to calculate topological
properties of complex network, c) to detect pixels on object boundaries.

2. Network Construction
Suppose we have a color image, characterized by the size of N pixels in width and M pixels in
height. Each pixel of a color image is described by a position (px, py) and a triple of intensities:
red (r), green (g), and blue (b). In order to design a model, we will use a spatial distance as
well as the contrast between the brightness of picture elements (pixels).

First, in the proposed method we need to convert an image from color to grayscale. There
are various ways to convert color images to grayscale image, in our study the weighted average
luminosity method was used. We have applied the Rec. 709 coefficients [6] to mapping a color
image into grayscale. Thus, the linear luminance Y , which is given by:

Y = 0.2126 · r + 0.7152 · g + 0.0722 · b.

Each pixel of the original image corresponds to 8 bits (1 byte) of information that allows us to
transfer 256 gray levels. The result of the conversion of color images saves in the bitmap, N is
the number of rows and M is the number of columns. Elements of bitmap take values from the
interval [0, 255], where the left boundary of the interval 0 corresponds to the black color, and
the value 255 – to the white color.

Second, each element of the bitmap is assigned one node of the network. For given image
with pixel set P = {pi : i = 1, 2, . . . , n = N ·M}, a network can generally be represented as a set
G = (V,E), where the node set is given by V = {vi : i = 1, 2, . . . , n}, n is the total number of
nodes; the set of edges is given by E ⊆ V × V . To define the set E we use distance metrics: the
Manhattan distance, d1, and the Euclidean distance, d2. To account for the brightness contrast
between a pair of pixels (p, q) ∈ P in gray scale we use the Manhattan distance:

d1(p, q) = |pg − qg|, (1)

where pg and qg are gray level of pixels respectively. The value of Euclidean distance, d2, of the
two pixels defines whether there is or not an edge between corresponding nodes (p, q) ∈ V :

d2(p, q) =
√

(px − qx)2 + (py − qy)2, (2)

where (px, py), and (qx, qy) are coordinates of pixels p, q ∈ P respectively. Then the set E
can be determined as follows: E = {ei = (p, q) : 0 < d2 ≤ R, p, q ∈ V, i = 1, 2, . . .}, where
R ∈ [0,max(N,M)/2] is a model parameter that is called the radius. If we choose R = 0, then
zero-graph will be generated, all of whose nodes are isolated. If we set R = 1, we will obtain the
two-dimensional model of crystal with square lattice.As one should expect, the number of edges
m exponentially increases with the radius R. In the limiting case we will deal with the complete
graph, for which the total number of edges is equal to m = |E| = n(n− 1)/2. In practical cases
we used 1 < R < max(N,M)/2. We note that for the Manhattan distance, d1, Eq. (1) the
impact of an outlier is reduced as compared with the Euclidean distance, d2, Eq. (2).

Finally, the weighted undirected network G is denoted by a symmetric weight n× n matrix,
W = [wpq], where wpq =

√
(α · d1(p, q))2 + (β · d2(p, q))2, if there is an edge between nodes p

and q and wpq = 0 otherwise, where α, β > 0 are the scaling parameters of gray-level difference
and spatial distance respectively.

Thus, based on the symmetric weight matrix W we constructed the weighted undirected
network G = (V,E), with one connectivity component.
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Figure 1. A fragment of the square lattice with
the coordinate systems for the nearest, second
and third neighbors. Edges are omitted.

Figure 2. Original color microscopy image
[9] with red borders (top left corner).

3. Calculation of Local Node Dimension
Authors [4] using the measure of dimensionality of individual nodes to the image of edge
detection. Following the study [7] the local node dimension Di(r) can be obtained by the
angular coefficient (slope) of the Bi(r) curve on the interval [0, R], where Bi(r) is number of
nodes at different topological distances r ∈ [0, R] from a focal node p, R is radius in the proposed
model. For defining the local node dimension Di(r) the Bi(r) curve was approximated with a
linear regression. It is necessary to note, for a small number of points the role of the chosen
regression method becomes important to the resulting values. Currently, authors [7] addressed
this problem by using the least squares method defined directly for the logarithmic scales.

In figure 1 there are shown three circles (r = 1, 2, 3) of the fragment of a two-dimensional
model with square lattice. For any pair of nodes (p, q) ∈ V , we shall use the (X, Y ) coordinate
system whose axis are run through the corresponding nodes that are denoted by squares. In
the case of the nearest and third neighbors in the coordinate system the axes are respectively
denoted by X1,3 × Y1,3, and for second neighbors – X2 × Y2 [8].

In order to observe the distribution of node dimension, the set of node dimension D(R) =
{d(pi) : i = 1, 2, . . . , n} can be mapped to a grayscale image. Gray level in the grayscale image
responds to the value of the node dimension [4]. We applied a contrast enhancement technique
to obtain the grayscale image. A linear scaling transform has been used in order to improve the
pixel contrast for output image: g = a ·f + b, where a and b are the transform parameters which
can be determined based on the required change of the dynamic range. As a result of the image
processing we get the scale [gmin = 0, gmax = 255], then{

gmin = a · fmin + b,

gmax = a · fmax + b.
⇒

{
a = (gmax − gmin)/(fmax − fmin),
b = (gmin · fmax − gmax · fmin)/(fmax − fmin).

Here fmin and fmax are extreme values of node dimension interval.

4. Detection of Pixels on Object Boundaries
In the paper [4] the authors carried out the computational experiments and found that pixels on
object boundaries have a lower node dimension. The node dimension interval directly depends
on the original image. To determine the pixels on object boundaries, we suggest using a p-
quantile of the node dimension distribution. A pixel of output image, p, can be obtained by
values of node dimension interval [fmin, fmax] as follows:

p is
{

edge pixel, d(p) < p-level quantile,
non-edge pixel, d(p) ≥ p-level quantile.

PowerPlants2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 135 (2016) 012040 doi:10.1088/1757-899X/135/1/012040

3



Figure 3. a) Original im-
age and images with differ-
ent thresholds of edge pixels:
b) 0.25-quantile, c) mean, d)
0.75-quantile.

Figure 4. a) Original network, b) network of non-edge
nodes, c) network of edge nodes. Nodes corresponding to
edge pixels are denoted by yellow nodes, 0.25-quantile is the
threshold of edge pixels.

5. Computational Experiments
To conduct the computational experiment, we chosen the picture from the related paper [9],
which is shown in figure 2. Square 55 × 55 pixels part has been selected from the picture, in
figure 2 borders of chosen picture are marked with red line (top left corner).

In order to design the complex network G we used the following values of the model
parameters: α = β = 1, and R = 2. Then we calculated the local node dimension, the first,
second and third 4-quantiles are {0.005, 0.013, 0.0269} respectively, and the extreme values are
{0, 0.0421}. To determine the boundary pixels, we varied the value of p-quantile as thresholds.
The original image and images with different thresholds of edge pixel are shown in figure 3,
colors were inverted. The part of original network G, containing 10 × 10 numbered nodes, is
shown in figure 4. In our experiment, based on the identified borders the original network
G (figure 4a) was divided into two networks G1 and G2 (figure 4b, c). The density, average
path length and degree distribution were calculated for each network G, G1, and G2: graph
density are {0.92, 0.82, 1.00}, average path length are {1.07, 1.17, 1.00}, and average degree are
{91.64, 52.67, 34.0} respectively.

6. Conclusion
To study the material microstructure a model of a complex network is proposed. On the basis of
the topological properties of the constructed network the local node dimension was calculated,
and pixels on object boundaries were defined. The proposed approach allows us to apply the
algorithmic graph theory to the image processing. The outcome of the designed network is
therefore that basic characteristics of a network can be calculated. Thus our approach can be
used in automated systems materialographic analysis.
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