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Abstract. Dislocation loops emitted by Frank-Reed source during crossing dislocations of the 

non-coplanar slip systems are accumulates jogs on the own dislocation line, resulting in the 

deceleration of the segments of dislocation loops with high jog density. As a result, bending 

around of the slowed segments the formation of dynamic dipoles in the shear zone occurs. In 

the present paper we consider formation mechanism of non-misoriented dislocation cell 

substructure during plastic deformation of f.c.c. metals and conclude that the increase in the 

degree heterogeneity of dislocation distribution leads to an increase in the jog density and 

reduce the mean value of arm dynamic dipoles.  

1. Introduction 

Non-misoriented dislocation cell substructure (NMDCS) was the first experimentally observed 

dislocation structure [1] and attracted the attention of researches due to its contribution to the 

strengthening of the material [2 – 4]. It is observed as bright spots, surrounded by lots of dark stripes 

that forms cell boundaries. Cell boundaries may contain areas with misorientations of no more than 

half a degree [4]. 

According to the modern concept of cell structures, non-misoriented dislocation cell substructures 

assumed as heterogeneous substructure, dislocations of which mostly located in the walls of finite 

thickness, consisting of dipoles and multipoles hindering movement of shear-forming dislocations [4].  

It is known that f.c.c. metals with high energy (more than 60 MJ/m
2
) stacking fault characterized 

by cellular substructure with blurred cell walls under moderate or impulse loads. With decreasing of 

this energy the tendency of cell formation become weaker and dislocation plexus become more 

observable. Structure is dominated by twins and stacking faults at low energies (less than 25 MJ/m
2
) 

[5, 6].  

Study of dislocation structure of f.c.c. single crystal copper oriented for single slip [7] showed that 

crystals under small deformations have free strongly curved primary dislocations as well as dipole and 

multipole configurations, consisting mainly of screw dislocations. Screw dislocations and dipoles were 

observed either rarely or not at all, what allows to conclude that they are quickly annihilating by cross 

slip [8].  
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In the beginning of strain, the dislocation reactions resulting to formation of dislocation plexus 

uniformly over the entire sample from which the walls of cells are formed in single crystals oriented 

for multiple slip [8– 14]. 

In the copper even at low stresses and strains Pa10  cellular structures with flat rounded cells, 

lying in the planes perpendicular to the axis of tension, are formed. Average area of cells that are 

almost freed of dislocations, decreases with increasing of stress measured in MPa according to the law 
25.25  . Average cell diameter Сd  is always smaller, then the length of the slip traces. Since the 

length of the slip traces has the same order as the diameter of shear zone D, then for single crystal 

copper at room temperature СdD 4  [9], i.e. four cells are formed in the shear zone. With increasing 

stress, the dislocation density in the cell walls increases proportionally 3,2  with the proportionality 

coefficient that depends on the orientation of the sample [9]. 

When using the cyclic strain, the cells with more regular shape are formed and their walls are built 

of more correct and less intertwined dislocation structures [15]. On the basis of the observation was 

concluded that the plastic strain is concentrated inside the cells, and the saturation state inside the cells 

there are groups of free dislocations with generally screw orientation, as well as the vacancy dipoles 

with arm of nm5.3 [15].  

In copper polycrystals for an average diameter of dislocation cells were found: 2116 Cd  and 

2166,05.10  bGdbG C   [16]. Inverse proportionality of the shear stress   to the average 

diameter of cells was found in other single and polycrystalline f.c.c. metals. For nickel 
21)127(  Cd , moreover proportionality coefficient is little affected by temperature and 

deformation degree, and close to the values of other pure metals [17]. 

Thus, in metals and alloys cells are characterized by average diameter 21)162(  Cd  and wall 

width   CC dh 5,03,0    510806  Ch  at 28 sm10  . 

Consequently, the diameter of the cells corresponds to the mean free path of screw segments. 

Therefore, the formation of the cell structure may be linked with the evolution of the dynamic 

multipole structure. With increasing strain cells are grinding, and their average size is reduced to value 

of m2.0  . 

Formation and evolution of NMDCS studied both experimentally, and by mathematical modeling 

[18 – 21]. The main quantity characterizing the evolution NMDCS with increasing degree of plastic 

deformation, is a dislocation density of the dynamic dipole configurations d . In addition, 

mathematical models of plastic deformation include NMDCS characteristics as an equation 

parameters, such as the average value of the dipole arm dh , the mean free path d  of a screw 

dislocation with jogs and the average shear zone area DS , i.e. the average area swept out by shear-

forming dislocations emitted by Frank-Read sources. 

For convenience, the dipoles are considered to consist of elementary dipoles with length d  and for 

the output of dipoles accumulation intensity number of elementary dipoles dn  is used. 

To construct a mathematical model firstly we need to answer the following questions. What is the 

resistance to movement of the screw orientation of the segments have jogs? How many jogs on the 

segment with screw orientation is necessary for a significant slowdown of the segment? What is the 

average value d  of path that run segments of shear-forming dislocations having jogs with screw 

orientation before bending around adjacent segments with lower jog density? How many elementary 

dipoles are formed in the area DS  after the passage of a dislocation loop? What is distribution function 

for arm of dynamic dipoles? What is the intensity of the dynamic dipole generation? What is the 

annihilation rate of the thermodynamically stable dynamic dipoles under the influence of flow 

deformational point defects? What is the intensity of point defects generation due to the dissociation of 
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the thermodynamically unstable dipoles with a small dipole arm? What effect does the reduction of the 

shear zone area DS  with increasing degree of deformation on the formation of NMDCS?  

2. Formation of non-misoriented dislocation cell substructure 

In the first papers on the modeling of evolution NMDCS assumed that the deceleration and self-

locking of screw segments of dislocation loop after the run for a distance d  because of the increase in 

the jog concentration it leads to a bending around the adjacent more mobile segments. 

In the process of bending around as a result of run edge segments the new segments with a screw 

orientation are formed, which also bending around after run of about the same distance d . As a 

result, within the shear zone the system of dipole and multipole dislocation configurations occurs. 

NMDCS formed due to the transformation of the dipole configuration system and disappears due to 

the dissociation and annihilation of dipoles. The dislocation density in the cell walls is the same as d , 

while the dislocation density inside the cells - is part of d  determined by not transformed dipoles 

remaining at the time of observation. 

Equating work of screw segments on the drawing of jogs 
s
Dj Sbd  to the total energy of generated 

point defects bScUU s

Dj

ff

i d)(5.0  , where f
iU  and fU - formation energy of interstitial atoms 

and vacancies, respectively, we get strain j

ff

ijj GbcbUUc 25.0)(5.0 2    that necessary for 

nonconservative drawing of jogs [18 – 21]. 

The value of d  depends on the jogs concentration jc , because stopping of the screw segment 

occurs when strain jj Gbc25.0 that need for drawing of jogs becomes larger than effective strain 

21 Gbeffeff  that spreads the loop. Since the concentration of jogs jc  does not exceed the value 

dj   obtained by integration of jogs generation rate dmj
b

mjj

d

xc 


  d , then basis on 

the inequalities djjc  25.025.04.0 21   it follows that value d  is not less than 

212111 )82(4   jeff  on condition of 4.01.0 eff . 

Due to the movement of a dislocation loop s
Dddd SFn 22    elementary dipoles are formed, all the 

dipoles consist of them. Next apply 42dn ; 3.0dF ; 218 d . In this case on the segment with 

length d  there is on average 14djc   jogs. 

If N of dislocation sources per unit of volume emit portion on the average of n dislocations loops 

during time t , then shear plastic deformation a will increase by the amount of NnbSa D . Since 

dipole consists of two dislocation segments, then with increasing shear strain at a  density of 

dislocation that form dynamic dipoles during one elementary act of segment-source, increases by the 

amount of Nnn dd
i
ddd   2 . 

Consequently, the dislocations in the dynamic dipole configurations of interstitial and vacancy 

types accumulates with intensity of 112  bSnG Dddd  . 

Considering the intensities of dynamic dipole generation with interstitial i
dG  and vacancy 

dG  types 

equal between each other we get 

211111 125,05,0   bFbSSFGGG ddD
s
Dddd

i
d  .   (1) 

Where  d
i
d ,  - dislocation density in dynamic dipole configurations of interstitial and vacancy 

types, respectively. 
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Dislocations that forms vacancy dipoles, annihilates by the climbing as a result of the interstitial 

atom deposition, whereas dislocations, that form interstitial dipoles, annihilates by climbing as a result 

of monovacancies and bivacancies deposition. 

Annihilation rate idA , dA 1 , dA 2  of point defects during their deposition at the edges of 

extraplanes of dipoles have form of: 

iiddid cDA  ,   111 cDA d
i
dd ,   222 cDA d

i
dd .  (2) 

Where kdD  - diffusion coefficients, ic , 1c , 2c  - concentrations of point defects (interstitial 

atoms, mono- and bivacancies respectively). 

Annihilation rate of the dipoles under the influence of ping defects have form []: 

11  bhAwA id
i
ddi , 11  bhAwA kd

k
ddk ,  2,1k .   (3) 

Where i
dw , 1

dw , 2
dw  - ratio of total surface area of the tubes with radius b  around dislocations, 

that forms dipoles, to total surface area of all sinks for point defects of every type. 

3. Influence of the degree of the heterogeneity of the distribution of dislocations on the NMDCS 

formation 

The value d  depends on the jog concentration jc , so the accumulation of dislocations in the dynamic 

dipole configuration depends significantly on the distribution by dislocation sign of non-coplanar slip 

systems, crossed by the screw segments. 

The dislocations intersection of non-coplanar slip systems leads to the fact that the segments, 

bending around the decelerating segment of screw orientation, turn out to be in planes different from 

the original slip plane of the shear-forming dislocation. The distance from the original slip plane where 

the bending around segments are moved away. It depends on its swept out area and distribution of the 

jogs-forming dislocations in this area. 

The minimum distance equal to the distance 36b  between adjacent planes of octahedral slip, 

however it is possible that the enveloping segments will meet on one plane, after that the dipole is not 

formed or the arm dipole can be considered to be equal to zero. 

The maximum distance will be reached, if the enveloping segments cross all the noncoplanar shear 

zone dislocations, and it will be equal to nb  of the product of the number of emitted loops per 

module of the Burgers vector. In the random distribution of the "forest" dislocations the appearance of 

a dipole with a maximum arm is much less likely than the appearance of a dipole with a minimum and 

even average lever. 

The area occupied by one dipole, is deduced from a ratio 1212 5,0   ddd
s
Ddd FnS   of the area 

gripping by the screw segments to the number dn  of elementary dipoles. 

Average arm dipole is expressed as the product of the area 362 bh ddjj    per one 

dipole, on the difference between the fractions of jog-forming dislocations with a different sign, on the 

"forest" dislocations density   and the distance 36b  between adjacent slip planes. 

In the entire material volume the values 
 j  and 

 j  are approximately equal, but in the area per 

one dipole, they may vary. It is clear that 43.0 

jjj   - the fraction of the "forest" jog-

forming dislocations. 

If dislocations of only one sign are crossing, the maximum arm dipole of the dipole is: 

3643.0 2

max bh dd .  
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Suppose that the function graph of distribution function for arm of dynamic dipoles is a straight 

line cutting-off on the x-axis a segment whose length is maxh , then the density function is restored as 

follows: 

)1(2)( 1
max

1
max

  xhhxfh ,    (4) 

and the mathematical expectation is: 3maxhh  .  

Given that, 
15.0  dd F , 3.0dF , 218 d for the maximum value of the dipole lever from the 

dislocation in dynamic dipole configurations and dislocation fragments we get 

bbh dd 183643.0 2

max    , and for average value - bh 6 . 

At the intersection of dislocations with the opposite signs the jogs that can be annihilated, moving 

along the dislocation line are formed on the screw segments. This reduces the deceleration force of 

shear-forming dislocation, increases d  and decreases the number of generated elementary dipoles. If 

d  is close to the shear zone diameter, then the dynamic dipoles are not formed. 

The jogs fraction jw  that can annihilate is determined by their distribution on screw segments by 

the sign. The value jw  is being decreased with the increasing of the excessive density of dislocations 

creating a local disorientation. At the intersection of the area with the excessive density of dislocations 

on a segment by screw segment, the jogs of the same sign are formed, that lead to a significant 

inhibition of the segments, reduce d  and increase the number of the generated elementary dipoles. 

Furthermore, by virtue of the fact that jw  is evidently proportional to   jj , then with the 

excessive dislocation density increasing, the maximum value of the dipole arm is reduced. 

Dipole with an arm of a few interatomic distances that are thermodynamically unstable, so a dipole 

arm decrease leads to a rate dissociation of interstitial dipoles and annihilation of vacancy dipoles 

under the influence of the forming interstitial atoms. This fact seems to be the reason that with 

increasing of the strain degree and excessive dislocation density the NMDCS is a small factor in the 

hardening by the time of fragmented substructure formation is not observed. 

4. Summary 

It is shown that with increasing degree of heterogeneity of distribution of dislocations due to the 

formation of excess dislocation density, the following occurs: decreasement in the mean free path of 

screw segments, increasement in number of elementary dipoles and decreasement in the dipole arm. 

As a result of the dissociation of the interstitial dipoles with a small arm the annihilation of dipoles 

becomes more intense and rapid disappearance of the non-misoriented dislocation cell substructure 

occurs. 
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