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Abstract. The paper studies a problem of a thermal shock at the surface of a half-space, which 

properties are described by elastic-plastic model taking into account dynamic effects, heat 

inertia, coupling between thermal and mechanical fields.  The problem is solved numerically 

using finite-difference method of S.K. Godunov. 

1. Introduction 

Numerous advanced technological processes (plasma deposition of coatings, surface treatment by laser 

or electron-beams, welding, surfacing, etc.) are connected with intense heat impact on a material under 

treatment. In this case, an abrupt temperature change of the surface occurs, which is termed as thermal 

shock. Various authors have discussed the role of thermal stresses in stereolithography and in selective 

laser sintering. A wide group of applied problems is connected with thermal shock problem to a greater 

or lesser extent [1-2]. 

The thermal shock problem was originally studied in [3] in terms of so-called theory of thermal 

stresses [4, 5]. This is the simplest problem formulation enabling analytical solution. Further initial 

problem formulation has been generalized in several directions, which was noted in reviews [6-8]. 

In this work, the thermal shock problem was analyzed in generalized formulation taking into account 

the coupling between thermal and mechanical processes. Here, the interrelation between effects is 

stipulated by (1) thermal conductivity, (2) dynamical (inertia) terms included in motion equations, (3) 

coupling between the fields strains and temperature, (4) heat inertia caused by finite rate of heat 

propagation and (5) dissipative effects due to plasticity. This is one of general formulations of the 

thermal shock problem.  

2. Basic equations of the model  

The problem is studied in terms of continuum mechanics. Mathematical model includes the balance 

equations (mass, impulse, energy): 
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and constitutive equations for heat flux vector: 
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and stress tensor 
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Here  is density, ikikik ,,   are components of the stress tensor, strain rate tensor and identity 

tensor, respectively, ku  are the components of velocity vector, T  is temperature, c  is the thermal 

capacity at constant strains,   is linear thermal expansion coefficient,   is thermal conductivity 

coefficient, K  is isothermal bulk module, q  is the relaxation time for heat flux,   is shear module, 

Y  is dynamic yield point, H  is Heaviside function. 

Individual terms in the right part of the equation (3) describe the dissipation due to thermal 

conductivity ( mmq ), coupling between thermal and deformation processes ( kkT uKT 3 ) and 

irreversible effects caused by plastic flow (
p
kmkmes ). Here, it is supposed that stress work with plastic 

strains disperses completely turning into heat.  

The structure of relation (4), which is usually called as the generalized Fourier’s law, is identical to 

that of the Maxwell relaxation equation. This equation can be obtained formally by adding term 

dt/dqq  to the classical Fourier’s law of thermal conductivity Tq kk  which accounts for heat 

inertia. From the physical point of view, the difference between (4) and classical Fourier’s law is that 

the generalized law takes into account a delay effect conditioned by the relaxation of the system to the 

thermodynamic equilibrium. Equation (4) can be interpreted as the generalization of Onsager relations 

for the case of disturbed local thermodynamic equilibrium in the fields of large (infinite) gradients of 

temperature field under a thermal shock. From the other hand, it can be construed as a particular case of 

the state equation with thermal memory [9]. 

Equation (5) connecting the deviators of stress tensor iks  and strain rate tensor ike  can be obtained 

with the assumption of the hypoelastic deformation law for elastic component 
e
ike  in the additive 

decomposition 
p
ik

e
ikik eee   (in the hypoelastic deformation law, the Jaumann derivative is assumed 

as the objective measure for the rate of the stress field change), and with the assumption of the associated 

flow rule with von Mises plasticity condition for the plastic component 
p
ike .  

Equation (6) is the thermal state equation for spherical stress tensor ( p  is hydrostatic pressure). 

3. Problem formulation 

Let us examine the elastic plastic half-space 01  xx , surface temperature of which grows instantly 

from 0T  to bT  at initial time moment 0t  and then stays constant, i.e. 
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 The present work studies the initial wave stage of half-space motion initiated by external heat action 

(7). Here, we analyze two types of mechanical boundary conditions: the plane 0x  is free of stresses 

(problem I) 

 0
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, (8) 

and the plane 0x  is rigidly fixed (problem II) 
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correspond to not stressed and not deformed quiescent half-space with uniform initial temperature and 

density.  

 Due to the uniformity of initial and boundary conditions, both problems are one-dimensional; in the 

half-space, a one-axis strain state is realized; hence, the following assumptions should be made for 

system of equations (1)–(5): 
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4. Calculation results 

We assume that material is steel with the following properties:  

K), W/(m80   ,K 10   ,GPa 1.162   ,K)J/(kg 498 -16    TKс   

3

0

11 g/cm 85.7   GPa, 75.0   ,s10  GPa., 6.90    Yqτ .  

Initial and boundary temperature are K 2930 T  and K 10000  TTb , respectively. Numerical results 

were obtained using the difference scheme of Godunov S.K. [10]. It is a uniform monotonic scheme 

with first-order accuracy; its inherent properties are similar to known gas-dynamic Godunov’s 

scheme [11].  

 The results are shown in Figures 1–6. In all figures, the profiles of physical parameters corresponding 

to problem I are shown with thick (blue) lines; and profiles corresponding to problem II are shown with 

thin (dark) lines. The numbers near the curves correspond to different moments of dimensionless time 

q/tt  , where the scale is determined by the relaxation time of heat flux. Additionally, the dotted 

lines in Figure 4 give the temperature for the solution of parabolic thermal conductivity equation 
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and dot-and-dash lines illustrate the solution of hyperbolic thermal conductivity equation [9]: 
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where 1  qT aa , 1I  is a modified Bessel function of first kind, H  is the Heaviside function.  
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Figure 1. Stress profiles for sequential time 

moments. Time intervals: a) 0–1 s; b) 1–10 s; 

c) 10–100 s.  

Figure 2. Velocity profiles for sequential time 

moments. Time intervals: a) 0–1 s; b) 1–10 s; 

c) 10–100 s. 

 

 Let us consider the qualitative features of the wave picture of motion developing at the initial stage 

of thermal shock.  

First of all, we should note that there are several different velocities for the propagation of 

thermomechanical perturbations. Taking into account the coupling of heat and deformation processes, 

the propagation rates for quick 1a  and slow 2a  waves can be presented as [10]: 

       212222

2
122

2
1

21 34 
  caKTaaaaa TTETE, , (13) 

where the value of   134  /Ka SE  corresponds to the propagation velocity of longitudinal 

elastic waves, and qT /aa   is the thermal wave velocity for the case when coupling effects are 

omitted. Here SK  is adiabatic bulk module,   1
 ca  is thermal diffusivity coefficient. In addition, 

there are still two velocities, EH aa   and  /Ka SP ; Ha  correspond to the velocity of elastic 

predecessor, Pa  is the plastic wave velocity.  

 As a rule, the coupling coefficient for metals is small [4, 9]. When we neglect this effect and 

remove the last term from formula (13), the approximate equalities can be written as  

THE aa,aaa  21       .  

In the case under study,  EH aa 6022 m/s, Pa 4569 m/s, Ta 1431 m/s.  

According to above, elastic-plastic wave initiated by thermal shock, has several specific parts. For 

convenience, we will term the waves propagating with velocities TPHE a,a,a,a  as Е-, Н-, P-, and T-

waves, respectively. Figures. 1–4 show that the state of medium alters in these waves unevenly.  The 

sharp growth in temperature and pressure occurs in the front of Т-wave. Behind this wave, the intense 

expansion of the substance is observed that leads to the formation of the impulse of tensile stresses in 

problem I (Figure 1), and the motion velocity of free surface in the negative direction of x-axis is tens 

meters per second (Figure 2). The processes developing in the Т-wave has fierce irreversible character 

which is obvious from the pressure profiles (Figure 3): first, “over-compressing” occurs, than “over-

expansion” of the substance emerges, and only at t ~ q10  the pressure limits to a reversible value ( p

0.5 GPa) corresponding to the regime determined by boundary conditions ( 01111  ps ).  
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 The region of continuous flow lies between Е- and Т-waves; it corresponds to the unloading wave, 

marked in the figures by letter R. With time, this wave decreases the stress to zero; further, Т- and Е-

waves look as separated in problem I (Figures. 1–3, 8020t ). However, the interrelation between 

them persists, and the processes developing in T-wave affect appreciably E-wave attenuation.  

Quantitative difference in the solutions of problems I and II, shown clearly in Figures. 1–3, are 

evidently connected with the condition of hindered deformation in problem II. The material of the half-

space having endured a large volume expansion behind Т-wave, cannot expand freely in the negative 

direction of x-axis due to the fixation condition. As a result, the pressure behind Т-wave in problem II 

is higher than that in problem I, and stress 11  stays compressive. In addition, the adjugate P-jump 

appears in problem I. It is connected with the intensity of tangential stresses behind H-wave reaching 

maximum possible value corresponding to the von Mises yield condition. Stress 11  in H-wave equals 

to Hugoniot elastic limit on shock adiabat. The adiabat has a kink in this point, and the stress exceeding 

the Hugoniot limit propagates with the volume wave velocity Pa .  

 Figure 4 shows that for small times, the numerical solution agrees well with the analytical solution 

of hyperbolic thermal conductivity equation (12), and for large times, with the solution of parabolic 

equation (11). For any time, the contribution of mechanical effects to temperature field can be ignored. 

Negligibly small effect of elastic plastic strains in the temperature change is shown in Figure 5. Elastic 

wave of limiting intensity, H-wave, increases the temperature for 1.5 degrees.  

 The stress profiles  x11  are presented in Figure 6 for three time moments 30 20 10 .,.,.t   seconds 

(problem I). 
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Figure 3. Pressure profiles for sequential time 

moments. Time intervals: a) 0–1 s; b) 1–10 s; c) 

10–100 s. 

Figure 4. Temperature profiles for sequential 

time moments. Time intervals: a) 0–1 s; b) 1–10 

s; c) 10–100 s. 

 

 

The known thermoelastic solution [12] 
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is also shown here for the same times for the sake of comparison. 

 

  

Figure 5. Temperature profiles for sequential 

time moments 

Figure 6. Stress profiles for sequential time 

moments. Comparison with classical 

thermoelastic solution (dotted line). 
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Diffusion part of the problem described by function  t,xD  corresponds to infinite velocity of heat 

propagation; hence, compressive stresses appear immediately in each point of the half-space. The second 

term  t,xE  determines the elastic wave  t,xE  propagating with velocity Ea . Stress 11  changes 

unevenly by value A  in the front of this wave (in the example under study,  864.A  GPa) and turns 

tensile. The solution described by equation (14) does not even qualitatively conform with the solution 

obtained in this work. Quantitative comparison is useless because the solution (14) is correct, if the 

condition   11
00  TTT  was satisfied, which is not in considered case.  

5. Conclusion 

The problem of thermal shock is studied here for the half-space with the properties described by an 

elastic plastic model taking into account dynamical effects, heat inertia, coupling between heat and 

mechanical fields. The problem was solved numerically using S.K. Godunov’s method.  

 The obtained results show that wave picture accompanying a thermal shock is incomparably richer 

and more complex, as compared to those predicted by known thermoelastic solutions.  

 In this connection, we note that the evaluations of the thermal strength of materials based on the 

solutions of type (14) used in the literature can be inconsistent, because the fracture of surface layers, if 

any, develops at the initial (wave) stage of thermal shock, when the relative role of the factors connected 

with mechanical and heat inertia is maximal and actually determines the following evolution of a thermal 

stresses field. Therefore, residual stresses under local thermal action do not correspond to the solutions 

of quasistatic problems [13]. 

Results obtained for the heat part of the problem once more corroborate the known situation about 

weak influence of the coupling effect on temperature distribution. On all occasions, this is correct for 

typical construction materials and alloys on the basis of iron and aluminum. For these materials, one can 

neglect the contribution of mechanical processes to temperature field and use the hyperbolic equation 

(for qt 10 ) or more simple parabolic thermal conductivity equation (for qt 100 ). However, the 

relative contribution of plastic strains for nonmetallic materials can appreciably different in comparison 

with the example studied here.  

 In conclusion we should note that the thermomechanical wave attenuation is strongly affected by all 

the factors named in the initial part of the paper (dynamic effects, heat inertia, coupling) and by boundary 

conditions determined for the free surface of a half-space.  
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