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Abstract. Inelastic body's plane deformation is described by two vector fields: vector stress 
potential (gradient of Airy stress function) and vector displacement field. Conditions for 
possibility of proceeding to the dual problem, when variables change the roles, are described: 
stress potential is interpreted as displacement field and vice versa. Both a perfectly plastic body 
model and its dual model of perfectly solidifying matter are considered. 

Introduction 
Mathematical models of solids' deformation are based on two general concepts: displacement vector 
and stress tensor. Vector displacement field yields kinematic characteristics of stress; and stress tensor 
yields power and dynamic ones. In other words, kinematics and dynamics of the matter are described 
qualitatively by different mathematical objects. In the first case we have to use a first-rank tensor 
(vector), in the second case - a second-rank tensor (tensor itself). Accordingly there is an asymmetry in 
the description. It is possible, however, to find a class of problems, when both power and kinematic 
descriptions are symmetrical and can be described with the aid of two vector fields. Moreover this 
class of problems is quite extended. The main idea of this work is that, since we are dealing with 
objects of identical rank, then after solving the equation, their roles can be interchanged. That is, the 
stress vector field can be regarded as the kinematic field, and vice versa. Thus we get the solution of a 
new (dual or conjugate) problem.Mathematical models of solids' deformation are based on two general 
concepts: displacement vector and stress tensor. Vector displacement field yields kinematic 
characteristics of stress; and stress tensor yields power and dynamic ones. In other words, kinematics 
and dynamics of the matter are described qualitatively by different mathematical objects. In the first 
case we have to use a first-rank tensor (vector), in the second case - a second-rank tensor (tensor 
itself). Accordingly there is an asymmetry in the description. It is possible, however, to find a class of 
problems, when both power and kinematic descriptions are symmetrical and can be described with the 
aid of two vector fields. Moreover this class of problems is quite extended. The main idea of this work 
is that, since we are dealing with objects of identical rank, then after solving the equation, their roles 
can be interchanged. That is, the stress vector field can be regarded as the kinematic field, and vice 
versa. Thus we get the solution of a new (dual or conjugate) problem. 
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1.  Formulation of primal and dual problems.  
Let us assume that deformation is plane, and inertial forces and weight can be neglected. Then we 

have equations for a wide range of deformable continua: 
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where 0x1x2 – Cartesian coordinate system,  σij and ui - components of stress, displacement or their 
velocities, i,j=1,2, coefficients a11,… are set. Notations of models (1), (2) are classical. However, in 
many respects they are "abnormal". [1] For example, five first-order differential equations are reduced 
to one fourth-order equation only. A natural notation can be obtained by inserting the vector field 
instead of the stress field {p1,p2}- vector potential of the stress field: 
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The system is noted in two vector fields  21, ppp   and  21,uuu  . Suppose that some its 

solution is built up. As mentioned, the main idea is to interchange roles of vectors p  and u :  vector  

u  correlates with the stress field, and vector p - with the displacement field of the dual problem. 

Clearly, this can only be done when p  and u  are included in the system in some symmetrical manner. 

Thus, it is necessary that one of the displacement equations would have the structure of the system’s 
first equation (4). Therefore it is necessary to consider the case of incompressible continuum: 
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where coefficients c1,…,d3  are set.  
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Let us examine the boundary conditions. Suppose  n   is an external boundary normal, s is its 

natural parameter, α is an angle between the axis 0x1 and a normal n . Stress vector components on 

the area with the normal n  are equal to: 
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Substitution of (3) into (6) gives the following result: 
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Consequently, accurate within a constant, setting of the vector border {p1,p2} is equivalent to 
setting of the stress vector  { σ n1, σ n2}. Here, kinematic boundary conditions remain unchanged:  

u1 = u1(s) , u2 = u2(s) . 
Also more complex conditions, such as dry friction, Winkler elastic foundation and others, are 

possible. They all are reduced to inter-component relations р1, p2, u1, u2 , set on the border.  
Let us now turn to the dual problem. Relevant variables will be denoted by   ̃̃ "tilde". 

1 2 2 1 1 2 2 1

2 1 2 1
11 22 12

2 1 1 2

, , , ,

, , .

p u p u u p u p

p p p p

x x x x
  

     

   
     
   

   

   
         (7) 

System of equations (5) does not change by such a substitution and takes the following form: 
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Here one new factor arises. The original system (1), (2) is invariant with reference to rotation of the 
body as a rigid solid. This is a necessary correctness condition of any problem on solid deformation. 
Therefore, system (5) will be invariant. However, after the change of roles, invariant variables 
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Hence it follows that c1 = c2 = c, d1 = - d2 = d. 
Thus, the direct problem is reduced to solving of the equations 
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The equations of the dual problem take the form 
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The limitation, obtained above, is acceptable. It means that in the original problem principal 
stresses’ maximum displacement and orientation should not depend on hydrostatic compression. 

2.  Model of ideal plasticity.  
This model and its generalizations nave been studied completely and are widely used for 

engineering problems [2,3]. The ideal plasticity’s closed equation system can be written down as 
follows: 
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where  u1  and  u2  are components of velocity vector, τs is yield stress.  
Let us consider the dual problem. 
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Here, the constant τs  is denoted by γ.  Thus, in the dual problem, conditions of incompressibility, 
coaxiality and constancy 2γ of deformation field displacement velocity are met. 

Some similarities (9), (10) can be seen in a simple example. Let us take (9) a uniform stress 
distribution and a linear velocity distribution, i.e. consider a case of perfectly plastic body affine 
deformation: 
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From (9) it follows that 
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Here   2γ  is deformation velocity, which (for a perfectly plastic body) is set with border conditions, 
  is a rate of rotation. In [4] it is shown that kinematics (11) is realized under complex loading, when 
the body is continuously rotated at a rate of   in the direction of expansion and contraction. 

Such deformations occur in cases of tidal deformation when the body rotates continuously towards 
the disturbing body.  

In addition, study of such strains is of interest for pressure processing of inelastic materials [5,6]. In 

[4] it is shown that if   >γ, elliptic area self-converting corresponds to kinematics (11). 
Wherein, on the ellipse border, velocity is directed tangentially to the border; and its value is 

subjected to Kepler’s Law:  the radius vector, connecting the ellipse center and the boundary point, 
encloses equal areas for equal time. Let us proceed to the dual problem. Substituting (7) into (11) 

gives the following result: 1 2 2 1 1 1 2 2 1 2, , , .s su x u x p x x p x x               

2 1 2 1
11 22 12

2 1 1 2

, , .
p p p p

x x x x
   

   
           
   

   
    

Thus, rotation uncertainty   in the original problem corresponds to additive hydrostatic 
compression uncertainty in the dual task; shear uncertainty 2γ in a perfectly plastic body corresponds 
to shear stress uncertainty in a perfectly solidifying body. Conditions of incompressibility and 
coaxiality are retained in both problems. More trivial examples can be constructed, using exact 
solutions, outlined in [7] and [8].  

3.  Summary 
The concept of the vector potential was introduced in a number of works under different names. 

First it appears in [9], after independently (and for other reasons) in [1,10]. A more general case is 
examined in [11]. Issues of duality are considered in [9,11,12,13]. Despite the fundamental character 
of these works, potential possibilities of this field of research are far from being exhausted. Thus, 
condition of shear velocity constancy (the second equation in (10)) is the key in problems of optimal 
blasting fragmentation of rocks [14,15]. In [16,12] condition of maximum shear velocity constancy 
has been studied in the framework of the theory of ideal solidified substance with use of duality with 
reference to equations of ideal plasticity. In [17,18], this model has been studied in connection with 
problems of brittle fracture. These articles also contain additional lists of scientific publications. 

4.  Conclusions 
1. Description of inelastic body plane deformation can be reduced to a system of four differential 

equations coupling components of vector potential stress and displacement vector field.  
2. Under certain conditions it is possible to proceed to the dual problem when roles of the noted 

vector fields are mutually changed. 
3. The model of perfectly solidifying body is dual in relation to the model of perfect plasticity. 
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