
Modeling Large Pneumatic Reflectors Based on Innovative 
Materials 

Alexey Belkov 1, a), Mikhail Pavlov 1,2, b) and Sergey Ponomarev 1, c) 

1National Research Tomsk State University, 36 Lenin Avenue, Tomsk 634050 Russian Federation 
2National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050 Russian Federation 

 
a) corresponding author: aleksei-belkov@niipmm.tsu.ru 

b) psv@niipmm.tsu.ru 
c) mcpavlov@niipmm.tsu.ru 

 

Abstract. Large pneumatic structures of deploying space reflector are highly efficient and significantly advantageous due 
to the following reasons: significant coverage at low material usage and deployment simplicity. At the same time 
experimental modeling of such structures is time-consuming and costly. So, numerical analysis of such structures is very 
important in preliminary design. This paper presents the mathematical problem statement of stress-strain state of pneumatic 
structures, as well as the modal analysis results for two pneumatic reflectors of 50 and 100 meters in size applying such 
materials as Kevlar and thin polyamide films. The above described problems were solved by well-known nonlinear finite 
element method. 

INTRODUCTION 

Although large pneumatic structures are simple in design, they are the result of high-technology progress. 
Designing such structures has been in the minds of mankind for decades and only today, this idea has become realistic. 
Updated composite materials furthered the possibility of designing large pneumatic structures which include such 
properties as strength and durability. This structure type is significantly advantageous to the conventional ones. These 
structure systems are highly efficient due to the following reasons: significant coverage at low material usage and 
deployment simplicity. Pneumatic structures have a wide application spectrum from designing structures and its 
elements for the Earth to space operating functions. 

Large pneumatic structures of deploying space reflector have been described in this paper. In designing any 
pneumatic reflector a few problems arise, i.e. estimating reflector surface accuracy, and stiffness level itself. So, the 
targets of the following paper are to determine the minimum reflecting surface root mean square (RMS) error relative 
to paraboloid, and stiffness level estimation by modal analysis. In addition, levels of stress and strain were estimated. 
Above-described problems were solved by nonlinear finite element method (using ANSYS software) for 50m and 
100m structures.    

These problems were solved because of the fact that increasing the size of space reflectors is tightly interconnected 
with the communication domain (for example, mobile communication). Designing large reflector antenna involves 
the following requirements: 2% RMS error of operating wavelength, distinct frequency interval, portability for 
transportation to space orbit and simplified deployment in space. All in all, this results in designing a fail-safe system. 
Designing such structure types as pneumatic space reflectors meets all the above-described requirements. 

Although pneumatic reflectors have been widely studied [1 – 4], all existing research data remains non-public 
information. We consider that our research is a breakthrough in designing large pneumatic reflectors and this 
information is open for further discussion. 
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PROBLEM STATEMENT 

Stress-strain state simulation problem of cable stayed shell structures is based on nonlinear elasticity theory, 
including thermal strain. 

Deformation-displacement relation is considered as 
, , , ,(1/ 2)( )ij i j j i k i k je u u u u  

where, ui – components of the displacement vector  
To simulate the mechanical behavior in stress state, simplified stress-strain relations were applied. Tensor 

components of Kirchhoff stress and tensor components of strain are as following: 
( )Temp

ij ijkl kl kla e e , 
where, aijkl=aijkl(X,T) – elasticity tensor components related to different structure elements and their temperatures; 

Temp
kl kle T  – strain temperature tensor components;  – linear thermal expansion coefficient; δkl – Kronecker 

symbol; ∆T=T-T0 – temperature difference; T0 – initial temperature; T – current temperature. 
Equilibrium equations are: 

,[ ( )], 0ij ki k i j iu P , 
where, Pi – mass force components. 

Displacement boundary conditions are assigned to Su structure surface, where u=0 is the attachment location to 
spacecraft. Equilibrium equation for external Sp structure surface in space is: 

, 0ij j ki k in u , 
while on the Earth surface: 

,ij j ki k i an u p , 
where,  – ambient pressure on Earth surface;  – components of the normal vector to the boundary surface. 

If temperature field in structure elements is stated, then the solid mechanic problem is determined in a closed form 
as displacement function components correspond to the number of resulting equations. 

If gas pressure p forces on internal pneumatic structures element surfaces is applied, then the boundary conditions 
are: 

,ij j ki k in u p , 
where, p(ρ,T). Earth gravity is, p=pa+∆p if gas density is identical both on the pneumatic structure and on its surface. 
While in space it is p=∆p, where ∆p is differential pressure relation between gas in and out of the structure. 

In the above-mentioned problem statement, the initial state is the zero stress of the elements in the reflector 
structure. Due to prescribed boundary conditions pretensioned structure is in equilibrium state, which, in its turn, 
provides a rather precise designed reflector surface shape. 

Analytically, such problem tasks are difficult to solve. It is more preferable to apply the variational approach so 
as to receive numerical solutions. Detailed variational approach is described in [5]. 

Root mean square (RMS) error of reflecting surface δrms is expressed as paraboloid axis error ∆z [6]: 
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where, Sa – reflecting surface area. 
This relation is a good approximation for any surface deflection in reference to the paraboloid approximation. In 

this case, it is preferable to apply the above-mentioned formula not only for radiometric surface deflection 
approximation, but also for imperfect surface gain loss [7]. 

In Cartesian coordinates (X,Y,Z) RMS error of structure nodes with coordinates (xi,yi,zi), i=1,…,N is estimated by 
the integral formula: 
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including ∆zi=zi -zideal, where ∆zi – i-node deflection from paraboloid; zideal – theoretical value Z of i-node coordinate 
on paraboloid; N – number of points. It is presupposed that node distribution on reflecting surface influences the RMS 
error proportionally. 
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However, the systematic error is also involved in the RMS error: 

1

1 N
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z z
N

. 

This could easily exclude reflector displacement on Z axis. It is more suitable to use RMS error without the 
systematic error being calculated as: 
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RMS z z
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PNEUMATIC REFLECTOR STRUCTURE ELEMENTS 

Figure 1 depicts 25 m pneumatic antenna model designed by L’Garde, Inc. [8]. The dome is of film “Mylar” or 
“Kapton” with a thickness of 0.2∙10-4 m; pneumatic torus and stays made of the same material, the thickness of which 
is 4∙10-4 m or even Kevlar for strengthening. The pressure in the dome is 2.8 Pa, while in the torus and stays – 5000 Pa. 
Offset reflector geometry and required coordinate system are depicted in figure 2 [9]. This is a base model to design 
finite element model (FEM) of 50 m and 100 m reflectors (Figure 3 and Figure 4). 

  

  
FIGURE 1. Project pneumatic antenna model “ARISE” FIGURE 2. Geometry offset reflector 

 
Reflecting surface is an intersection of ideal paraboloid and cylinder of diameter XB-XA and its axis parallel to axis 

Z, where: XA – distance from intersection border to axis Z reflector is clearance; O – intersection of cylinder axis and 
ideal paraboloid; F – focal point; and FD – focal distance. Offset paraboloid parameters are: 

1. intersection cylinder diameter – 50 m, clearance – 3 m, focal distance – 25 m; 
2. intersection cylinder diameter – 100 m, clearance – 3 m, focal distance – 50 m. 
 

  
FIGURE 3. FEM reflector (full view) FIGURE 4. FEM reflector (separate elements) 
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Realistic non-complicated reflector model designed for finite-element calculations in reasonable time was required 
for simplification. Such simplification is associated with dimension problem variation. For example, reflector dome 
material thickness of several microns is not considered in this case. As a result, the 2-dimensional problem is applied. 

The main features of the finite element formulation for described structures are following: 
a) Cord elements (tension ties) are one dimensional (LINK10 in ANSYS). These elements behave in tension 

only providing geometrical non-linear behavior for whole structure.  
b) Membrane elements (stays, torus and dome) are two dimensional (SHELL181 in ANSYS). The bending 

stiffness option for these elements is not considered. 
More detailed descriptions of above-mentioned elements could be found in ANSYS help system.    
Material properties of elements are isotropic. Pneumatic dome includes 2 interconnected offset paraboloids made 

from membrane “Kapton”. One paraboloid surface is covered with radiation coating of 100 nm aluminium oxide 
(Al2O3). Membrane thickness of modeled dome is not more than 15·10-6 m with Young modulus of 2.5·109 Pa and 
Poisson ratio of 0.3. Internal pressure is not more than 0.5 Pa, if intersection cylinder diameter is 50 m; and if 
intersection cylinder diameter is 100 m, then this pressure is not more than 1 Pa. Pneumatic torus and stays provide 
structure stiffness which are of the same material, but thicker, i.e. 3·10-4m with Young modulus of 3.2·1011 Pa and 
Poisson ratio of 0.3. 

Reflector of 50/100 m includes: torus radius – 0.26/0.4 m; stays – 0.4/0.55 m; pressure inside torus and stays 
500/800 Pa. Tension ties connecting torus and dome are Kevlar or carbon composite cords strings of 5.024·10-5 m2 in 
cross-section with Young modulus 1.5·1011 Pa and Poisson ratio 0.3. Structure mass reflector of 50/100 m – less than 
400/1200 kg, respectively. 

RESULTS AND DISCUSSION 

Initial geometry of reflecting surface is necessary in designing pneumatic reflector. This is aligned with the fact 
that existing ideal offset paraboloid shape under pressure (in the reflector dome) is distorted and the reflecting surface, 
in this case, becomes inapplicable as a functional structure. 

Further, it is necessary to determine the initial geometry of reflecting surface by solving stationary problem as 
following: 

1. obtain stress-strain state of the reflector structure after gas inflation; 
2. write all node displacement values Δx, Δy and Δz of reflecting surface; 
3. adjust initial paraboloid surface to above values with reversed sign. 
Practically, a newly paraboloid is designed, involving adjusted displacement values on node coordinates. This 

requires several iterative steps to determine the optimal reflecting surface shape. The number of iterative steps directly 
depends on the distortion intensity of the initial offset paraboloid shape. Reflecting surface node displacements relative 
to ideal paraboloid for reflector of 50 m in Z-direction is illustrated in figure 5. Figure 5(a) shows these displacements 
before the first iterative shape adjustment, where RMS error equal 58 mm. In this case the permissible RMS error 
value for such structures is 5 – 7 mm (i.e. 2 – 3 % of operating wavelength). Figure 5(b) shows these displacements 
after the first iterative shape adjustment where RMS error equals 21 mm. 

 

  
(a) (b) 

FIGURE 5. Reflecting surface node displacements relative to ideal paraboloid for reflector of 50 m in Z-direction: 
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(a) before first iterative shape adjustment (RMS error = 58 mm) 
(b) after first iterative shape adjustment (RMS error = 21 mm) 

The second iterative shape adjustment of reflecting surface shows RMS error equal to 11 mm. Reflecting surface 
node displacement relative to ideal paraboloid in Z-direction after the second iterative shape adjustment is illustrated 
in Figure 6(a). Figure 6(b) shows the values of reflecting surface node displacement relative to ideal paraboloid in Z-
direction after the third iterative shape adjustment. 

 

  
(a) (b) 

FIGURE 6. Reflecting surface node displacements relative to ideal paraboloid for reflector of 50 m in Z-direction: 
(a) after second iterative shape adjustment (RMS error = 11 mm) 

(b) after third iterative shape adjustment (RMS error = 7 mm) 
 

Similar shape adjustment calculations are used for the reflector of 100 m in Z-direction. Figure 7 illustrates the 
reflecting surface node displacements relative to ideal paraboloid in Z-direction after the last iterative shape 
adjustment. In this case two reflectors of 50 and 100 m were compared. Reflector of 50 m involves RMS error equal 
4 mm, while reflector of 100 m RMS error is 9 mm. 

 

  
(a) (b) 

FIGURE 7. Reflecting surface node displacements relative to ideal paraboloid in Z-direction after last iterative shape adjustment: 
(a) reflector of 50 m (RMS error = 4 mm) 

(b) reflector of 100 m (RMS error = 9 mm) 
 

Modal analysis was used for these structures to determine their stiffness. Result data for reflector of 50 /100m was 
as following: minimum natural frequency 0.41/0.19 Hz, corresponding to maximum effective mass. Mode shapes 
correspond to above-mentioned natural frequencies are depicted in figure 8. 
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(a) (b) 

FIGURE 8. Modal analysis: 
(a) reflector of 50 m (mode shape with natural frequency of 0.41 Hz) 

(b) reflector of 100 m (mode shape with natural frequency of 0.19 Hz) 
Dotted lines show initial structure position 

Figures 9 and 10 show Von Mises stress and strain level in reflector structures 50m and 100m respectively. It could 
be seen that strain levels are less than 1%. 

 

  
(a) (b) 

FIGURE 9. Reflector of 50 m 
(a) Mises stress 
(b) Mises strain 

 

  
(a) (b) 

FIGURE 10. Reflector of 100 m 
(a) Mises stress 
(b) Mises strain 
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CONCLUSION 

This research paper presented unique material based on stress-strain state simulation and modal analysis for 
50 m/100 m pneumatic reflectors. A minimum RMS surface error for 50m/100m reflector structures was found.   
According obtained results, RMS error was determined as 4 mm/9 mm, respectively. However, further research is 
necessary to obtain RMS error (5 – 7 mm) for reflectors of 100 m. In addition, stress and strain levels were estimated. 
It was shown that strain levels are less than 1% for 50m/100m reflector structures. 

For stiffness estimation a modal analysis was done. First natural frequencies with respective mode shapes were 
obtained. 

Obtained numerical results (minimum RMS error, natural frequencies with mode shapes) could be the benchmark 
in designing operating systems of above-mentioned structures (i.e. large pneumatic reflectors). 
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