ОПРЕДЕЛЕНИЕ РАВНОВЕСНОГО РАДИУСА БЕТАТРОНА ЧЕРЕЗ РАСЧЕТ ПОТЕНЦИАЛЬНОЙ ФУНКЦИИ МАГНИТНОГО ПОЛЯ

И.А. Затонов

Томский политехнический университет, г. Томск

Одной из наиболее важных характеристик магнитного поля бетатрона является радиус «равновесной орбиты». Равновесная орбита определяет то расстояние от центра бетатрона, к которому вращающиеся электроны будут стремиться в процессе разгона.

Существование орбиты постоянного радиуса впервые предположил и рассчитал Видерое [1]. Проведенные им расчёты показали, что распределение линий магнитного потока в зазоре между полюсами должно обеспечить в процессе ускорения соблюдение условия «отношения 2:1», или, так называемого, бетатронного условия:

$$B_{\rm cp} = 2 \cdot B_0, \tag{1}$$

где B_0 — плотность магнитного потока на равновесной орбите r_0 ; $B_{\rm cp}$ — средняя плотность магнитного поля в круге равновесной орбиты.

Наиболее полную информацию о фокусирующих свойствах магнитного поля дает его потенциальная функция [2]. Поверхность, которая описывается потенциальной функцией называется потенциальной ямой. По картине потенциальной ямы можно судить о расположении равновесного радиуса. Минимум потенциальной ямы соответствует равновесному радиусу. Потенциальная функция на радиусе грассчитывается следующим образом:

$$V_{\mu} = \frac{eA^2}{2mc^2} = \frac{e}{2mc^2} \left(\frac{rB}{2}\right)^2,\tag{2}$$

где V_{μ} — потенциальная функция; e — заряд электрона; A — векторный магнитный потенциал; m — масса электрона; c — скорость света; B — индукция на радиусе r.

Контуром на рисунке ниже (рис. 1) представлена область, значения потенциальной функции в которой важно для нас.

Для расчета индукции использовалась программа конечноэлементного анализа Elcut. На основе проведенных измерений была рассчитана потенциальная функция для 11 значений координаты z на равных интервалах.

Таким образом была получена картина представленная на рис. 2. Чем больше замкнутых контуров помещается в баллон трубки, тем лучше сфокусировано магнитное поле бетатрона. Расположение минимума потенциальной ямы говорит о том, что равновесный радиус находится на расстоянии 90 мм от центра бетатрона.

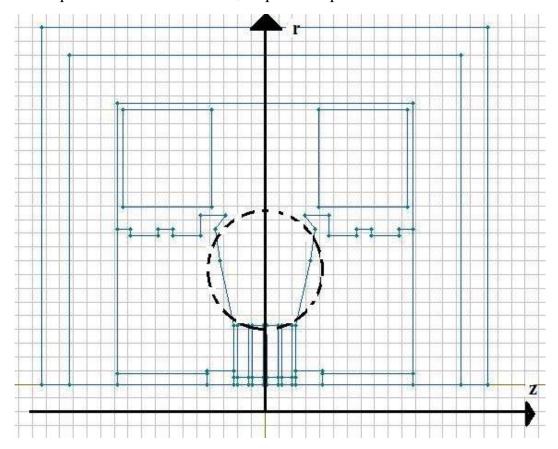


Рис. 1. Геометрическая модель бетатрона в осесимметричном классе модели с нанесенной областью расчета потенциальной функции

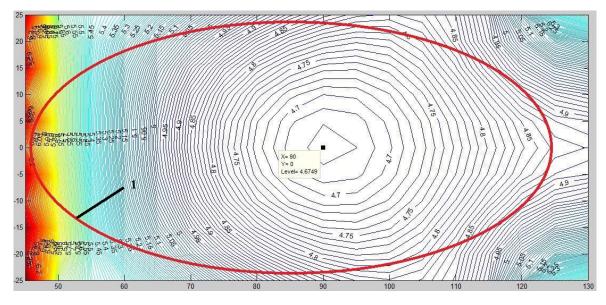


Рис. 2. Потенциальная яма, где 1 – баллон трубки

Таким образом, по величине и форме потенциальной ямы можно рассчитывать не только формы полюсов, создающих искомое поле, но и определять такие важные характеристики магнитного поля бетатрона, как равновесный радиус вращения электронов

Список информационных источников

- 1. Воробьев А.А. Ускорители заряженных частиц. М.: Госэнергоиздат, 1949. 214 с.
- 2. Гришин К.С. К методике проектирования полюсов простейших бетатронов // Известия Томского политехнического института. 1957. Т.87. С. 95—100.