MODIFICATION OF SURFACE PYROLYTIC GRAPHITE BY NITROGEN AND ARGON PLASMA ON AIR

OLEG BUREYEV¹, **MIHAIL ZHIDKOV**², YURI KOLOBOV², ELENA LIGACHEVA³, ALEXANDR LIGACHEV⁴, HELIY POTEMKIN⁵, V. STEPANENKO⁶ AND A. IMAMTTDINOV³

Institutes of electrophysics UrO of the RAS, Russia

²Belgorod state national research university, Russia

³Moscow aviation institute by. S.Ordzhonikidze, Russia

⁴Institute of general physics by A.N.Prokhorov of the RAS, Russia

⁵Tomsk Polytechic University, Russia

⁶A.N. Frumkin Institute of Physical chemistry and Electrochemistry RAS, Russia

ep.gvp@yandex.ru

Structural transformations on a surface pyrolytic graphite after its processing nitrogen and argon plasma on air are studied by means a Quanta 2002D scanning electron microscope with thermal emission. On a surface pyrolytic graphite (after irradiation of nitrogen plasma) finds out craters circular forms in diameter from 1 up to $10 \, \mu m$ in which particles from 10 up to $100 \, n$ nanometers having the wrong form rare located. After irradiation of argon plasma on a surface pyrolytic graphite (on bottom of crater) are forming carbon ellipsoids.

Keywords: plasma treatment, pyrolytic graphite, argon plasma.