USING CARBONYL PHOTOINITIATORS FOR ACHIEVING TUNABLE OPTICAL SENSITIVITY OF PETN

ANTON ZVEREV^{1, 2, 3}, ANATOLY MITROFANOV^{1, 2, 3}, ROMAN TSYSHEVSKY¹, MIKHAIL KOSTYANKO¹, SERGEY LUZGAREV¹, GUZEL GARIFZIANOVA⁵ AND MAIJA KUKLJA⁴

> ¹Kemerovo State University, Russia ²Yurga Institute of Technology, Russia ³National Research Tomsk Polytechnic University, Russia ⁴University of Maryland, USA ⁵Kazan National Research Technological University, Russia anthon.zverev@yandex.ru

Photo decomposition of wide gap dielectric PETN (Egap ~ 7 eV) doped with 9, 10-phenanthrenequinone (PQ) was triggered by irradiating samples with the laser beam with E ~2.33 eV. DFT modeling was employed to study optical properties of the pristine compounds and their mixture as well as for modeling decomposition mechanism on ground state and the lowest triplet potential energy surface. It was revealed that PQ molecule absorbs light in the range 1.9-2.4 eV. The excited PQ molecule abstracts hydrogen from the PETN which triggers subsequent barrierless cleavage of O-NO₂ bond. This reaction requires 9 kcal/mol, and proceeds with the heat release of 37.6 kcal/mol.

Keywords: carbonyl photoinitiators, laser ignition, PETN.