Институт: Специальность: Кафедра: <u>Электронного обучения</u> <u>140404 Атомные электрические станции и установки</u> <u>Атомных и тепловых электростанций</u>

ДИПЛОМНЫЙ ПРОЕКТ

Тема работы

Установка для прямого моделирования процессов конвективного теплообмена

УДК <u>621.1.016.7.536.25.001.5</u>

Студент

Группа	ФИО	Подпись	Дата
3-6101	Гинжул Владимир Николаевич		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры АТЭС	Ю.Я. Раков	к.т.н., доцент		

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры менеджмента	С.И. Сергейчик	к.т.н., доцент		

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры экологии и безопасно- сти жизнеледтель ности	Ю.А. Амелькович	к.т.н., доцент		

По разделу «Автоматизация технологических процессов и производств»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент кафедры автоматизации технологических процессов	В.С. Андык	к.т.н., доцент		

Нормоконнтроль

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель кафедры АТЭС	М.А.Вагнер	-		

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
атомных и тепловых электростанций	А.С. Матвеев	к.т.н., доцент		

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего

образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Энергетический

Специальность подготовки 140404 Атомные электрические станции и установки Кафедра «Атомных и тепловых электростанций»

> УТВЕРЖДАЮ: Зав. кафедрой АТЭС ЭНИН А.С. Матвеев

(Подпись)

(Дата)

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

В форме:

дипломного проекта

(бакалаврской работы, /работы, магистерской диссертации)

Студенту:

Группа	ФИО
3-6101	Гинжул Владимир Николаевич

Тема работы:

Установка для прямого моделирования процессов конвективного теплообмена

Утверждена приказом директора (дата, номер)

Срок сдачи студентом выполненной работы:

18.01.17

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе	В	работе	представлено	описание	собранной	установки,
	те	ория мет	ода, результаты	экспериме	нтов	
(наименование объекта исследования или проектирования; производительность или нагрузка; режим работы (непрерывный, периодический, циклический и т. д.); вид сырья или материал изделия; требования к продукту, изделию или процессу; особые требования к особенностям функционирования (эксплуатации) объекта или изделия в плане безопасности эксплуатации, влияния на окружающую среду, энергозатратам; экономический анализ и т. д.).						

Перечень подлежащих исследованию, проектированию и разработке вопросов (аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования; обсуждение результатов выполненной работы; наименование дополнительных разделов, подлежащих разработке; заключение по работе).	 Обзор литературы для изучения методов исследования теплопроводности Постановка задачи Разработка принципиальной схемы установки Расчет основных элементов установки Проектирование лабораторного стенда
Перечень графического материала (с точным указанием обязательных чертежей)	Принципиальная схема установки, сборочный чертеж вакуумной камеры, компоновочный чертеж лабораторного стенда
Κουςνημτουτιί πο ποσποπολ ριιπνοκιοй	гранификанионной работы

консультанты по разделам выпускной квалификационной работы (с указанием разделов)

Раздел	Консультант				
Финансовый менеджмент,	Сергейчик С.И., доцент кафедры менеджмента				
ресурсоэффективность и					
pecypeoseppentinencere					
ресурсосбережение					
Социальная	Амелькович Ю.А., доцент кафедры экологии и				
ответственность	безопясности жизнелеятельности				
o i bei ei beinioer b					
Автоматизация	Андык В.С., доцент кафедры автоматизации				
технологических процессов	технологических процессов				

Дата выдачи задания на выполнение выпускной квалификационной работы по линейному графику

Задание выдал руководитель:						
Должность	ФИО	Ученая степень,	Подпись	Дата		
		звание				
Доцент кафедры АТЭС	Раков Ю.Я.	к.т.н., доцент				

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-6101	Гинжул Владимир Николаевич		

					ФЮРА.311600.00
Изм.И	Лист	№ документа№	ПодписьП	Дата	

І.ПЗ ПЗФЮРА.З11600.001.ПЗ.

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа 3-6101

ФИО Гинжул Владимир Николаевич

Институт	ОЄНИ	Кафедра	АТЭС
Уровень образования	инженер по	Направление/специальность	Атомные
oopasobanna	специалист		электрические
			станции и
			установки

Исходные данные к разделу «Фи	нансовый менеджмент,	, ресурсоэффективность	и ресурсосбережение»:
		· 1 · J 1 1 1 1	1 21 1

<i>1.</i> Стоимость ресурсов научного исследования (НИ):	1. Стоимость ресурсов научного
материально-технических, энергетических, финансовых, информационных и человеческих	исследования (НИ): материально-технических, энергетических, финансовых, информационных и человеческих
2. Нормы и нормативы расходования ресурсов	
3. Используемая система налогообложения, ставки	
налогов, отчислений, дисконтирования и кредитования	

Перечень вопросов, подлежащих исследованию, проектированию и

разработке:

1. Оценка коммерческого и инновационного					
потенциала НТИ					
2. Разработка устава научно-технического проекта	Разработка устава научно-технического				
	проекта				
<i>3.</i> Планирование процесса управления НТИ:	Планирование процесса управления НТИ:				
структура и график проведения, бюджет, риски и	структура и график проведения, бюджет,				
организация закупок	организация закупок				
4. Определение ресурсной, финансовой,					
экономической эффективности					
Перечень глафического материала (с тошным указанием обязательных цертежей)					

rhc. обязательных чертежей): рафическо na i cphalla(c і указа

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
доцент	Сергейчик С.И.	К.Т.Н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-6101	Гинжул В.Н.		

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	1
Изм.И	Лист	№ документа№	ПодписьП	Дата		4

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту.

<u>Группа</u> 3-6101 **ФИО** Гинжул В.Н.

Институт	ОЄНИ	Кафедра	АТЭС
Уровень образования	инженер по	Направление/специальность	Атомные
	специальности		электрические
			станции и
			установки

Исходные данные к разделу «Социальная	и ответственность»:	
1. Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения		
Перечень вопросов, подлежащих исследо	ванию, проектированию и разработі	ке:
 1. Производственная безопасность 1.1. Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: физико-химическая природа вредности, её связь с разрабатываемой темой; действие фактора на организм человека; приведение допустимых норм с необходимой размерностью (со ссылкой на соответствующий нормативно-технический документ); предлагаемые средства защиты; (сначала коллективной защиты, затем – индивидуальные защитные средства). 1.2. Анализ выявленных опасных факторов при разработке и эксплуатации проектируемого решения в следующей последовательности: механические опасности (источники, средства защиты; термические опасности (источники, средства защиты); электробезопасность (в т.ч. статическое электричество, молниезащита – источники, средства защиты). 2. Экологическая безопасность: защита селитебной зоны анализ воздействия объекта на атмосферу (выбросы); 		
(сбросы); – анализ воздействия объекта на литосферу (отхолы):		
(отходы),		
ФЮРА.31160	0.001.ПЗ ПЗФЮРА.З11600.001.ПЗ.	Лисп
Лист № документа№ ПодписьП Дата		2

 разработать решения по обеспечению экологической безопасность со селлками на НТД по коране скружающей среды. 3. Безопасность в чрезвычайных ситуациях: перечень возмакных VC при разработке и зексплуатации проектируемого решения; разработка превелитивных мер по прелупреждению ЧС; разработка превелитивных мер по плиевидации ей последствий. 4. Правовые и организации и премяте позниктией ЧС и мер по ликвидации ей последствий. 4. Правовые и сордавания, проектируемой рабочей зоны) дата выдачи задания для раздела по линейному графонку Задание выдал консультант: доцент Амельковнч Ю.А. К.Т.Н. Заданис принял к исполнению студент: Трива ФИО Нодавес дата была стуации объека стуации объека задания для раздела по линейному 					
 Э. Безопасность в чревычализациях: перечень возможных ЧС при разработке и ээссплуатации проектируемого решения; выбор наиболее типичної ЧС; разработка превентивных мер по предупрежденню ЧС; разработка превентивных мер по предупреждению ЧС; правовые на организационные вопросы обеспечения мер по лимилидии се последствий. специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нороприятия при компоновке рабочей зоны. дата выдачи задания для раздела по линейному графику Задание выдал консультант: Дата выдачи задания для раздела по линейному графику заване доцент Амелькович Ю.А. к.т.н. Задание принял к исполнению студент:	 разработать рец экологической (НТЛ по охране) 	иения по обеспечению безопасности со ссылками на окружающей среды			
отеречень возможных ЧС при разработке и эксплуатации проектируемого решения; высплуатации проектируемого решения; высплуатации проектируемого решения; прадобтка действий в результате возникшей ЧС и мер по пикидации её последствий. 4. Правовые и организационные вопросы обеспечения безопасности: - специальные (характерные при эксплуатации объекта исследования, проектлурсмой рабочей зоны, Дата выдаети задания для раздела по линейному Дата выдаети задания для раздела по линейному - организационные мероприятия при компоновке рабочей зоны. Дата выдаети задания для раздела по линейному - дабочей зоны организационные мероприятия при компоновке рабочей зоны дабочей зоны организационные мероприятия при компоновке рабочей зоны дабочей зоны даб	3. Безопасность в чрез	вычайных ситуациях:			
эксплуатации проектируемого решения; пабор наиболка с типчной ЧС; разработка действий в результате возникшей ЧС и мер по ликвидации её последствий. 4. Правовые и организационные вопросы обсенсечни безопасности: - специальные (характерные при эксплуатации объекта исследования, проектруемой рабочей зоны) правовые нормы прудового законодательства; - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для разделя по линейному графику Задание выдал консультант: Лоламсть ФЛО Учение сичень, Ноликсь Дать допент Амелькович Ю.А. к.т.н. Задание прияял к исполнению студент: Гриная к исполнению студент: Приная к исполнению студент: 1 разне Ступка Соборования Со	 – перечень возмоз 	жных ЧС при разработке и			
 выбор наиболее типичной ЧС; разработка прекентивнах ккер по предупреждению ЧС; разработка лействий в результате возникшей ЧС и мер по ликвидации её последствий. Иравовые и организационные вопросы объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; организационные мероприятия при компоновке рабочей зоны. Дата выдал и задания для раздела по линейному рафику Задание выдал консультант: Доцент Амелькович Ю.А. К.т.н. Задание приял к исполнению студент: Грипкул В.Н. 	эксплуатации п	оектируемого решения:			
- разработка превентивных мер по предупреждению ЧС; - разработка действий в результате возникшей ЧС и мер по ликвидации её последствий. - Правовые и организационные вопросы боспечения безопасности: - организационные мероприятия при компоновке рабочей зоны. - организационные мероприятия при компоновке вака - организационные мероприятия при компоновке вака - организационные мероприятия при компоновке вака - организационные мероприятия при компоновке - организационные мероприятия при компоновке - организационные мероприятия при компоновке - организацие мероприятиятиятиятиятиятиятиятиятиятиятиятияти	– выбор наиболее	типичной ЧС;			
предупреждению ЧС: - разработка действий в результате возникшей ЧС и мер по ликималание е последствий. 4. Правовые и организационные вопросы обсенчения безопасности: - специальные (характерные при эксплуаташии объекта исследования, проектируемой рабочей зоны) правовые норыя трудового законодательства; - организационные мероприятия при компоновке рабочей зоны. - Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: доцент - долямость 940 Ученая степень доцент Подинсь Задание выдал консультант: доцент 1 - доцент Амелькович Ю.А. к.т.н. 1 Задание принял к исполнению студент: Труппа 6400 - Грипах и сполнению студент: 1 - Гипахуд В.Н. 1	 разработка прев 	ентивных мер по			
- разработка действий в результате возникшей ЦС и мер по ликвидации ес последетвий. 4. Правовые и организационные вира эксплуатации объекта исследования, проектируемой рабочей зоны) правовые пормы трудового законодательства; - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику - дата выдал консультант: Дата выдал консультант: - организационные мероприятия при компоновке прабочей зоны. Задание выдал консультант: - организационные мероприятия при компоновке прабочей зоны. Задание выдал консультант: - организационные мероприятия при компоновке прабочей зоны. Задание выдал консультант: - организационные студент: Доцент Амелькович Ю.А. к.т.п. Задание принял к исполнению студент: - памес Дата Труппа ФИО Типжул В.Н. Залание принял к исполнению студент: - дата Припась Дата - дата Залание принял к исполнению студент: - дата Трипась - дата - дата Заб101 Гипжул В.Н. - дата	предупреждени	юЧС;			
ЧС и мер по ликвидаций её последствий. 4. Правовые и организационные вопросы обсектечния безонасности: - специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по лицейному рафику Дата выдал консультант: - доление принял склюхультант: - доленоть мероприятия при компоновке рабочей зоны. Дата выдал консультант: - доленоть фио Ученая степель - доленоть к споллению студент: - доленоть стралити с студент: - доленоть с с с с с с с с с с с с с с с с с с с	 – разработка дейс 	твий в результате возникшей			
4. Правовые и организационные вопросы беспечения безопасности: - специальные (карактерные при эксплуатации объекта исследования, проектируемой рабочей зонк) правовые нормы трудового законодательства, - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: - Должовсть ФНО Ученая стелень, Ноанись Дата - доцент Амелькович Ю.А. К.Т.Н. - Замане принял к исполнению студент: - Грита ФНО Ноанись Дата 3-6101 Гинжул В.Н. 	ЧС и мер по лин	свидации её последствий.			
обселечения безопасности: - специяльные (характерные при эксплуатации объекта исследования, проектируемой рабочей законодательства; - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: - Лолявость ФНО Ученая степень, Нодинсь Дата - Лолявость ФНО Иодинсь Дата - Лолявость ФНО Подинсь Дата - Задание принял к исполнению студент: - Грипа ФНО Подинсь Дата - Заб101 Гинжул В.Н.	I. Правовые и организ	зационные вопросы			
- специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормя грудового законодательства; - организационные мероприятия при компоновке рабочей зоны. 	беспечения безопасно	ости:			
объекта исследования, проектируемой рабочей законодательства, - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику Вадание выдал консультант: Локаность ФНО Ученая стенень, Полнись Дата доцент Амелькович Ю.А. к.т.н. Вадание принял к исполнению студент: <u>Труша ФНО Полнись Дата</u> 3-6101 Гинжул В.Н.	 специальные (ха 	арактерные при эксплуатации			
зоны) правовые нормы трудового законодлагельства; - организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: <u>Должность ФИО Ученая степень</u> Подинсь Дата доцент Амелькович Ю.А. К.Т.Н. Задание принял к исполнению студент: <u>групва ФИО Подинсь Дата</u> 3-6101 Гинжул В.Н.	объекта исследо	ования, проектируемой рабоче	й		
аконодательства; о организационные мероприятия при компоновке рабочей зоны. Дата выдали задания для раздела по линейному рафику Вадание выдал консультант: <u>должность ФНО Ученая степень, Подинсь Дата</u> доцент Амелькович Ю.А. к.т.н. Вадание принял к исполнению студент: <u>Труппа ФИО Подинсь Дата</u> 3-6101 Гинжул В.Н.	зоны) правовые	нормы трудового			
- организационные мероприятия при компоновке рабочей зоны. Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: Лолязовсть 010 Ученая степень. Подинеь Дата доцент Амелькович Ю.А. К.т.н. Задание принял к исполнению студент: <u>Грипа ФНО Полинеь Дата</u> 3-6101 Гинжул В.Н.	законодательсти	3a;			
Дата выдачи задания для раздела по линейному рафику Вадание выдал консультант: 	 организационны 	не мероприятия при компонов	ke		
Дата выдачи задания для раздела по линейному рафику Задание выдал консультант: <u>Доляюеть ФПО Учевая степень</u> Полись Дата звание принял к исполнению студент: <u>Грипа ФНО Полись Дата</u> 3-6101 Гинжул В.Н.	раоочен зоны.				
дата выдачи задания для раздела по литенному рафику Задание выдал консультант: Должность ФИО Ученая степень Подинсь Дата доцент Амелькович Ю.А. к.т.н.	Пото ринон				
рафику Задание выдал консультант: Должность ФПО Ученая степень, Подинеь Дята доцент Амелькович Ю.А. К.Т.Н.	дага выдач	и задания для раздела	по линеином	y	
Задание выдал консультант: <u>Должность ФИО Ученая степень, Подпись Дата</u> <u>доцент Амелькович Ю.А. к.т.н.</u> Задание принял к исполнению студент: <u>Группа ФИО Подпись Дата</u> <u>3-6101 Гинжул В.Н.</u>	рафику				
Задание выдал консультант: 					
Задание выдал консультант: Должность ФИО Ученая степень, Полнись Дата доцент Амелькович Ю.А. к.т.н.					
Должность ФИО Ученая степель, звание Подпись Дата доцент Амелькович Ю.А. к.т.н. — — — Задание принял к исполнению студент:	Задание выдал конс	ультант:			
доцент Амелькович Ю.А. к.т.н. Задание принял к исполнению студент:	Должность	ФИО	Ученая степень,	Подпись	Дата
Задание принял к исполнению студент: Труппа ФНО Подвясь Дата 3-6101 Гинжул В.Н.	лоцент	Амелькович Ю А	звание		
адание принял к исполнению студент: <u>Группа 040 Подпись Дата</u> 3-6101 Гинжул В.Н.	доцент	Инслыкови и ю.л.	K.1.II.		
<u>Трупа 040 Полиесь Дата</u> 3-6101 Гинжул В.Н.					
3-6101 Гинжул В.Н.	Группа	ФИО		Подпись	Лата
	3-6101	Гинжул В.Н.			
	I	5			

Реферат

Выпускная классификационная работа содержит 88 стр 22 рисунков, 8 источников,4 приложений.

Ключевые слова: ПУЧОК ТРУБОК, КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ, ТЕПЛООТДАЧА, ТЕПЛООБМЕН, СВОБОДНАЯ КОНВЕКЦИЯ, ВЫНУЖДЕННАЯ КОНВЕКЦИЯ.

Объектом исследования является моделирование теплообменных процессов на лабораторном стенде

Цель работы: смоделировать на лабораторной установки, процессы теплообмена от пучка труб, при свободной и вынужденной конвекции.

В процессе исследования были поставлены опыты с нагревом одиночной трубки, вертикального ряда горизонтальных трубок и нагревом пучка труб коридорного расположения.

В результате исследования были получены коэффициенты теплоотдачи при различном моделировании теплообменных процессов и найдены критериальные зависимости для установки.

В дальнейшем полученные результаты могут использовать студентами кафедры при проведении лабораторной работы по предмету «Тепломассообмен в энергетическом оборудовании». Для выполнении данной работы использовались текстовый редактор Microsoft Word 2010, для построения рисунков применялась программа Corel DRAWX4, диаграммы построены Microsoft Excel 2010, запись формул велась с помощью Math Type Commands 6.0 For Words 2010.

Изм.И	Лист	№ документа№	ПодписьП	Дата

лист 7

Определение, обозначение.

В процессе проведения данной работы применялись термины:

Теплопроводность – молекулярный перенос теплоты в сплошной среде, обусловлено наличием градиента температуры.

Конвективный теплообмен – теплообмен, обусловленный действием конвективного и молекулярного переноса тепла.

Теплообмен излучением – теплообмен, обусловленный превращением внутренней энергии вещества в энергию излучения, переносом излучения и его поглощением веществом.

Метод подобия – метод исследования явлений, заключающихся в анализе их материального описания на основе представления о физическом подобии.

Моделирование – метод экспериментального исследования данного процесса, основанного на замещении его подобным ему процессом той же или другой физической природы.

Теплоотдача - конвективный теплообмен между движущейся средой и поверхностью ее раздела с другой средой (твердым телом, жидкостью или газом).

Число Нуссельта – безразмерное число определяемое тождеством $Nu = \frac{\alpha l_0}{\lambda}$ где α -коэффициент теплоотдачи: l_0 -характерный размер; λ -коэффициент теплопроводности жидкости.

Число Рейнольдса – безразмерное число, определяемое тождеством $\operatorname{Re} = \frac{\rho \omega_0 l_0}{\mu}$ где ρ и μ -плотность и динамический коэффициент вязкости; ω_0 -

характерные значения скорости жидкости; *l*₀-характерный размер.

Число Прандтля - безразмерное число (физический параметр), определяемое тождеством $Pr = \frac{v}{\alpha}$ где *v* - кинетический коэффициент вязкости.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	0
м.И	Лист	№ документа№	ПодписьП	Дата		ð

Число Грасгофа - безразмерное число определяемое тождеством $Gr = \frac{g \beta \Delta t_0 l_0^3}{\lambda}$, где *g* - ускорение свободного падения; β - коэффициент объемного расширения жидкости; Δt_0 - разность между характерными температурами жидкости и стенки.

					0
Изм.И	Лист	№ документа№	ПодписьП	Дата	

Оглавление

Введение12
1. Обзор литературы 13
1.1. Теплообмен при свободной конвекции13
1.2. Теплообмен при вынужденной конвекции17
1.3. Моделирование процессов теплообмена от пучков труб
при свободной конвекции
2. Методы исследования конвективного теплообмена 24
2.1. Изучение теплоотдачи при естественной конвекции
2.2. Изучение теплоотдачи при вынужденной конвекции
2.3. Исследование теплоотдачи при естественной конвекции 3-х
трубок
3. Описание экспериментальной установки 44
3.1. Компоновка экспериментальной установки 44
3.2. Описание основных элементов рабочего участка 47
3.3. Принципиальная схема установки при вынужденной
конвекции
4. Обработка результатов 51
4.1. Локальное исследование теплоотдачи 51
4.2. Расчет трех вертикальных трубок 53
4.3. Расчет теплоотдачи при нагреве всех трубок 54
4.4. Теплоотдача при вынужденной конвекции 57
5. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ
И РЕСУРСОСБЕРЕЖЕНИЕ 61
5.1. Экономические цели 61

5.2. График выполнения работ по реализации методики	изучения
коэффициента теплоотдачи	61
5.3. Расчет стоимости установки	
5.3.1. Расчет полной заработной платы	
5.3.2. Расчет отчислений от заработной платы	
5.3.4 Расчет общей себестоимости разработки	
5.3.5НДС	
5.3.6 Полная смета затрат на выполнение НИР	
о. Социальная ответственность	
Характеристика объекта исследования	
6.1. Производственная безопасность	
6.1.1. Анализ выявленных вредных факторов при раз	работке и
эксплуатации Ошибка! Закла	дка не определена.
6.1.2. Анализ выявленных опасных факторов при раз	работке и
эксплуатации	
6.2. Экологическая безопасность	
6.3. Безопасность в чрезвычайных ситуациях	
65 Προρορικο μ. ορεοιμοουμιου ροτηροικ. οδο	
безопасности	70
7 АВТОМАТИЗИРОВАННАЯ СИСТЕМА	КОНТРОЛЯ
ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ТЕПЛООБМЕН	ных труб
ОПЫТНОГО УЧАСТКА	
7.1. Краткое описание технологической схемы объекта в	контроля 72
7.2. Методы и средства измерения температуры	
Заключение	
Список питературы	75
	/
ФЮРА.311600.001.113 ПЗ	ФЮРА.311600.001.ПЗ.

Изм.И

Лист

№ документа№

ПодписьП Дата

Введение

В современной энергетике большую роль играет процесс теплоотдачи на теплообменных поверхностях. Из-за сложности аналитического решения процессов теплообмена используется прямое моделирование. При прямом моделировании процессов теплообмена опираются на теорию подобия. Применение теории подобия к изучению промышленных аппаратов впервые сделано нами еще в 1923 г. За истекшие годы было проведено много работ как по разработке теории моделирования, так и по ее экспериментальной проверке, выяснению и расширению области применения и практическому приложению. В настоящее, время из стадии лабораторной проверки метод уже вышел и является надежным и мощным средством, с помощью которого можно изучить, работу как существующих, так и вновь проектируемых Последнее тепловых аппаратов. является его исключительным преимуществом. В технических кругах страны метод моделирования получил широкое признание и с большим успехом применяется во многих научноисследовательских институтах, проектных бюро И промышленных Говоря о применении метода моделей к изучению работы предприятиях. промышленных аппаратов, нельзя обойти молчанием работы проф. В. Е. Грум-Гржимайло. В стенах бывшего Ленинградского политехнического института он применил этот метод еще в 1910г. демонстрировал его своим студентам и изучал работу промышленных печей.

Изм.И	Лист	№ документа№	ПодписьП	Дата

1. Обзор литературы

1.1. Теплообмен при свободной конвекции.

Процессы переноса тепла и массы (тепло- и массообмен) могут осуществляться за счет различных механизмов. За счет хаотического теплового движения или тепловых колебаний микрочастиц (молекул, атомов, ионов) осуществляется молекулярный (микроскопический) перенос тепла (теплопроводность) или массы (молекулярная диффузия). В движущейся жидкости или газе за счет перемещения объемов среды из области с одной температурой концентрацией В область с другой или происходит конвективный (макроскопический) перенос тепла или массы, который всегда сопровождается процессом молекулярного переноса. При турбулентном движении жидкости или газа процессы конвективного переноса тепла и массы приобретают настолько специфический характер, что их можно выделить в самостоятельный вид переноса. Этот перенос, обусловленный пульсационным характером турбулентного движения, осуществляется за счет поперечного перемещения турбулентных молей и называется турбулентной или молярной теплопроводностью (диффузией). Существует еще один механизм переноса теплоты, не имеющий соответствующего аналога в процессах массообмена, излучение, которое осуществляется в результате испускания, распространения и поглощения электромагнитных волн в определенном диапазоне частот. Процессы тепло- и массообмена, протекающие в двухфазной системе на границе раздела фаз, например, тепло- и массообмен между воздухом и твердой поверхностью, называются, соответственно, теплоотдачей И массоотдачей. В практике встречаются случаи, когда процессы тепло- и массообмена происходят параллельно, одновременно, например испарение вещества с поверхности при одновременной теплоотдаче к этой поверхности или от нее. В этих случаях отмечается взаимное влияние процессов тепло- и массообмена. Например, при наличии в бинарной (двухкомпонентной) смеси градиентов температуры происходит разделение компонентов ПО

Изм.И	Лист	№ документа№	ПодписьП	Дата

молекулярной массе . Кроме того, наличие массообмена на поверхности изменяет граничные условия процесса теплоотдачи. Однако во многих случаях, встречающихся в практике, роль взаимного влияния процессов теплои массообмена невелика и им можно пренебречь. Если процессы тепло- и массопереноса протекают независимо один от другого, то описание этих процессов оказывается аналогичным. В современной энергетике одной из основных задач стоит эффективный теплообмен в теплообменнике. Многие теплообменные устройства представляют сбой пучок поперечно обтекаемых труб. Пучок труб представляет собой сложную геометрическую систему, конфигурация этой системы, оказывает непосредственное влияние на распределение скоростей и температуры в потоке жидкости набегающей на трубы, проходя последовательно расположенные ряды трубок, поток постепенно турбулизируется, причем степень турбулизации зависит от формы пучка. Поэтому и сопротивление труб в пучке зависит еще и ОТ геометрической конфигурации пучка, т.е. в конечном счете от расположения труб в пучке их продольного и поперечного шагов и числа рядов по глубине. Порядок расположения труб может быть коридорным (а) или шахматным (б) (рисунок 1). Характеристиками пучка являются: диаметр трубки d И относительное расстояние между их осями по ширине пучка $L_1 = \frac{x_1}{d}$ и его

глубине
$$L_2 = \frac{x_2}{d}$$

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Изм.И	Лист	№ документа№	ПодписьП	Дата	

Лист

14

От схемы компоновки пучка зависят характер движения жидкости и омывание трубок рисунок 2.

Рисунок 2 - Движение жидкости в пучках из круглыми трубками [2]

Условия омывания первого ряда трубок в обоих пучках близки к условным омываниям одиночной трубки. Для последующих же рядов характер омывания изменяется. В координатах пучка все трубки второго и последующих рядов находятся в вихревой зоне впереди стоящих: между трубками по глубине пучка получается застоявшаяся зона с относительно слабой циркуляцией жидкости. Поэтому здесь как лобовая, так и кормовая часть трубок омывается с значительно меньшей интенсивностью, чем те же части одиночной трубки или лобовая часть первого ряда в пучке. В шахматных пучках глубоко расположенные трубки по характеру омывания мало чем отличаются от трубок первого ряда. Много работ и исследований посвящено изучению процесса изменения теплоотдачи по окружности труб для различных рядов в коридорных и шахматных пучках. Результаты исследований приведены на рисунке 3.

Изм.И	Лист	№ документа№	ПодписьП	Дата

лист 15

Рисунок 3- Изменение теплоотдачи по окружности труб для различных рядов: *а*)коридорный, *б*)шахматный.[2]

Здесь по оси ординат приведены не абсолютные, а относительные значения коэффициента теплоотдачи $\frac{\alpha_{\varphi}}{\alpha}$.

Из расстояния кривых следует, что для первого ряда коридорных пучков изменения относительной теплоотдачи по окружности почти в точности соответствует для аналогичной одиночной трубки. Для вторых и всех последующих рядов характер кривой относительно теплоотдачи меняется. Типовыми становятся кривые, приведенные на рисунке 4.

Рисунок 4- Изменение теплоотдачи по окружности трубы в коридорном (1) и шахматном (2) расположении труб[2].

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	16
Изм.И	Лист	№ документа№	ПодписьП	Дата		10

В коридорных пучках максимум теплоотдачи наблюдается не в лобовой точке, а на расстоянии 50 ° от нее. Таких максимумов два и расположены они как раз в тех областях поверхности трубок, где происходит удар набегающих струй. Лобовая же часть непосредственному воздействию омывающего потока не подвергается, поэтому здесь теплоотдача не высока.

Приведённый анализ показывает, что теплоотдача труб в пучке, а также изменение теплоотдачи по окружности в основном определяются характером обтекания. По изучению теплоотдачи в зависимости от типа пучка, диаметра труб, расстояние между ними, температуры жидкости и других факторов проведено довольно большое количество исследований. Анализ проведённых исследований показал, что для пучков критерий Pr_f входит в степени 0,33. На основе проделанных работ.

1.2. Теплообмен при вынужденной конвекции.

Моделирование процессов теплообмена проводилось еще в начале прошлого века. Процесс теплоотдачи при вынужденной конвекции рассмотрены в роботах в большом количестве работ [1,2,3]. Так, например, в работе М. В. Кирпичева [3] по моделированию тепловых устройств, рассматривается эксперимент с использованием метода локального теплового моделирования, который позволил без всякого труда исследовать теплообмен при шахматное и коридорное расположение пучков труб. По размерам кассетчица из труб представляла собой ряд из 20 или 40 трубок идущих в глубину. Ход эксперимента выглядел так:

Изм.И	Лист	№ документа№	ПодписьП	Дата

Рисунок 5 – Экспериментальная установка теплоотдачи от пучка труб.[3]

Печек труб диаметром поперечного сечения 4,05мм, шириной 13 и высотой 40 труб устанавливался в прямоугольную трубу таким образом, чтобы шаг в длину и ширину составлял два диаметра. С помощью вентилятора создавался поток воздуха. Температура трубок поддерживалась идущей из бака проточной водой, предварительно которая проходила через электрический нагреватель и распределитель в виде тройника. В тройнике происходило выведение из воды пузырьков воздуха, затем она поступала в камеру с ртутным термометром для ориентировочной установки температуры трубок во время опыта. На следующем этапе вода проходила через стеклянный сосуд в исследуемую трубку, отдавала часть тепла и попадала во второй стеклянный сосуд и выливалась в мерный бак. Регистрация результатов велось по средней трубке 1,2,5,9,12,20,32, и 40-м рядах поперечного сечения. Параллельно велось измерение температуры входа и выхода в стеклянных сосудах с помощью дифференциального термометра. По результатам эксперимента была выведена формула для всех средних трубок

Изм.И	Лист	№ документа№	ПодписьП	Дата

 $Nu_{\omega}0,154\cdot \mathrm{Re}_{m}^{0.65}$ -для коридорного типа

 $Nu_{\omega}0,178 \cdot \text{Re}_{m}^{0,65}$ – для шахматного типа

Выяснилось, что коэффициент теплоотдачи среднего ряда коридорного и шахматного типа есть постоянная числа 1,15. Построена схема рисунке 6.

Рисунок 6 – Кривые изменения коэффициента *С* в зависимости от *N* ряда трубок при различном способе компоновки трубок.[3]

На оси абсцисс отложены порядковые номера рядов труб, по оси ординат - коэффициент *с* при Re^{0,65}. Они наглядно показывают постепенное повышение теплоотдачи в первых рядах, вызываемое турбулизирующим действием предыдущих рядов.

Рассмотрим эксперимент по локальному моделированию, который описал Б.С. Петухов.[1] На расстоянии метра от входной сечения в рабочей части аэродинамической трубы устанавливается пучок трубок заданных геометрических параметров. Для эксперимента выбраны трубки в виде электрического калориметра. Концы трубок монтируются в стенках трубы. Одна из трубок выбирается для экспериментального исследования. Расчет

Изм.И	Лист	№ документа№	ПодписьП	Дата

Рисунок 7 - схема установки для исследования пучков по методу локальной теплоотдачи.[1]

Воздух прокачивался через трубку вентилятором. Расход воздуха через участок задавался с помощью изменения числа оборотов двигателя и дроссельным клапаном на входном патрубке вентилятора. Для определения

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	20
Изм.И	Лист	№ документа№	ПодписьП	Дата		20

скорости воздуха перед пучком установлена пневмотрубка с микроманометром. Для расчета теплоотдачи и сопротивления пучков в поставленном опыте была записано критериальная зависимость уравнения. Если не принимать во внимание зависимость физических параметров воздуха от температуры, уравнение имеет вид:

для средней теплоотдачи *i*-того ряда пучка $Nu = f_i \left(\text{Re}, \text{Pr}, \frac{S_1}{d}, \frac{S_2}{d}, i \right);$

для средней теплоотдачи пучка, состоящего из трядов по глубине,

 $Nu = f\left(\operatorname{Re}, \operatorname{Pr}, \frac{S_1}{d}, \frac{S_2}{d}, m\right);$

для сопротивления пучка из *m* рядов:

$$Eu = F_m(\operatorname{Re}) \quad Eu = F_m(\operatorname{Re}, \operatorname{Pr}, \frac{S_1}{d}, \frac{S_2}{d}, m).$$

В уравнениях обозначено:

$$Nu_i \frac{\alpha_i d}{\lambda}; Nu \frac{\alpha d}{\lambda}; Re = \frac{\omega d}{v}; Pr = \frac{v}{a}; Eu = \frac{\Delta p}{\rho \omega^2}.$$

где *i* - порядковый номер ряда по глубине;

т-число рядов по глубине;

 α_{ii} – средний коэффициент теплоотдачи для труб *i*-го ряда;

а – средний коэффициент теплоотдачи в целом;

d - наружный диаметр труб;

 S_1 и S_2 – шаг труб по ширине и по глубине пучка;

 ω – средняя скорость в узком сечении пучка;

λ,*ν*,*a* – теплопроводность, кинетическая вязкость и температуропроводность жидкости(газа)

ρ-плотность жидкости (газа).

Изм.И	Лист	№ документа№	ПодписьП	Дата

1.3. Моделирование процессов теплообмена от пучков труб при свободной конвекции.

В настоящее время теплоотдача от пучка труб при свободной конвекции описаны в работах [3,7,8]. В опытах со свободной конвекцией рассмотрим работу проводимую Ю.А. Загромовым и Ю.А. Короленко который описан в известии №137 томского политехнического института за 1965г.

Опыт проводился на специальной установке рисунок 8. Основным ее элементом является модель пучка, собранная с заданным вертикальным шагом *S* из отдельных стержней. Каждый стержень представляет собой латунную трубку с наружным диаметром d = 6 мм и длинной 100 мм. Внутрь латунной трубки вводится стеклянная трубка с вмонтированным в нее нитроновым электронагревателем. Пространство между латунной и стеклянной трубками заполнялось алюминиевой фольгой толщиной $\delta = 0,02_{MM}$. Каждая модель снабжалась медь-константановой термопарой из проводов d = 0.01 мм, проложенной между латунной и стеклянной трубками. Спай термопары выводился в сверление $d = 0,01_{MM}$, на середине трубки и припаивался. При сборке установки спай всех термопар находился на верхней трубке.

Рисунок 8 – Схема экспериментальной установки: 1 – стабилизированный выпрямитель; 2 – автотрансформатор; 3 – ваттметр; 4 –

					Ċ
Изм.И	Лист	№ документа№	ПодписьП	Дата	

модель пучка; 5 - горячий спай; 6 – холодный спай термопары; 7 – термостат холодного спая; 8,11 – термопары; 9 – потенциометр; 10 – нульгальванометр.[5]

Нагреватели всех стержней при сборке соединялись последовательно. Питание током производилось через стабилизатор напряжения СНЭ-220-0,75 и автотрансформатор ЛАТР-1 РНО-205-2. Мощность N потребляемой установкой, измерялась ваттметром ЭДВ класс 0,2. Измерение ЭДС с термопар измерялась с помощью лабораторного потенциометра. Переключение термопар осуществлялось с помощью переключателя на 10 термопар. Необходимое число стержней объединялось пучке с шагом S. Вертикальный размер шага регулировался опорными винтами. Опыт проводился при установившемся тепловом режиме. Процесс теплоотдачи пучков труб в условно свободной конвекции описывается соотношением

$$Nu = f\left(Gr, \Pr, \frac{S}{D}\right)$$

Проведено экспериментальное исследование явления теплоотдачи горизонтального ряда труб в воздушной среде. При этом критерий Pr остается постоянным и зависимость принимает вид

$$Nu = f\left(Gr, \frac{S}{D}\right)$$

В результате проделанной работы построены графики зависимости *Nu* от *Gr* и выведена линейная зависимость которая описывалась уравнением

$$\lg Nu_f = \lg C + m \lg Gr_f$$

В конечном результате при проведении экспериментов с увеличением шага решетки приводит к тому что процесс теплоотдачи в пучке труб можно рассматривать как при теплоотдачи при одиночном цилиндре соответственно формула примет вид:

$$Nu_f = 0,47Gr_f^{0.25}.$$

Изм.И	Лист	№ документа№	ПодписьП	Дата

ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.

2. Методы исследования конвективного теплообмена

2.1. Изучение теплоотдачи при естественной конвекции

Рассмотрим стационарный процесс теплоотдачи при естественной конвекции от горизонтального цилиндра, расположенного в газообразной среде

Рисунок 9 - Распределение температур и скоростей вблизи поверхности цилиндра при естественной конвекции воздуха.[1]

Вдали от цилиндра газ неподвижен, а температура газа постоянна и равна T_{r} . Поверхность цилиндра имеет всюду одинаковую температуру T_{n} . Очевидно, что температура газа вблизи цилиндра изменяется от T_{n} до T_{r} , поэтому плотность газа вблизи стенки будет меньше плотности вдали от нее. Под действием возникающей при этом подъемной силы газ у стенки движется снизу вверх. Если учесть, что скорость газа на стенке и вдали от нее равны нулю, то распределение скоростей вблизи стенки можно представить себе

Изм.И	Лист	№ документа№	ПодписьП	Дата

ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.

таким, как это показано на рисунке 9. Движение газа в рассматриваемых условиях называется свободным движением или естественной конвекцией.

Задача состоит в том, чтобы изучить экспериментально влияние различных факторов на теплоотдачу цилиндра и установить зависимость для расчета потока тепла или коэффициента теплоотдачи от поверхности пучков цилиндров к газу.

Для простоты будем считать, что все физические параметры жидкости кроме плотности не зависят от температуры. Теплоотдачу с торцов цилиндров учитывать не будем, т.к. они покрыты слоем тепловой изоляции. В связи с тем, что у поверхности цилиндров имеется тонкий слой неподвижного газа, то для расчета локальной плотности теплового потока проходящего через этот слой можно использовать закон Фурье:

$$q_F = -\lambda \left(\frac{\partial T}{\partial r}\right)_{r=\frac{d}{2}},\tag{2.1.1}$$

где q_F - локальная плотность теплового потока вблизи стенки цилиндра, BT/m^2 ;

d – диаметр цилиндра, м;

 λ - коэффициент теплопроводности газа, Вт/м°К;

Т - температура газа в точке, имеющей координаты х, у или

$$r = \sqrt{x^2 + y^2}, \varphi, \,^{\mathrm{o}}\mathrm{K};$$

С другой стороны, согласно закону Ньютона-Рихмана:

$$q_F = \alpha_{\varphi} \left(T_{\Pi} - T_{\Gamma} \right), \qquad (2.1.2)$$

где α_{ϕ} - локальный коэффициент теплоотдачи, Вт/м^{2°}К;

 T_{Π} - температура поверхности цилиндра, ;

 T_{Γ} - температура газа, °К.

Приравнивая, друг к другу правые части уравнений (2.1.1) и (2.1.2), получаем:

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	25
Изм.И	Лист	№ документа№	ПодписьП	Дата		23

$$\alpha_{\varphi} = -\frac{\lambda}{T_{\Pi} - T_{\Gamma}} \left(\frac{\partial T}{\partial r}\right)_{r = \frac{d}{2}}.$$
(2.1.3)

Уравнение (2.1.3), описывающее процесс теплоотдачи на границе цилиндра называется дифференциальным уравнением теплоотдачи.

Из уравнения (2.1.3) следует, что коэффициент теплоотдачи определяется полем температур в газе и его коэффициентом теплопроводности. В данном случае поле температур в газе будет двухмерным (температура вдоль оси координаты, перпендикулярной к плоскости чертежа, не изменяется) и стационарным, т.е. $T = f(r, \phi)$ или T = f(x, y). Так как процесс теплообмена протекает в движущемся газе, то температурное поле описывается следующей системой уравнений:

$$\left(\vec{w}, \operatorname{grad} T\right) = a\nabla^2 T, \qquad (2.1.4)$$

$$\rho(\vec{w}, grad w_x) = -\frac{\partial p}{\partial x} + \mu \nabla^2 w_x, \qquad (2.1.5)$$

$$\rho\left(\vec{w}, grad \, w_{y}\right) = \rho g - \frac{\partial p}{\partial y} + \mu \nabla^{2} w_{y}, \qquad (2.1.6)$$

$$div(\rho \vec{w}) = 0, \qquad (2.1.7)$$

$$o = f(T). \tag{2.1.8}$$

В уравнениях (2.1.4) - (2.1.8) обозначено:

 \vec{w} - вектор скорости, м/с

 w_x и w_y - проекции вектора скорости на оси координат *x* и *y*;

р - давление, Па;

а - коэффициент температуропроводности, m^2/c ;

 ρ - плотность, кг/м³;

μ - динамическая вязкость жидкости, Па·с;

g - ускорение силы тяжести, м/с².

Примем в заданном интервале температур зависимость ρ от *T* (уравнение (2.1.8)) линейной:

						JIUCT
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	26
Изм.И	Лист	№ документа№	ПодписьП	Дата		20

$$\rho = \rho_{\Gamma} \Big[1 - \beta \big(T - T_{\Gamma} \big) \Big], \qquad (2.1.9)$$

где ρ_{Γ} - плотность газа при температуре T_{Γ} , кг/м³;

 β - температурный коэффициент объемного расширения жидкости, который в интервале температур от T_{Γ} до T_{Π} , рассматривается как величина постоянная, 1/°К;

Величина β , очевидно, будет равна:

$$\beta = \frac{\rho_{\Gamma} - \rho_{\Pi}}{\rho_{\Gamma} (T_{\Gamma} - T_{\Pi})}.$$
(2.1.10)

Для газов при p = const, учитывая, что $\frac{\rho_{\Gamma}}{\rho_{\Pi}} = \frac{T_{\Pi}}{T_{\Gamma}}$, величина β

определяется формулой:

Изм.И

$$\beta = \frac{1}{T_{\Pi}},\tag{2.1.11}$$

где T_{π} - температура газа вблизи стенки, выраженная в градусах Кельвина.

К системе уравнений (2.1.3) - (2.1.8) необходимо присоединить краевые условия, отвечающие поставленной задаче:

При
$$r = \frac{d}{2}, w_x = w_y = 0, \quad T = T_T;$$
 (2.1.12)
При $r \to \infty \quad w_x = w_y = 0, \quad T = T_T$

Из уравнений (2.1.3) - (2.1.12) видно, что α , а также T, w_x , w_y , p зависят от большого числа величин (x, y, a, d, β , g и т.д.). Однако величины, содержащиеся в уравнениях, возможно сгруппировать в безразмерные комплексы - критерии подобия, число которых будет меньше числа величин. Это дает большие преимущества при постановке опытов и обобщения их результатов.

				ФЮРА.311600.001.ПЗ	ПЗФЮРА.311600.001.ПЗ.
Лист	№ документа№	ПодписьП	Дата		

Выберем в качестве масштабов для линейных размеров и координат диаметр цилиндра, а для температур величину $\Delta T_{II} = T_{II} - T_{\Gamma}$.

Обозначим безразмерные величины

$$\tilde{x} = \frac{x}{d}, \quad \tilde{y} = \frac{y}{d}, \quad \tilde{r} = \frac{r}{d}, \quad \tilde{T} = \frac{T - T_{\Gamma}}{T_{\Pi} - T_{\Gamma}}.$$

Подставим в уравнения (2.1.3) - (2.1.7) и краевые условия (2.1.12) вместо x, y, T величины

$$x = \tilde{x}l, \quad y = \tilde{y}l, \quad T = T_{\Gamma} + \tilde{T}(T_{\Pi} - T_{\Gamma}).$$

После некоторых преобразований получим безразмерные уравнения:

$$Nu_{\varphi} = -\left(\frac{\partial \tilde{T}}{\partial \tilde{r}}\right)_{\tilde{r}=\frac{d}{2}}$$
(2.1.13)

$$\left(\overrightarrow{Pe},\nabla\widetilde{T}\right) = \widetilde{\nabla}^{2}\widetilde{T},$$
 (2.1.14)

$$\left(1 - \beta \Delta T_{\Pi} \tilde{T}\right) \left(\overrightarrow{Pe}, \nabla Pe_x\right) = -Pr^2 \frac{\partial \tilde{p}}{\partial \tilde{x}} + Pr \tilde{\nabla}^2 Pe_x, \qquad (2.1.15)$$

$$\left(1 - \beta \Delta T_{\Pi} \tilde{T}\right) \left(\overrightarrow{Pe}, \nabla Pe_{y}\right) = GrPr^{2} \left(\frac{1}{\beta \Delta T_{\Pi}} - \tilde{T}\right) - Pr^{2} \frac{\partial \tilde{p}}{\partial \tilde{y}} + Pr\tilde{\nabla}^{2}Pe_{y}, \qquad (2.1.16)$$

$$div\left[\left(1-\beta\Delta T_{\Pi}\tilde{T}\right)\overrightarrow{Pe}\right]=0.$$
(2.1.17)

и безразмерные краевые условия

при
$$\tilde{r} = \frac{1}{2}$$
, $Pe_x = Pe_y = 0$, $\tilde{T} = 1$,
при $\tilde{r} \to \infty$, $Pe_x = Pe_y = 0$, $\tilde{T} = 0$. (2.1.18)
В уравнениях (2.1.13) - (2.1.18) обозначено

$$\overrightarrow{Pe} = \frac{\overrightarrow{wd}}{a}, Pe_x = \frac{w_x d}{a}, Pe_y = \frac{w_y d}{a}$$
- критерии конвективного теплообмена

(Пекле);

$$\tilde{p} = \frac{pd^2}{\rho_{\Gamma}v^2}$$
 - безразмерное давление;

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ
Изм.И	Лист	№ документа№	ПодписьП	Дата	

$$Gr = \frac{g\beta d^3 (T_{\Pi} - T_{\Gamma})}{v^2}$$
 - критерий подъемной силы (Грасгофа);

$$Pr = \frac{v}{a}$$
 - критерий физических свойств (Прандтля);

$$Nu_{\varphi} = \frac{\alpha_{\varphi}d}{\lambda}$$
 - локальный критерий теплоотдачи (Нуссельта);

$$v = \frac{\mu}{\rho_{\Gamma}}$$
 - кинематическая вязкость газа;

Критерии Nu_{ω} , Pe_x , Pe_y , \tilde{T} , \tilde{p} могут рассматриваться как новые зависимые переменные (числа подобия), \tilde{x} и \tilde{y} - как новые независимые переменные, а критерии Gr, Pr, $\beta \Delta T_{\Pi}$ - как новые постоянные (критерии подобия).

Из уравнений (2.1.13) - (2.1.17) и краевых условий (2.1.18) следует, что

$$\tilde{T} = f_I \left(\tilde{x}, \, \tilde{y}, Gr, Pr, \, \beta \varDelta T_{II} \right), \qquad (2.1.19)$$

или в полярных координатах

Изм.И

Лист

N⁰

$$Nu = f_2(\tilde{r}, \varphi, Gr, Pr, \beta \Delta T_{\Pi}). \qquad (2.1.20)$$

В большинстве случаев ограничиваются изучением среднего коэффициента теплоотдачи

$$\overline{\alpha} = \frac{1}{\pi} \int_{0}^{\pi} \alpha_{\varphi} d\varphi$$
 или $\overline{Nu} = -\frac{1}{\pi} \int_{0}^{1} \left(\frac{\partial \tilde{T}}{\partial \tilde{r}} \right)_{\tilde{r} = \frac{1}{2}} d\varphi$. (2.1.21)

Подставляя в (2.1.21) выражение для из уравнения (2.1.19), получим

$$\overline{Nu} = f_3(Gr, Pr, \beta \Delta T_{\Pi}). \qquad (2.2.22)$$

Если силы инерции пренебрежительно малы по сравнению с силами вязкости и гравитационными силами, то левую часть уравнения (2.1.15) и (2.1.16) можно принять нулю. Тогда вместо (2.1.22), имеем уравнение

$$Nu = f_4 (Gr \cdot Pr, \beta \Delta T_{II}). \qquad (2.1.23)$$

				Лист
			ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	20
документа№	ПодписьП	Дата		29

Выполненные до сих пор исследования не обнаруживают непосредственного влияния $\beta \Delta T_{II}$ на теплообмен при естественной конвекции, поэтому вместо (2.1.23) можно пользоваться уравнением:

$$\overline{Nu} = f_5 (Gr \cdot Pr). \tag{2.2.24}$$

Нахождение зависимости (2.1.24) и является задачей экспериментального исследования теплообмена при свободной конвекции.

Уравнения (2.1.19) - (2.1.24) получены в предположении, что теплофизические свойства а, v, μ постоянны. В действительности теплофизические параметры зависят от температуры. Чтобы учесть хотя бы приближенно эту зависимость, физические параметры относят к некоторой искусственно подобранной температуре, называемой определяющей. Определяющая температура выбирается так, чтобы при наименьшем разбросе опытных точек получить наиболее простую зависимость \overline{Nu} от Gr и Pr в возможно более широком интервале изменения последних.

Как показывает опыт, в данном случае наилучшие результаты дает вычисление определяющей температуры по формуле:

$$T_{o} = \frac{1}{2} \left(T_{\Pi} + T_{\Gamma} \right). \tag{2.1.25}$$

Выше при анализе условий подобия теплообмен излучением не принимался во внимание. Конвективный теплообмен можно рассматривать независимо от лучистого теплообмена лишь в тех случаях, когда среда, окружающая тело, абсолютно прозрачна или совершенно не прозрачна для тепловых лучей. Если эти условия не выполняются, оба процесса должны рассматриваться совместно. В нашем случае цилиндр находится в воздухе, который не поглощает лучистой энергии. Тогда общее количество тепла, которое отдает цилиндр с боковой поверхности за счет конвекции и излучения, равно:

$$Q = \overline{\alpha} \left(T_{\Pi} - T_{\Gamma} \right) F + \varepsilon_{np} \sigma_0 \left(T_{\Pi}^4 - T_{oc}^4 \right) F, \qquad (2.1.26)$$

Изм.И	Лист	№ документа№	ПодписьП	Дата

ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.

где $F = \pi dL$ - площадь боковой поверхности цилиндра диаметром dи длиной *L*;

σ₀ - постоянная Стефана-Больцмана;

 T_{II} - абсолютная температура поверхности цилиндра;

*T*_{*oc*} - абсолютная температура тел, окружающих цилиндр;

 \mathcal{E}_{np} - приведенная степень черноты поверхности цилиндра, которая рассчитывается по формуле

$$\varepsilon_{np} = \frac{1}{\frac{1}{\varepsilon} + \frac{F}{F_{oc}} \left(\frac{1}{\varepsilon_{oc}} - 1\right)},$$
(2.1.27)

где ε и $_{\varepsilon_{oc}}$ - степени черноты поверхности цилиндра и окружающих тел.

Обычно $F \approx F_{oc}$, а ε_{oc} немногим меньше 1, поэтому $\varepsilon_{np} \approx \varepsilon$. Кроме того, обычно можно принять $T_{oc} \approx T_{\Gamma}$. Подставляя в (2.1.26) вместо \mathcal{E}_{np} и T_{oc} ИХ приближенные значения, получим следующую формулу для вычисления коэффициента теплоотдачи

$$\overline{\alpha} = \frac{Q}{(T_{\Pi} - T_{\Gamma})F} - \frac{\varepsilon \sigma_0}{T_{\Pi} - T_{\Gamma}} (T_{\Pi}^4 - T_{\Gamma}^4). \qquad (2.1.28)$$

Если цилиндр отдает тепло капельной жидкости, то член. учитывающий излучение, в уравнении (2.1.28) не будет присутствовать.

Из уравнений (2.1.24) и (2.1.28) следует, что для экспериментального зависимости (2.1.24) необходимо измерять определения количество переданного тепла Q, температуру поверхности цилиндра T_п и температуру вдали от цилиндра T_{Γ} при различных значениях $\Delta T_{\Pi} = T_{\Pi} - T_{\Gamma}$.

Найденная из опыта зависимость (2.1.24) будет действительна только для теплоотдачи горизонтальных цилиндров при естественной конвекции газа (или жидкости) в том диапазоне чисел Gr и Pr, который наблюдался в опытах.

						Лисі
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	21
Изм.И	Лист	№ документа№	ПодписьП	Дата		51

2.2. Изучение теплоотдачи при вынужденной конвекции

Рассмотрим одиночный круглый цилиндр (трубу), обтекаемый поперечным потоком. Будем считать, что длина цилиндра велика по сравнению с его диаметром $(1 \gg d)$, поверхность цилиндра гладкая, температура поверхности всюду одинакова и равна t_c . Температура t_0 и скорость ω_0 набегающего потока вдали от цилиндра постоянны, причем $t_0 \prec t_c$ Коэффициент теплоотдачи от поверхности цилиндра к жидкости в точке, характеризуемой углом ϕ (рисунок 10), равен;

$$\alpha_{\varphi} = \frac{\lambda}{\mathcal{G}_{c}} \left(\frac{\partial \mathcal{G}}{\partial r} \right)_{r=\frac{d}{2}}, \qquad (2.2.1)$$

где λ - коэффициент теплопроводности жидкости;

$$\mathcal{G} = t - t_o; \ \mathcal{G}_c = t_c - t_o;$$

t - температура жидкости.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	20
Изм.И	Лист	№ документа№	ПодписьП	Дата		32

Из (2.2.1) следует, что для определения α_{φ} необходимо знать поле температур в жидкости вблизи тела. Ограничим задачу случаем, когда жидкость несжимаема, физические параметры не зависят от температуры, а теплота трения и силы тяжести могут не приниматься во внимание (скорости невелики, свободные поверхности отсутствуют). В этом случае температурное поле в жидкости описывается системой уравнений, которые мы запишем в векторной форме:

$$\left(\vec{\omega}, \operatorname{grad} \vartheta\right) = \alpha \nabla^2 \vartheta, \qquad (2, 2, 2)$$

$$\left(\vec{\omega}, \operatorname{grad}\right)\vec{\omega} = -\frac{1}{\rho}\operatorname{grad}\,p + \nu\nabla^{2}\vec{\omega},\tag{2.2.3}$$

$$div\,\vec{\omega} = 0. \tag{2.2.4}$$

Краевые условия будут:

при
$$r = \frac{d}{2}; \omega_x = \omega_y = 0; \ \mathcal{G} = \mathcal{G}_c;$$

 $\Pi \mathbf{p} \mathbf{M} \quad \varphi = \mathbf{0} u \, r \longrightarrow \infty \colon \omega_x = \omega_o; \; \omega_y = \mathbf{0}; \; \mathcal{G} = \mathbf{0}.$

Для приведения уравнений (2.2.1) \div (2.2.4) к безразмерному виду примем в качестве масштабов: для температур \mathscr{G}_c , для скоростей \mathscr{O}_0 , для линейных размеров и координат d. Безразмерные величины будем обозначать соответствующими заглавными буквами. После преобразований получим:

$$Nu_{\varphi} = \left(\frac{\partial\theta}{\partial R}\right)R = 1/2; \qquad (2.2.1a)$$

$$Pe(\vec{W}, grad\theta) = \nabla^2 \theta; \qquad (2.2.16)$$

$$\left(\vec{W}, grad\right)\vec{W} = -gradP + \frac{1}{Re}\nabla^2\vec{W};$$
 (2.2.1B)

В уравнениях (2.2.1a) ÷ (2.2.1в) обозначены:

$$Nu_{\varphi} = \frac{\alpha_{\varphi}d}{\lambda}; Pe = \frac{\omega_0d}{a}; Re = \frac{\omega_0d}{v}; P = \frac{p}{\rho\omega_0^2}; \theta = \frac{9}{9};$$

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	22
Изм.И	Лист	№ документа№	ПодписьП	Дата		33

$$\vec{W} = \frac{\vec{\omega}}{\omega_0}; R = \frac{r}{d}; X = \frac{x}{d};$$

и аналогично остальные величины.

Лист

Изм.И

Так как для несжимаемой жидкости поле скоростей не зависит от давления, то из уравнений (2.1.1а), (2.1.1б) и (2.1.1в) и краевых условий следует, что

$$Nu_{\varphi} = f\left(\operatorname{Re}, Pe, \varphi\right), \qquad (2.2.5)$$

Полученное уравнение требует уточнения. Для простоты выкладок мы считали, что поток, набегающий на тело, не завихрен и, следовательно, скорость набегающего потока постоянна во времени по величине и направлению. Между тем, в практических условиях поток обычно является турбулентным и, следовательно, вихревым по своей природе. Турбулентному потоку свойственны пульсации скорости, оказывающие существенное влияние на теплоотдачу и сопротивление обтекаемого тела.

Если обозначить ω действительную скорость набегающего потока, изменяющуюся во времени, а под ω_0 понимать скорость, осредненную во времени, т. е.

$$\omega_2 = \overline{\omega} = \frac{1}{\tau_1 - \tau_2} \int_{\tau_2}^{\tau_1} \omega d\tau ,$$

(ω_0 постоянна), то разность $\omega - \overline{\omega} = \omega'$ называется пульсацией скорости, а величина

$$\overline{\Delta\omega} = \sqrt{\frac{1}{\tau_1 - \tau_2} \int_{\tau_2}^{\tau_1} (\omega')^2 d\tau} ,$$

называется средней квадратичной пульсацией скорости. Скорость ω_0 будет показывать трубка Пито, установленная впереди тела, а величину $\overline{\Delta \omega}$ можно измерить при помощи термоанемометра.

				Лист
			ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	24
№ документа№	ПодписьП	Дата		34

Анализ процесса с учетом отмеченных свойств турбулентного потока приводит к появлению в уравнении (2.2.5) нового критерия

$$K = \frac{\overline{\Delta \omega}}{\omega_0},$$

характеризующего интенсивность турбулентных пульсаций или, как часто говорят, степень турбулентности набегающего потока. Таким образом, уравнение (2.2.5) примет вид:

$$Nu_{\varphi} = F(Re, Pr, K, \varphi),$$

Средний по поверхности цилиндра критерий Нуссельта, очевидно, будет равен:

$$Nu = \psi(Re, Pr, K),$$

а для газов одинаковой атомности (*Pr* = *const*):

$$Nu = \psi(Re, K).$$

Чтобы установить из опыта зависимость для среднего коэффициента теплоотдачи α или критерия $Nu = \frac{\alpha d}{\lambda}$, достаточно производить измерение следующих величин: количества тепла *Q* которое отдает цилиндр в единицу времени, температур t_c и t_{oc} , скорости ω_0 и средней квадратичной пульсации скорости $\overline{\Delta \omega}$.

Критерий Ре заменен произведением $Pr \cdot Re = Pe$.

Если изготовить цилиндр достаточно длинным или принять меры к устранению потерь тепла с торцов, то можно считать, что полное количество тепла *Q* равно количеству тепла, которое отдает цилиндр с боковой поверхности. Тогда средний по поверхности цилиндра коэффициент теплоотдачи конвекцией будет равен:

$$\alpha = \frac{Q - Q_{u_3}}{\left(t_c - t_0\right) \cdot F}, \left[\frac{Bm}{M^2 \cdot {}^\circ K}\right]$$
(2.2.7)

где *F* - боковая поверхность цилиндра;

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Ізм.И	Лист	№ документа№	ПодписьП	Дата	

*Q*_{из} - поправка на излучение, которая может быть вычислена по формуле:

$$Q_{u3} = \varepsilon C_0 \left[\left(\frac{T_c}{100} \right)^4 - \left(\frac{T_0}{100} \right)^4 \right] F, [Bm]$$
(2.2.8)

здесь є - степень черноты поверхности цилиндра

$$C_0 - 4,9 \left[\frac{Bm}{M^2 \cdot ce\kappa \cdot C} \right];$$

T_c и*T*₀ - абсолютные температуры поверхности цилиндра и набегающего потока воздуха.

Имея а, вычисляют средний критерий:

$$Nu = \frac{\alpha d}{\lambda} \tag{2.2.9}$$

Критерии *Re*, *Pe*, *K* вычисляются по приведенным выше формулам.

При исследовании зависимости (2.2.5) необходимо определять из опыта локальные коэффициенты теплоотдачи α_{φ} в различных точках поверхности цилиндра. Определение α_{φ} возможно двумя методами. Первый метод вытекает из уравнения (2.2.1) и требует измерения градиентов температуры в жидкости на поверхности цилиндра. Эти измерения могут быть выполнены оптическим способом. Другой метод, предложенный Г.Н. Кружилиным и В. А. Швабом, состоит в определении α_{φ} через градиент температур в стенке цилиндра на его внешней поверхности. Рассмотрим его подробнее. Тепловой поток на поверхности цилиндра в точке, характеризуемой углом φ , равен:

$$q_{\varphi} = -\lambda_c \left(\frac{\partial t}{\partial r}\right)_{r=r_2} \tag{2.2.10}$$

где λ_c — коэффициент теплопроводности материала стенки;

 $\frac{\partial t}{\partial r}$ — градиент температур в стенке цилиндра;

*r*₂ — внешний радиус цилиндра.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	26
Изм.И	Лист	№ документа№	ПодписьП	Дата		30
Принято, что температура тел, окружающих цилиндр, приблизительно равна температуре потока воздуха.

Коэффициент теплоотдачи в точке с координатой φ

$$\alpha_{\varphi} = -\frac{\lambda_c}{t_c - t_o} \left(\frac{\partial t}{\partial r}\right)_{r = r_2}$$
(2.2.11)

Из этого уравнения следует, что определение α_{ϕ} сводится к определению поля температур в стенке цилиндра.

Выполним опытный цилиндр полым и будем поддерживать температуру на его внутренней поверхности всюду одинаковой и равной t_{c1} . Температура на внешней поверхности цилиндра t_c , очевидно, будет изменяться по окружности вместе с α_{φ} . Пусть зависимость $t_c = t_c(\varphi)$ определена из опыта и, таким образом, известна. Распределение температур в стенке цилиндра можно определить, решив уравнение Лапласа:

$$\frac{\partial^2 t}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial} + \frac{1}{r^2} \frac{\partial^2 t}{\partial \varphi^2} = 0, \qquad (2.2.12)$$

При краевых условиях:

$$npu \ r = r_1 : t = t_{c1} = const, \ npu \ r = r_2 : t = t_c (\varphi).$$
(2.2.13)

В результате вычислений определяется функция $t = t(r, \varphi)$ а затем по формуле (2.2.12) находится α_{φ} . Опуская математические выкладки, приведем окончательную формулу для вычисления α_{φ} выведенную Г. Н. Кружилиным и В. А.Швабом

$$\alpha_{\varphi} = \frac{\lambda_{c}}{\left[t_{c}\left(\varphi\right) - t_{0}\right]r^{2}} \left[\frac{t_{c1} - a_{0}}{ln\frac{r_{2}}{r_{1}}} - \sum_{n=1}^{n=k} a_{n} \frac{n\left(r_{2}^{2n} + r_{1}^{2n}\right)}{r_{2}^{2n} - r_{1}^{2n}} \cos n\varphi\right] - \frac{Q_{u3}}{F\left(t_{c} - t_{0}\right)},$$

где φ - угол между радиус-вектором данной точки поверхности и направлением потока;

*r*₁ и *r*₂ - внутренний и внешний радиусы цилиндра,

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	27
Изм.И	Лист	№ документа№	ПодписьП	Дата		57

*t*_{*c*1} – температура на внутренней поверхности цилиндра;

 $t_c(\varphi)$ – найденное из опыта распределение температур на внешней поверхности цилиндра (задается в виде кривой, характер которой зависит от числа Рейнольдса и других факторов);

 $a_0, a_1, \dots a_k$ - коэффициенты разложения функции в ряд Фурье коэффициенты a_0, a_1, \dots и. т. д. определяются при помощи гармонического анализа кривой $t_c(\varphi)$;

*t*_c - средняя температура поверхности цилиндра;

 Q_{u_3} - поправка, определяемая по формуле (2.2.8).

Таким образом, определение локального коэффициента теплоотдачи рассмотренным методом требует измерения распределения температур на внешней поверхности цилиндра и температуры t_{c1} на внутренней поверхности при условии, что последняя тем или другим способом поддерживается постоянной. Следует отметить, что термическое сопротивление стенки цилиндра должно быть достаточно большим, в противном случае кривая распределения температур $t_c(\varphi)$ и последующие вычисления будут недостаточно точными.

Перейдем теперь к вопросу о сопротивлении цилиндра.

Сила, с которой поток воздействует на тело, обусловлена двумя факторами:

а) неравномерным распределением давления по поверхности обтекаемого тела

б) трением между поверхностью тела и жидкостью. Поэтому полное сопротивление цилиндра, кг:

$$P = P_{\partial} + P_m \tag{e}$$

где *P*^{*d*} - сопротивление давления,

 P_{m} - сопротивление трения.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	20
Изм.И	Лист	№ документа№	ПодписьП	Дата		38

*P*_∂ представляет собой проекцию равнодействующей сил давления на направление потока, т. е.

$$P_{\partial} = l \int_{0}^{2\pi} p_c \cos \varphi \frac{d}{2} d\varphi, \qquad (\mathbf{x})$$

где d - диаметр цилиндра;

 p_{c} - давление на поверхности цилиндра, кг/м 2

Из уравнения (в) и предшествующих пояснений следует, что безразмерное давление на поверхности цилиндра:

$$P_c = \frac{p_c}{\rho \omega_0^2} = \psi_p(Re, K, \varphi), \qquad (3)$$

Подставляя р_с в уравнение (ж), после преобразований получим:

$$P_{\partial} = c_{\partial} \frac{\rho \omega_0^2}{2} f. \qquad (2.2.14)$$

где $C_{\partial} = \psi_{\partial} (Re, K).$

Величина С_д называется коэффициентом сопротивления давлений.

 $f = d \cdot l$ представляет собой площадь миделевого сечения. Сопротивление трения, т. е. проекция равнодействующей сил трения на направление потока:

$$P_{m} = \int_{0}^{2\pi} \left(\frac{\partial \omega_{\varphi}}{\partial r}\right)_{r=\frac{d}{2}} \sin \varphi \frac{d}{2} d\varphi \tag{I}$$

Где ω_{φ} - составляющая скорости, перпендикулярная радиусу.

Безразмерная скорость:

Изм.И

$$W_{\varphi} = \frac{\omega_{\varphi}}{\omega_0} = \psi_{\omega} \left(Re, K, \varphi \right). \tag{K}$$

Подставляя ω_{φ} из (к) в (и), получим для P_m выражение, аналогичное (2.2.14);

				ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Лист	№ документа№	ПодписьП	Дата	

$$P_m = C_m \frac{\rho \omega_0^2}{2} f, \qquad (2.2.15)$$

$$C_m = \psi_m \left(Re, K \right); \tag{2.2.16}$$

С_{*m*} называется коэффициентом сопротивления трения.

Очевидно, что полное сопротивление цилиндра можно представить в виде:

$$P = C \frac{\rho \omega_0^2}{2} f, \qquad (2.2.17)$$

где

$$C = \Phi_c \left(Re, K \right); \tag{2.2.18}$$

Величина $C = C_{\partial} + C_m$ называется коэффициентом, полного сопротивления.

Рассмотрим два предельных случая.

Если в потоке отсутствуют пульсации скорости (*K*=1) и силами инерции можно пренебречь по сравнению с силами вязкости, то для коэффициентов сопротивления имеем уравнения:

$$C_{\partial} = \frac{const_1}{Re}, C_m = \frac{const_2}{Re}, C = \frac{const}{Re}.$$

Если силами вязкости можно пренебречь по сравнению с силами инерции, то

$$C_m = 0, C = C_{\partial} = \Phi_0(K)$$

Для установления из опыта зависимостей (2.2.14), (2.2.16) и (2.2.18) достаточно производить измерения сил P_{δ} , P_m и p, скорости ω_0 , средней квадратичной пульсации скорости $\overline{\Delta \omega}$ и температур t_0 и t_c (для определения v и p). Сила P может быть измерена непосредственно при помощи аэродинамических весов. Сила P_{δ} находится путем измерения распределения давлений по поверхности цилиндра, а сила P_m обычно определяется, как разность между P и P_n .

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	40
Изм.И	Лист	№ документа№	ПодписьП	Дата		40

2.3. Исследование теплоотдачи при естественной конвекции 3-х трубок.

Для расчета теплоотдачи от трех вертикальных трубок воспользуемся работой Ю. А. Загромова и Ю. А. Короленко.

Процесс теплоотдачи пучков труб в условиях свободной конвекции описывается соотношением

$$Nu = f(Gr, \Pr, \frac{S}{d})$$
(2.3.1.)

Проведено экспериментальное исследование теплоотдачи вертикально ряда в горизонтальных труб в воздушной среде. При этом критерий Pr остается постоянным и зависимость (2.3.1) принимает вид

$$Nu = f(Gr\frac{S}{d}) \tag{2.3.2}$$

Для проведения данного опыта был выбран средний ряд вертикально расположенных трубок. Нагреватели для всех стержней при сборке соединялись последовательно. Питание током нагревателей производилось через иисточник питания АКТАКОМ АТН-4235 на котором можно задавать как напряжение, так и силу тока. Для измерения ЭДС с термопар использовался мультиметр АРРА-305. Для переключения термопар используется переключатель на 24 термопары. Температура окружающей среды измерялась термометром с ценой деления 1°С.

Опыт проводился при установившемся тепловом режиме. В опыте измерялись: мощность потребляемая трубками - N; температура холодного спая t_0 , температура окружающего воздуха t_f ; температура поверхности стержня t_{ω} . Показание каждой термопары снималось трижды в течении 30 минут. Всего было проведено 12 опытов.

Общий расход тепла трубками

$$Q_{\scriptscriptstyle \mathfrak{I} n} = N[Bm]$$

Тепло отданное лучеиспусканием от каждой из трубок

						Ли
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	1
1зм.И	Лист	№ документа№	ПодписьП	Дата		4

Пист

$$Q_{u3n} = C_0 \varepsilon_{np} H_{c\phi} \left[\left(\frac{t_{cm}}{100} \right)^4 - \left(\frac{t_{oc}}{100} \right)^4 \right] \left[Bm \right]$$
(2.3.3)

Где ε_{np} -принятая степень черноты

 $H_{\boldsymbol{c}\boldsymbol{\phi}}$ - взаимная поверхность подсчитывается по формуле

$$H_{c\phi} = 2dl \left(a + arctg \sqrt{a^2 - 1} - \sqrt{a^2 - 1} \right) -$$
для центральной трубки (2.3.4)

$$H_{c\phi} = dl \left(a + arctg \sqrt{a^2 - 1} - \sqrt{a^2 - 1} \right) + \frac{\pi dl}{2} - для крайних трубок$$
(2.3.5)

где $a = \frac{S}{d}$

Изм.И

Лист

Тепло отдаваемое конвекцией

$$Q_{\kappa} = Q - Q_{u3n} [Bm] \tag{2.3.6}$$

Коэффициент теплоотдачи трубок

$$\alpha_{\kappa} = \frac{Q_{\kappa}}{F_{cm}\Delta t_{cm}n} \left[\frac{Bm}{M^2 \cdot C}\right]$$
(2.3.7)

где *F_{cm}*-боковая поверхность трубки; *n*-число трубок.

$$F_{cm} = \pi dl \cdot 10^{-6} \left[M^2 \right]; \Delta t_{cm} = t_{cm} - t_{oc}$$
(2.3.8)

По полученным значениям α_{κ} и t_{cm} были посчитаны критерии *Nu* и *Gr* и построен график в координатах.

$$lgNu_f - lgGr_f \tag{2.3.9}$$

В логарифмических координатах зависимость имеет линейный характер и следовательно может быть описано уравнением

$$lgNu_f = lgC + mlgGr_f \tag{2.3.10}$$

для получения коэффициента С воспользуемся формулой

$$C = k + b \cdot \frac{S}{d} \tag{2.3.11}$$

			ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ
№ документа№	ПодписьП	Дата	

лист 42 Значение *b* определяется из графика полученного опытным путем в работе Ю. А. Загромова и Ю. А. Короленко., как тангенс наклона к оси абсцисс (b=0,08)и (c=0,072).

Таким образом, критериальная зависимость теплообмена при свободной конвекции в вертикальном ряду $\frac{S}{d} = 1,6$ дается уравнением

$$Nu_f = CGr_f^m \tag{2.3.12}$$

где $C = 0,072 + 0,08 \cdot \frac{S}{d}$ а значение $m = 0.38 - 0.02 \cdot \frac{S}{d}$.

таким образом видим что значения C – стремятся к 0,25 а m = 0,47. уравнение приобретает вид:

$$Nu_f = 0.47Gr_f^{0.25} \tag{2.3.13}$$

					መርሰው
Изм.И	Лист	№ документа№	ПодписьП	Дата	$\Psi \mathbf{O} \mathbf{F}$

3. Описание экспериментальной установки.

Рисунок 11 – принципиальная схема экспериментальной стенда: 1 – заслонка, 2 – термоанемометр, 3 – выключатель сети, 4 - выключатель источника питания, 5 – выключатель воздуходувки, 6 – регулятор напряжения, 7 – ролик, 8 – мультиметр, 9 – переключатель термопар, 10 – воздуходувка, 11 – верхняя панель управления, 12 – нижняя панель управления, 13 – рабочий участок, 14 – соединительный шланг, 15 – источник питания.

Установка состоит из рабочего участка (13), где непостредственно происходит процесс теплообмена, на столешнице перед рабочим участком

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	4.4
Изм.И	1 Лист	№ документа№	ПодписьП	Дата		44

располагаются измерительные приборы (мультимер (8) и термоанемометр(2)). Ha передней стенке стенда расположены верхняя и нижняя панель управления. Ha верхней панели управления расположены: общий выключатель сетевого питания (3), выключатель воздуходувки (5) и включатель источника питания (4). Так же на верхней панели управления расположен переключатель термопар (9) который имеет 24 измерительных позиций, каждая позиция соответствует соответствующей термопаре, и два измерительный канала. При смене измерительного канала, используя переключатель термопар можно задействовать в измерении 48 термопар. На нижней панели управления расположена ручка регулирования подачи напряжения (6). Для удобства перемещения стенда на ножках имеются ролики (7). Внутри стенда располагаются источник питания (однофазный ЛАТР)(15) и воздуходувка(10). Воздуходувка соединена c опытным участком соединительным шлангам (14). Внутри трубки на верхней крышке располагается металлическая заслонка (1) для регулирования расхода воздуха.

Изм.И	Лист	№ документа№	ПодписьП	Дата

Рисунок 12 – Экспериментальный участок: 1 – заслонка, 2 - отверстие под датчик термоанемометра, 3 – верхняя крышка, 4 – трубки (калориметры), 5 – соединительный разъем, 6 – трубная доска, 7 – нижняя крышка.

Экспериментальный участок представляет собой сварной металлический каркас квадратным поперечным сечением, обшитый стальным 2мм. Сверху и снизу к каркасу металлическим листом толщиной присоединены крышки(3,7) с входным и выходным штуцером. Внутри каркаса латунных трубок (4) собранных по коридорному типу расположен пучок расположения 3×3, диаметром 25 мм и длинной 312мм. Трубки по краям закреплены кольцевыми уплотнителями на термоизоляционной платформе (5), которая обеспечивает расположение трубок строго по центру экспериментальной части установки.

Изм.И	Лист	№ документа№	ПодписьП	Дата

3.2. Описание основных элементов рабочего участка

Основным элементом экспериментальной установки является теплообменная трубка (калориметр) рисунок 13. Она представляет собой латунную трубку(3), внутри латунной трубки находится нагревательный представляющий собой керамическую трубку (4) с нихромовой элемент проволокой (2) внутри, намотанной по всей длине трубки с спиральной одинаковым шагом витка. На концах латунной трубки присоединены заглушки из асбоцемента (6) это позволяет избежать потери тепла равномерного распределенного по трубки, через торцевые части. Между нагревательным элементом и латунной трубкой имеется зазор в котором уложены хромель-копелевые термопары (5). Термопары впаяна заподлицо в стенку латунной трубки по краям и в центре. Схема расположения закладки термопар показана на рисунке 14. Концы спиралей нагревательного элемента пропущены через торцевые заглушки и намотаны на контактные стержни (1). На противоположном конце трубки через аналогичную заглушку пропущены термопары которые в последствии через разъема (5) рис 12 соединяются с переключателем термопар (1) рисунок 14.

Рисунок 13 - теплообменная трубка (калориметр): 1 – контактные стержни, 2 –спираль из нихрома, 3 – латунная трубка, 4 – керамическая трубка, 5 - хромель-копелевая термопара, 6 - заглушка из асбоцемента.

В эксперименте использовались не все трубки, схема расположения термопар по поверхности трубки с учетом выбранного измерительного канала показана на рисунке 14.

Изм.И	Лист	№ документа№	ПодписьП	Дата

Рисунок 14 – схема закладки термопар: 1- переключатель термопар, 2 – измерительный канал, 3 – мультиметр.

Переключатель (1) имеет 24 позиции и два измерительных канала(2). Измерение производится с помощью выбора соответствующей позиции переключателя и подключение прибора (3) к измерительному каналу. Измерительным прибором для данной установки выступает мультиметр APPA-305. В процессе эксперимента напряжение, подаваемое с источника питания, преобразуется в тепло, которое нагревает латунную трубку. Тепло регистрируется с помощью термопар, которые преобразуют тепловую энергию в ЭДС. ЭДС приходит на контакты переключателя и регистрируется через соответствующий измерительный канал.

Изм И. Пист. № документа№ ПодписьП. Пата					
Изм И Пист № документа№ ПодписьП Лата					
	Изм И	Пист	№ документа№	ПодписьП	Лата

3.3. Принципиальная схема установки при вынужденной конвекции.

Рисунок 15 - Принципиальная схема экспериментальной установки:

 источник питания, 2 - заглушка из асбоцемента, 3 - нагревательный
 элемент, 4 – выходной штуцер, 5 - термоизоляционной платформе, 6 – разъем,
 7 – переключатель, 8 - измерительный прибор мультиметр АРРА-305, 9воздуходувка, 10 – крышка со штуцером, 11 – латунная трубка.

При вынужденной конвекции схема установки отличается только отсутствием верхней, нижней крышек и воздуходувки. В процессе проведения эксперимента напряжение с источника питания (1) поступает на контактные стержни (4) нагревательного элемента, спираль (3) нагреваясь предает свое

Изм.И	Лист	№ документа№	ПодписьП	Дата	

тепло латунной трубки (2). Трубка нагревается и отдает тепло воздуху проходящему из нижней части установки (10) в верхнюю под действием свободной конвекции. Температуру латунной трубки можно определить с помощью хромель-копелевых термопар которые закреплены в стенках латунной трубки по краям и в центре. По краям латунной трубки располагаются заглушки из асбоцемента (6) это позволяет избежать потери тепла через торцевые части трубки. ЭДС с термопар поступает на контакты 24 канального переключателя (7) через разъем (8) И за тем через соответствующий измерительный канал измеряется мультиметром АРРА-305. Показания с мультиметра переводятся с помощью таблиц в значения температуры.

Рисунок 16 – принципиальная схема установки при проведение опыта с свободной конвекцией

1 – источник питания; 2 – латунная трубка; 3 – спираль из нихрома; 4 – контакты нагревательного элемента; 5 – выходная часть установки; 6 - – заглушка из асбоцемента; 7 – 24-х канальный переключатель; 8 – соединительный разъем; 9 – измерительный прибор мультиметр АРРА-305; 10 – входная часть установки.

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Изм.И	Лист	№ документа№	ПодписьП	Дата	

4. Обработка результатов

4.1. Локальное исследование теплоотдачи

Для исследования был выбран средний ряд трубок (2-я, 5-я, 8-я.)

Теплоотдача при нагревании 2-ой трубки

Расчет тепловой мощности поданной на трубку:

$$Q = N = I \cdot U = 6,5 \cdot 0,3 = 1,95[Bm]$$
(4.1.1.)

Расчет коэффициента теплоотдачи:

$$\alpha = \frac{Q}{F_{cm}(t_{cm}t_{oc})} = \frac{1,95}{0,024(33-27)} = 13,5 \left[\frac{Bm}{M^2 \cdot {}^{\circ}C}\right]$$
(4.1.2)

F- площадь теплоотдачи

$$F = \pi dl = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \left[M^2 \right]$$
(4.1.3)

Расчет числа Нуссельта:

$$Nu = \frac{\alpha \cdot d}{\lambda_{e}} = \frac{13,5 \cdot 0,025}{2,64 \cdot 10^{-2}} = 12,78 (\ln Nu = 2,54)$$
(4.1.4)

Расчет числа Грасгофа:

$$Gr = \frac{g\beta(t_{cm} - t_{oc}) \cdot d^{3}}{v_{go3}^{2}} = \frac{9,81 \cdot \frac{1}{300} (33 - 27) \cdot 0,025^{3}}{(15,66 \cdot 10^{-6})^{2}} = 1,67 \cdot 10^{4} (\ln Gr = 9,72) \quad (4.1.5)$$

Расчет тепловой мощности поданной на трубку:

$$Q = N = I \cdot U = 12 \cdot 0, 6 = 7, 2[Bm]$$

Расчет коэффициента теплоотдачи:

$$\alpha = \frac{Q}{F_{cm}(t_{cm}t_{oc})} = \frac{7,2}{0,024(48-27)} = 14,28 \left[\frac{Bm}{M^2 \cdot {}^{\circ}C}\right]$$

F- площадь теплоотдачи

$$F = \pi dl = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \lfloor m^2 \rfloor$$

Расчет числа Нуссельта:

$$Nu = \frac{\alpha \cdot d}{\lambda_e} = \frac{14,28 \cdot 0,025}{2,64 \cdot 10^{-2}} = 13,52 (\ln Nu = 2,6)$$

Расчет числа Грасгофа:

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	51
Изм.И	Лист	№ документа№	ПодписьП	Дата		51

$$Gr = \frac{g\beta(t_{cm} - t_{oc}) \cdot d^{3}}{v_{_{603}}^{2}} = \frac{9,81 \cdot \frac{1}{300} (48 - 27) \cdot 0,025^{3}}{(15,66 \cdot 10^{-6})^{2}} = 4,37 \cdot 10^{4} (\ln Gr = 10,68)$$

Расчет тепловой мощности поданной на трубку: Расчет тепловой мощности поданной на трубку:

$$Q = N = I \cdot U = 20 \cdot 0,93 = 18,6[Bm]$$

Расчет коэффициента теплоотдачи:

$$\alpha = \frac{Q}{F_{cm}(t_{cm}t_{oc})} = \frac{18,6}{0,024(81-27)} = 14,35 \left[\frac{Bm}{M^2 \cdot {}^{\circ}C}\right]$$

F- площадь теплоотдачи

$$F = \pi dl = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \left[M^2 \right]$$

Расчет числа Нуссельта:

$$Nu = \frac{\alpha \cdot d}{\lambda_e} = \frac{18, 6 \cdot 0,025}{2, 64 \cdot 10^{-2}} = 13,59 (\ln Nu = 2, 61)$$

Расчет числа Грасгофа:

$$Gr = \frac{g\beta(t_{cm} - t_{oc}) \cdot d^{3}}{v_{go3}^{2}} = \frac{9,81 \cdot \frac{1}{300}(81 - 27) \cdot 0,025^{3}}{(15,66 \cdot 10^{-6})^{2}} = 11,25 \cdot 10^{4} (\ln Gr = 11,63)$$

Расчет тепловой мощности поданной на трубку:

$$Q = N = I \cdot U = 22 \cdot 1,05 = 22,22[Bm]$$

Расчет коэффициента теплоотдачи:

$$\alpha = \frac{Q}{F_{cm}(t_{cm}t_{oc})} = \frac{23,1}{0,024(93-27)} = 14,58 \left[\frac{Bm}{M^2 \cdot {}^{\circ}C}\right]$$

F- площадь теплоотдачи

$$F = \pi dl = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \left[M^2 \right]$$

Расчет числа Нуссельта:

$$Nu = \frac{\alpha \cdot d}{\lambda_e} = \frac{14,58 \cdot 0,025}{2,64 \cdot 10^{-2}} = 13,8 (\ln Nu = 2,62)$$

Расчет числа Грасгофа:

					ФЮРА.311600.001.І
Изм.И	Лист	№ документа№	ПодписьП	Дата	

ЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.

$$Gr = \frac{g\beta(t_{cm} - t_{oc}) \cdot d^{3}}{v_{_{603}}^{2}} = \frac{9,81 \cdot \frac{1}{300} (93 - 27) \cdot 0,025^{3}}{(15,66 \cdot 10^{-6})^{2}} = 13,58 \cdot 10^{4} (\ln Gr = 11,83)$$

Теплоотдача при нагревании 5-ой и 8-ой трубки велась по той же схеме. График результатов на рисунке 17.

Рисунок 17 - диаграмма зависимости критерия Нуссельта от критерия Грасгофа при нагреве одной трубки.

4.2. Расчет 3-х вертикально расположенных горизонтальных трубок.

Расчет тепловой мощности

$$Q_{_{3,1}} = 6,5.0,3 = 1,95 \ [Bm] \tag{4.2.1}$$

Расчет тепла отдаваемого лучеиспусканием

$$Q_{u_{33}} = 5,67 \cdot 10^{-8} \cdot 0,22 \cdot 0,404 \left[\left(\frac{308}{100} \right)^4 - \left(\frac{300}{100} \right)^4 \right] = 4,53 \cdot 10^{-8} \left[Bm \right]$$
(4.2.2)

$$H_{c\phi} = 0,025 \cdot 0,304 \left(1,6 + arctg\sqrt{1,6^2 - 1} - \sqrt{1,6^2 - 1}\right) + \frac{3,14 \cdot 0,025 \cdot 0,304}{2} = 0,404$$

$$a = \frac{0,04}{0,025} = 1,6 \tag{4.2.3}$$

Расчет тепла переданного конвекцией

$$Q_{\kappa} = 1,95 - 4,53 \cdot 10^{-8} - 1,949 [Bm]$$
(4.2.4)

Расчет коэффициента теплоотдачи

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	52
Изм.И	Лист	№ документа№	ПодписьП	Дата		55

$$\alpha_{\kappa} = \frac{1,94}{0,024 \cdot 8 \cdot 3} = 3,38 \left[\frac{Bm}{m^2 \cdot {}^{\circ}K} \right]$$
(4.2.5)

Площадь теплообменной поверхности

$$F = \pi dl = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \left\lceil m^2 \right\rceil$$
(4.2.6)

Разница температур

$$\Delta t_{cm} = 35 - 27 = 8 \tag{4.2.7}$$

$$c = 0,072 + 0,08 \cdot \frac{0,04}{0,025} = 0,2. \tag{4.2.8}$$

$$m = 38 - 0.02 \cdot \frac{0.04}{0.025} = 0.348 \approx 0.35$$
 (4.2.9)

Рисунок 18 – диаграмма зависимости критерия Нуссельта от критерия Грасгофа при нагреве трех трубок.

4.3. Расчет теплоотдачи при нагреве всех трубок

Общее количество тепла, которое отдает каждая трубка с поверхности за счет конвекции:

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	51
Изм.И	Лист	№ документа№	ПодписьП	Дата		54

$$Q = \frac{U_{Hazp}^2}{R} = \frac{(6,5)^2}{20} = 2,11 Bm, \qquad (4.3.1)$$

где U_{нагр} – напряжение на нагревателе

R – сопротивление нагревателя

Вычислим средний по поверхности цилиндра коэффициент теплоотдачи конвекцией без учета потерь на излучение:

$$\alpha = \frac{Q}{(t_c - t_0)F} = \frac{2.11}{(35 - 27) \cdot 0.024} = 11 Bm/m^2 K$$
(4.3.2)

где *t*_c – температура стенки

*t*₀ – температура окружающей среды

F - площадь боковой поверхности цилиндра;

$$F = \pi \cdot d \cdot l = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \ \text{m}^2$$

Находим критерий Нуссельта по данным экспериментального исследования:

$$Nu_{pacy} = \frac{\alpha \cdot d}{\lambda_{_{603}}} = \frac{0,275}{0,0264} = 10,41$$
(4.3.3)

Где d - диаметр цилиндра

 $\lambda_{\mbox{\tiny BO3}}$ - коэфициент теплопроводности воздуха

Находим критерий подъемной силы Грасгофа и критерий физических свойств Прандтля:

$$Gr = \frac{g\beta d^{3}(T_{\Pi} - T_{\Gamma})}{v^{2}} = \frac{9.81 \cdot \left(\frac{1}{300}\right) \cdot 0.025^{3} \cdot (34 - 27)}{1.56 \cdot 10^{-8}} = 11967$$
(4.3.4)

где

v - коэффициент кинематической вязкости

g - ускорение силы тяжести, M/c^2 .

$$Pr = \frac{v}{a} = 0,701.$$

Находим критерий Нуссельта по литературным данным:

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	55
Изм.И	Лист	№ документа№	ПодписьП	Дата		55

$$Nu = c \cdot (Gr \cdot Pr)^m = 5,17,$$
 (4.3.5)

где c = 0,54, а m = 0,25.Вычислим средний по поверхности цилиндра коэффициент теплоотдачи конвекцией с учетом потерь на излучение:

$$\alpha_{_{H3Л}} = \frac{Q - Q_{_{H3}}}{(t_c - t_0)F} = \frac{2,11 - 0,269}{(35 - 27) \cdot 0,024} = 9,58, \qquad (4.3.6)$$

*Q*_{из} поправка на излучение, которая может быть вычислена по формуле:

$$Q_{u_3} = \varepsilon \sigma_0 (T^4 - T_0^4) F = 0,22 \cdot 5,67 \cdot 10^{-8} (308^4 - 300^4) \cdot 0,024 = 0,269 Bm,$$
(4.3.7)

здесь є - степень черноты поверхности цилиндра

$$\sigma_0 = 5,67 \cdot 10^{-8} \text{ BT/m}^2 \cdot \text{K}^4;$$

T_c и *T*₀ - абсолютные температуры поверхности цилиндра и набегающего потока воздуха.

Имея $\alpha_{_{u_{37}}}$, вычисляют средний критерий Нуссельта, учитывая потери на излучение:

$$Nu_{u_{37}} = \alpha_{u_{37}} \cdot \frac{d}{\lambda_{_{603}}} = 9,58 \cdot \frac{0,025}{0,0264} = 9,1.$$
(4.3.8).

По полученным значениям α были подсчитаны критерии Nu и Gr, а также построен график (рисунок) в координатах $ln(Nu) - ln(Gr \cdot Pr)$.

Как видно, зависимость имеет линейный характер. И может быть описана уравнением:

$$\ln Nu = \ln C + m \cdot \ln Gr. \tag{4.3.9.}$$

Отсюда C = 0,42; m = 0,299. Принимаем m = 0,3. Следовательно, искомая нами критериальная зависимость примет вид:

$$Nu = 0,42(Gr \cdot Pr)^{0,3}$$
(4.3.10)

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Изм.И	Лист	№ документа№	ПодписьП	Дата	

Рисунок 18 - Зависимость критерия Нуссельта от критерия Грасгофа при свободном обтекании горизонтального пучка труб.

4.4. Теплоотдача при вынужденной конвекции

Общее количество тепла, которое отдает каждая трубка с поверхности:

$$Q = \frac{U^2_{nazp}}{R} = \frac{42,25}{20} = 2,11 \ Bm, \tag{4.4.1}$$

где U_{нагр} – напряжение поданное с источника питания

R – сопротивление каждого нагревателя

Рассчитываем средний коэффициент теплоотдачи конвекцией:

$$\alpha = \frac{Q}{(t_c - t_0)F} = \frac{2.11}{(34 - 27) \cdot 0.024} = 12,55 \ Bm/m^2 K$$
(4.4.2)

где *t*_c – средняя температура трубок

*t*₀ – температура окружающей среды

F - площадь теплообменной поверхности трубки;

$$F = \pi \cdot d \cdot l = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \ \text{m}^2$$

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	57
Изм.И	Лист	№ документа№	ПодписьП	Дата		57

Находим критерий Нуссельта по данным экспериментального исследования:

$$Nu_{pac4} = \alpha \cdot \frac{d}{\lambda_{_{603}}} = 12,55 \cdot \frac{0,025}{0,0264} = 11,88, \tag{4.4.3}$$

где *d* – внешний диаметр трубки

Вычисляем число Рейнольдса и определяем, какое течение воздуха:

$$Re = w_0 \cdot \frac{d}{v_{_{603}}} = 2 \cdot \frac{0,025}{1,56 \cdot 10^{-8}} = 3205128, \tag{4.4.4}$$

Где *w*₀ - набегающий поток воздуха

*v*₆₀₃ - коэффициент кинематической вязкости воздуха

Находим критерий Нуссельта по литературным данным:

$$Nu = cRe^{m} = 0,27 \cdot (2577)^{0.63} = 3388$$
(4.4.5)

где *c* = 0,27, а *m* = 0,63.

Данная формула преобразована от:

$$Nu = 0,27Re^{0.63} \operatorname{Pr}^{0.36} \cdot \left(\frac{\operatorname{Pr}_{oc}}{\operatorname{Pr}_{c}}\right)^{0.25}.$$
 (4.4.6)

Для воздуха в данном интервале температур критерий Прандтля изменяется несущественно, примем *Pr* = 0,701

Рассчитываем среднюю поверхность каждого цилиндра коэффициент теплоотдачи конвекцией с учетом потерь на излучение:

$$\alpha = \frac{Q - Q_{u_3}}{(t_c - t_0)F} = \frac{2,11 - 0,234}{(34 - 27) \cdot 0,024} = 11,16, \tag{4.4.7}$$

Где *F* - площадь боковой поверхности цилиндра;

$$F = \pi \cdot d \cdot l = 3,14 \cdot 0,025 \cdot 0,304 = 0,024 \, \text{m}^2 \tag{4.4.8}$$

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	50
Изм.И	Лист	№ документа№	ПодписьП	Дата		38

 Q_{u_3} - поправка на излучение, которая может быть вычислена по формуле:

$$Q_{u_3} = \varepsilon \sigma_0 (T^4 - T_0^4) F = 0,22 \cdot 5,67 \cdot 10^{-8} (307^4 - 300^4) \cdot 0,024 = 0,234 Bm,$$
(4.4.9)

здесь *є* - степень черноты поверхности цилиндра

$$\sigma_0 = 5.67 \cdot 10^{-8} Bm/M^2 \cdot K^4;$$

T_c и *T₀* - абсолютные температуры поверхности цилиндра и набегающего потока воздуха.

Имея $\alpha_{_{u_{3n}}}$, вычисляем средний критерий Нуссельта, учитывая потери на излучение:

$$Nu_{u_{37}} = \alpha_{u_{37}} \cdot \frac{d}{\lambda_{_{603}}} = 11,16 \cdot \frac{0,025}{0,0264} = 10,56$$
(4.4.10)

Рисунок 19 - зависимость критерия Нуссельта от числа Рейнольдса при вынужденном обтекании горизонтального трубного пучка.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	50
Изм.И	Лист	№ документа№	ПодписьП	Дата		39

По полученным значениям α были подсчитаны критерии *Nu* и *Re*, а также построен график в координатах

$$ln(Nu) - ln(Re).$$

Как видно, зависимость имеет линейный характер. И может быть описана уравнением:

$$lnNu = lnC + m \cdot lnRe$$
.

Отсюда c = 0,18; m = 0,48. Следовательно, искомая критериальная зависимость примет вид:

$$Nu = 0,18Re^{0,48}.$$

Данная формула справедлива в интервале $10^3 \prec Re \prec 2 \cdot 10^5$. Однако, она не описывает теплоотдачу всего пучка в целом. Значения коэффициента α для третьего ряда выше, чем для второго, а для второго - выше, чем для первого.

Изм.И	Лист	№ документа№	ПодписьП	Дата	

5. ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ.

5.1. Экономические цели

Изучение особенностей теплоотдачи от трубных пучков является необходимым базисом при решении прикладных вопросов проектирования энергетических установок, при проведении инженерных расчетов И конструировании различной теплотехнической аппаратуры. Разработка данного экспериментального стенда требует определенных человеческих и финансовых вложений в процессе проектирования и монтажа оборудования для проведения эксперимента. Но ее интуитивно понятное устройство наглядно демонстрирует зависимости, изучение которых является одной из приоритетных задач в конструкторских, а также в поверочных расчетах теплообменных аппаратов. Что с одной стороны позволяет достигать ощутимого снижения капитальных затрат за счет экономии материалов для создания теплотехнического оборудования, а с другой стороны повышает эффективность различных теплообменников, труб, поверхностей нагрева.

5.2. График выполнения работ по реализации методики изучения коэффициента теплоотдачи

При водворении в жизнь любого проекта необходимо наиболее оптимальным образом спланировать занятость каждого из участников и сроки выполнения отдельных видов работ.

На начальном этапе составляется полный перечень производимых работ, определяются ответственные лица, а также оптимальное время исполнения. Результатом планирования работ является сетевой, либо линейный график реализации проекта. Наиболее удобным, простым и наглядным способом для этих целей является применение линейного графика. Для его построения составим перечень работ с привязкой к исполнителям, продолжительность выполнения этих работ и сведем их в таблицу 1.

Изм.И	Лист	№ документа№	ПодписьП	Дата

Шифр работы	Наименование работы	Длительность работы t _{ij} , сут	Кол-во работников <i>n_{ij}</i> , чел	Исспо нители
0-1	Получение заказа НИР	1	1	Рук.
1-2	Подбор персонала	5	1	Рук.
2-3	Формирование задачи	3	2	Рук., ин-р
3-4	Подбор литературы	10	2	ин-р, :
4-7	Аналитическое представление нахождения коэффициента теплоотдачи	11	1	Лаб-т.
3-5	Изучение методов определения теплоотдачи от пучка труб	7	1	Лаб-т.
5-6	Изучение имеющихся установок	12	1	Лаб-т.
6-7	Моделирование эксперимента на компьютере	20	2	Ин-р, :
7-8	Разработка принципиальной схемы установки	14	1	Ин-р
8-9	Разработка чертежей	12	1	Ин-р
9-10	Приобретение необходимых комплектующих	15	1	Ин-р
10-11	Организация рабочего места. Подготовка необходимого места для лабораторной установке	7	2	Рук., ин-р
9-12	Подготовка рабочего места	7	2	Ин-р, лаб-т
12-13	Сборка и монтаж экспериментального стенда	15	1	Лаб-т
13-14	Сборка опытного участка	14	1	Лаб-т
14-15	Монтаж опытного участка	5	1	Лаб-т
15-16	Установка и проверка нагревателя воздуха	5	1	Лаб-т
16-11	Проверка лабораторного стенда на установленные требования электробезопасности	2	2	Ин-р, лаб-т
		7	1	Поб т

Таблица 1 – параметры работ сетевого графика.

Продолх	кение таблицы 1			
17 18	Проведение опытов при	7	2	Ин-р,
17-10	свободной конвекции	7	2	лаб-т
18 10	Проведение опытов при	7	2	Ин-р,
10-19	вынужденной конвекции	7	Δ	лаб-т
19-21	Обработка полученных данных	5	1	Ин-р,
18 20	Анализ результатов	2	1	Ин-р,
10-20	экспериментов	2	1	
20.21	Написание заключения о	5	1	Ин-р,
20-21	проделанной работе	5	1	
21-22	Составление сметы	5	1	Рук-ль
22-23	Передача стенда заказчику	1	1	Рук-ль

5.3. Расчет стоимости установки

К данной статье расходов относятся стоимость расходных материалов, готовых изделий, заказное оборудование для исследовательских работ и других товарно-материальных ценностей, необходимых для проведения работ по организации эксперимента по изучению теплоотдачи. Цена материальных

Изм.И	Лист	№ документа№	ПодписьП	Дата

ресурсов определяется по соответствующим прейскурантам и приведена в таблице 2.

Таблица 2 – Расходные материалы для установки по измерению коэффициента теплоотдачи

п/п	Наименование оборудования	Цена единицы оборудования, тыс. руб.	Кол-во единиц оборудования	Общая стоимость оборудования, тыс.руб.
1	Измерительная платформа	73,2	1шт.	73,2
2	Модуль для подключения термопар	33,15	1шт.	33,15
3	Уголок стальной 50×50×3	117 руб./м	10 м	1,17
4	Щит мебельный	1700/ кв. м	3 кв. м	5,1
5	Провод установочный ПВ-3, 1×0,75 кв. мм	7 руб./м	30 м	0,21
6	Припой ПОС-61 с канифолью	0,3/м	1 м	0,3
7	Цифровой мультиметр АРРА 305	17444 руб./шт.	1 шт.	17,444
8	Анемометр «Актаком АТТ- 1006»	23,9	1шт	23,9
9	ИТОГО:			154,474

зм.И	Лист	№ документа№	ПодписьП	Дата

Т

Т

Τ

лист 64 5.3.1. Расчет полной заработной платы

Данная статья расходов включает заработную плату научного руководителя и дипломанта, а также ежемесячные премии, входящие в фонд заработной платы. Расчет основной заработной платы выполняется на основе трудоемкости выполнения каждого этапа и величины месячного оклада исполнителя.

Среднедневная заработная плата рассчитывается по формуле:

$$3_{\mathcal{A}H} = \frac{3_M \cdot M}{F_{\mathcal{A}}},\tag{5.1}$$

где 3_м – месячный должностной оклад работника, руб.;

М – количество месяцев работы без отпуска в течение года:

при отпуске в 48 дней *M* = 10,4 месяца, 6 - дневная неделя;

*F*_д – действительный годовой фонд рабочего времени

Расчеты затрат на основную заработную плату приведены в таблице 3. Также был принят во внимание коэффициент, учитывающий коэффициент по

премиям $K_{\Pi P} = 1,2$ и районный коэффициент $K_{PK} = 1,3$;

 $(K = 1 \cdot K_{\Pi P} \cdot K_{PK} = 1 \cdot 1, 2 \cdot 1, 3 = 1, 56).$

Таблица 3 – Затраты на основную заработную плату

			Срелнелневная	Затраты		Фонл
Ис	сполнитель	Оклад, руб./мес.	ставка, руб /лень	времени, лни	Коэффициент	з/платы, руб
			рус., день	дни 1		py0.
Ha	аучный	22264	876 5	22	1 56	17518
ру	ководитель	23204	020,5		1,50	42340
	Итого:		L			42548
	Помимо	фонда осно	овной заработ	ной пла	гы формируетс	я фонд
	дополнительно	й заработной	платы, из к	оторого	осуществляется	оплата
						Лисп
Изм И	Пист № документаМ	о ПодписьП Лата	ФЮРА.311600	0.001.ПЗ	ПЗФЮРА.311600.00	1.ПЗ. 65
1311.11		- поопасы п датта				

очередных отпусков и другие выплаты, не связанные с рабочим временем. Фонд дополнительной заработной платы обычно определяется в процентах

(8-10%) от фонда основной заработной платы:

 $C_{\text{доп}} = (0, 08...0, 1) \cdot C_{\text{OCH}} = 0, 1 \cdot 42548 = 4255$ руб.

Таким образом, затраты на полную заработную плату составили:

$$C_{\Pi O \Pi} = C_{O C H} + C_{\Pi O \Pi} = 42548 + 4255 = 46803$$
руб.

Накладные расходы составляют 10% от основной заработной платы: $C_{\rm H} = 4254, 8 \ py 6.$

5.3.2. Расчет отчислений от заработной платы

Затраты по этой статье составляют отчисления на социальные нужды.

Отчисления по заработной плате определяются по следующей формуле:

 $C_{cou} = K_{cou} \cdot C_{non},$

где K_{cou} – коэффициент, учитывающий размер отчислений из заработной платы. Данный коэффициент составляет 30% от затрат на заработную плату и включает в себя:

- отчисления в пенсионный фонд;

- на социальное страхование;

- на медицинское страхование.

Итак, отчисления из заработной платы составили:

 $C_{cou} = 0,3 \cdot 46803 = 14041$ py6.

5.3.3Расчет затрат на электроэнергию

Данный вид расходов включает в себя затраты на электроэнергию при работе оборудования, а также затраты на электроэнергию, потраченную на освещение. Затраты на электроэнергию при работе оборудования для технологических целей рассчитываются по формуле:

$$\mathcal{G}_{OE} = P_{OE} \cdot \mathcal{U}_{\mathcal{G}} \cdot t_{OE}, \tag{5.2}$$

 Лист
 Лист
 № документа№
 ПодписьП
 Дата
 Лист
 Лист
 Лист
 Лист
 Лист
 Дата
 Дата</t

где Э_{об} – затраты на электроэнергию, потребляемую оборудованием, руб.;

*P*_{*OE*} – мощность, потребляемая оборудованием, кВт;

 μ_{2} – тарифная цена за 1 кВт·час, μ_{2} = 1,8 руб./кВт·час;

*t*_{*OE*} – время работы оборудования, час.

Время работы оборудования вычисляется на основе данных для $T_{\rm PZ}$ таблицы 4 для инженера из расчета, что продолжительность рабочего дня равна 8 часов.

Мощность, потребляемая оборудованием, определяется по формуле:

$$P_{OE} = P_{VCT.OE} \cdot K \tag{5.3}$$

где *Р*_{УСТ. ОБ} – установленная мощность оборудования, кВт;

K_c – коэффициент спроса, зависящий от количества, загрузки групп приемников, для технологического оборудования малой мощности *K_c* = 1.

Затраты на электроэнергию для технологических целей приведены в таблице 4.

Таблица 4 – Затраты на электроэнергию для технологических целей

Наименование	Время работы	Потребляемая	Затраты Э _{об} ,
ofonymonauur	оборудования <i>t</i> _{ОБ} ,	мощность P_{OE} ,	nv6
оборудования	час	кВт	руб.
Электропаяльник	36	0,04	2,6
Компрессор	24	2,2	95
Освещение	464	1,2	1002
Итого:			1099

5.3.4 Расчет общей себестоимости разработки

Проведя расчет сметы затрат на разработку, можно определить общую стоимость разработки проекта.

						Лист
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	67
Изм.И	Лист	№ документа№	ПодписьП	Дата		0/

Статья затрат	Условное обозначение	Сумма, руб.
1 Материалы и покупные изделия	$C_{ m MAT}$	154474
2 Полная заработная плата	Спол	46803
3 Отчисления в социальные фонды	$C_{ m COU}$	14041
4 Расходы на электроэнергию	Э	1099
5 Накладные расходы	Сн	21274
6 Итого:		236414

Таблица 5 – Смета затрат на разработку проекта

Таким образом, расходы на разработку составили C = 236414 руб.

5.3.5НДС

НДС составляет 18% от суммы затрат на разработку. Сумма НДС составила 42554руб.

5.3.6 Полная смета затрат на выполнение НИР

Полная смета затрат приведена в таблице 6.

Таблица 6 – Полная смета затрат.

Наименование статей расходов	Статьи	Всего, руб.
	расходов по	
	кодам ЭКР	
Фонд заработной платы основной	211	42548
Фонд заработной платы дополнительной		4255
Фонд заработной платы общий		46803
Начисления на выплаты по оплате труда,	213	14041
30.2 %		

					ФЮР
Изм И П	lucm	No документаNo	ПодписьП	Пата	_

Продолжение таблицы 6.

Командировки: расходы по оплате суточных		300
	212	
транспортные расходы по служебным	222	700
командировкам		
компенсация стоимости жилья	226	-
Оплата услуг связи	221	450
Арендная плата за пользование имуществом	224	1099
Прочие услуги: - в том числе оплата НИР	226	21274
сторонних организаций (не более 50% общего		
объема договора);		
- оплата по договорам гражданско-правового		
характера;		
Увеличение стоимости основных средств	310	-
Увеличение стоимости материальных запасов	340	-
Итого прямые расходы :		88922
Накладные расходы, 10 %		4254,8
НДС, 18 %		7658,64

					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.
Изм.И	Лист	№ документа№	ПодписьП	Дата	

лист 69

6. Социальная ответственность

Характеристика объекта исследования

6.1. Производственная безопасность

6.1.1. Анализ выявленных опасных факторов при разработке и эксплуатации

6.2. Экологическая безопасность

6.3. Безопасность в чрезвычайных ситуациях

6.4. Пожарная безопасность

6.5. Правовые и организационные вопросы обеспечения безопасности.

Изм.И	Лист	№ документа№	ПодписьП	Дата	

7 АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ТЕПЛООБМЕННЫХ ТРУБ ОПЫТНОГО УЧАСТКА

В процессе проведения экспериментальных исследований система контроля температуры призвана решить две крайне важные задачи: определение температуры стенки труб для вычисления коэффициента теплоотдачи, а также обеспечение безопасного температурного режима функционирования стенда. Это обусловлено тем, что при конструктивной подготовке стенда применялись припои с относительно невысокой температурой плавления, поэтому верхний температурный предел эксперимента определен как $T^{MAX} = 100 \, ^\circ C$.

Рисунок 22 - Структурная схема системы контроля температуры

					đ
Изм.И	Лист	№ документа№	ПодписьП	Дата	

7.1. Краткое описание технологической схемы объекта контроля

Опытный участок представляет собой металлический кожух поперечного квадратного сечения. Верхняя и нижняя части, в зависимости от вида эксперимента, имеют либо свободное сообщение с атмосферой, либо закрываются присоединяемыми фланцами. По длине рабочего участка располагается девять теплообменных цилиндров, изготовленных ИЗ латунных труб наружным диаметром d = 25 мм и длиной l = 280 мм, образующих коридорный трубный пучок размером 3×3. Внутри всех цилиндров расположены электрические нагреватели, выполненные из нихромовой проволоки, которая намотана на керамическую трубку с шагом между витками, для обеспечения равномерной одинаковым плотности теплового потока. Зазор между внутренней стенкой латунной трубы и нагревателем заполнен кварцевым песком. Для уменьшения потерь тепла через торцы цилиндра, на его концах установлены заглушки из асбоцемента. К стенке латунной трубы заподлицо с поверхностью припаяны хромель-копелевые термопары.

Выводы от нагревателей и термоэлектрические провода пропущены, для подсоединения к соответствующим элементам схемы питания и измерения, через торцевые заглушки. Питание нагревателей, включенных параллельно, осуществляется от однофазного регулятора напряжения PHO - 250.

7.2. Методы и средства измерения температуры.

Для измерения температуры поверхности труб были выбраны хромель-копелевые термоэлектрические преобразователи, по одному на каждую трубку. Такой выбор обусловлен сравнительно невысокой стоимостью термопар, а также их небольшими габаритами. Измерительный сигнал от них поступает через вход модуля аналогового сигнала КХС-М на МИНИТЕРМ 300.31. приобразователь температуры который под управлением оператора коммутирует термо ЭДС. Данный модуль работает

Изм.И	Лист	№ документа№	ПодписьП	Дата
в составе микропроцессорного регулятора МИНИТЕРМ 300, соединенного интерфейсной связью C2(RS232c) с персональным компьютером. Для контроля температуры на компьютере установлено специализированное программное обеспечение.

Функциональная схема, а также заказная спецификация приборов автоматизированной системы контроля опытного участка экспериментального стенда приведены на листах:

- ФЮРА.421000.003 С1,
- ФЮРА.421000.003 С2.

						Лисі
					ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	72
Изм.И	Лист	№ документа№	ПодписьП	Дата		/3

Заключение

						Лист
14044 14	Ruom	No downoumoNo		Пото	ФЮРА.311600.001.ПЗ ПЗФЮРА.311600.001.ПЗ.	74
VI3M.VI	JIUCM	№ оокумента№	т ююлисы т	дата		

Список использованных источников

						Лист
Изм.И	Лист	№ документа№	ПодписьП	Дата	Ψ IOPA.511000.001.113 113 Ψ 0PA.511600.001.113.	75