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This paper presents a new solution to the frontal face detection problem based on a compact 

convolutional neural networks cascade. Test results on an FDDB dataset show that it is able 

to compete with state-of-the-art algorithms. This proposed detector is implemented using 

three technologies: SSE/AVX/AVX2 instruction sets for Intel CPUs, Nvidia CUDA, and 

OpenCL. The detection speed of our approach exceeds considerably all the existing CPU-

based and GPU-based algorithms. Thanks to its high computational efficiency, our detector 

can process 4K Ultra HD video stream in real time (up to 27 fps) on mobile platforms while 

searching objects with a dimension of 60×60 pixels or higher. At the same time, its pro-

cessing speed is almost independent of the background and the number of objects in a sce-

ne. This is achieved by asynchronous computation of stages in the cascade. 
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1. Introduction 

The need to identify people in millions of photos uploaded daily to social services has led to sig-

nificant progress in the solution of the problem of detecting faces. New methods are distinguished by 

invariance with respect to the pose and face expression. Moreover, they are also capable of operating 

in conditions of complex illumination and strong occlusion. However, many algorithms that demon-

strate outstanding performance on a face detection benchmark have very high computational complex-

ity. This circumstance prevents their use for video analysis. 

The object of our interest is megapixel video analytics systems that require fast and accurate face 

detection algorithms. Such systems run on equipment whose computing power is often greatly limited 

due to the increasing demands for a compact form factor and a lower cost. Because of this, the in-

crease of frame rate or frame resolution is often carried out at the expense of the performance of detec-

tion (such as large size objects search only, frames skipping, etc.). Moreover, the use of cameras capa-

ble of shooting video with a 4K Ultra HD resolution increases the amount of generated data by several 

times. In conditions when it is impossible to reduce the search area (for example, by motion analysis), 

even optimized detectors based on Viola-Jones method are unable to operate effectively at such a vid-

eo stream resolution. 

Despite the fact that the development of modern face detection methods is progressing towards an 

increased invariance with respect to the head position and the occlusion, we are considering here only 

a particular problem of frontal faces detection. Our goal is to achieve a high performance of detection 

at a low computational complexity of the detector, which is difficult to achieve when dealing with this 

task in the framework of the most general definition of the problem. At the same time, the frontal posi-

tion of a person in relation to the camera is natural for many scenarios of using video analytics sys-

tems. That is why these detectors are so popular in practical applications. 

In this paper, we present a frontal face detector based on a cascade of a convolutional neural net-

work (CNN) [12] with a very small number of parameters. Due to the natural parallelism, a small 

number of cascade stages and a low-level optimization, it is capable of processing a real-time 4K Ultra 

HD video stream on mobile GPU when searching for faces of 60×60 pixels or higher, and, at the same 

time, it is 9 times faster than the detector based on Viola-Jones algorithm in the OpenCV implementa-

tion (http://opencv.org). Despite the compact CNN architecture, test results on a Face Detection Data 

Set and Benchmark (FDDB) dataset [8] show that the performance of our CNN cascade is comparable 

to that of some state-of-the-art frontal face detectors, and its speed surpasses that of any existing CPU 

and GPU algorithms. 
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2. Related work 

It is not possible to build a simple and rapid detector with a high precision and response to all the 

possible face image variations because of the big interclass variance, the variety of ambient light con-

ditions, and the complex structure of the background. The standard approach to solving this problem is 

to use different models for each pose of the head [19, 32, 35]. It has been shown recently that, thanks 

to their strong generalization capability, deep CNNs can study the whole variety of two-dimensional 

projections of a face within the limits of a single model [3, 16]. However, the fact that the proposed 

CNN architectures contain several millions of parameters makes them unsuitable for use in low-power 

computing devices. Methods based on deformable part models [19, 33], template comparison based 

models [15], and 3D face models [1] are also unable to work with HD video streams in real time, even 

to solve the problem of frontal faces search only. Detectors that use manually designed features to de-

scribe objects and cascades of boosting classifiers to detect them remain the best solution in terms of 

processing speed [26]. 

Many different descriptors were proposed to describe facial features. The most famous ones are 

rectangular Haar-like features [30] which have shown to be effective for building frontal face detectors 

and to have a high extraction rate achieved by means of using the integral image. Textural MCT [4, 

27] and LBP [29] features, which code pixel intensity in the local domains, have invariance with re-

spect to monotonic light change. LBP in combination with HOG features [24] demonstrated good gen-

eralizing properties, and they are able to process complex non-facial images better than the Haar-like 

features. B. Jun et al. [10] proposed LGP and BHOG features built on the principles of LBP. LGPs are 

resistant to local changes of light along the borders of the objects, and BHOGs are resistant to local 

pose changes. 

Multidimensional SURF descriptors [17] in combination with the logistic regression make it pos-

sible to prepare cascades containing only a few hundreds of weak classifiers. Because of this, SURF 

cascades exceed the speed of Haar cascades which typically consist of thousands of weak classifiers. 

A simple comparison of pixel intensities can also be used for faces detection [2, 18]. The detector pro-

posed in [18] has a high execution speed since it does not require any additional processing, including 

the construction of the image pyramid. 

Usually, boosting cascades are trained using grayscale images for the solution of face detection 

problem. M. Mathias et al. [19] and B. Yang et al. [35] used combinations of different channels (gray-

scale, RGB, HSV, HOG descriptors and other) for the training of classifiers. The taking into account 

of both color and geometric information allowed improving the performance of face detection on a 

complex background. 

Recently, H. Li et al. [16] have built a CNN cascade whose speed is the highest among the multi-

view face detectors. Similarly to Viola-Jones algorithm, a simple CNN was used for coarse image 

scanning, while more complex models estimated carefully each selected region. However, despite the 

significant reduction of the computational complexity (in comparison with the single CNN model [3]), 

this detector is still incapable of processing an HD video stream even on a powerful GPU. 

It will be shown further that, with a view to solving the frontal faces detection problem, our CNN 

cascade may surpass boosting cascades not only in performance but also in speed. The CNN densely 

extracts high-level features directly from raw data, without requiring any preliminary processing apart 

from building the image pyramid. Besides, the CNN calculation algorithm can be easily vectorized 

using SIMD instructions of CPU, and it can be adapted perfectly to the massively parallel architecture 

of GPU. 

3. Compact convolutional neural network cascade 

Similarly to [16], we use a CNN to build a cascade detector of frontal faces. This work is based on 

the following key ideas: 

1) A small number of cascade stages. Our CNN cascade has only 3 stages. For example, the 

shortest boosting cascade consists of 4 stages and uses MCT descriptors for the extraction of facial 

features [4]. 
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2) The compact design of the CNN architectures. The total number of feature maps in all the 

CNNs is 355 (in [16] it amounts to 1,949); however, a sample with a smaller variation of face images 

was used for training the model. 

3) Asynchronous execution of the stages. A particular design of the detector makes it possible to 

execute the second and the third stages of the cascade in parallel with the first one on different pro-

cessing units. Due to the fact that 99.99% of sliding window positions are rejected already at the first 

operation stage, in this mode the detector is capable of processing video frames in constant time, re-

gardless of the content of the image. 

4) Optimization. During the implementation of the detector, three technologies were used: SIMD 

extension of CPU, CUDA, and OpenCL. The SIMD (CPU) and CUDA implementations of the CNN 

were optimized for each of the network architectures used. The giving up on the traditional approach 

of the CNN calculation through the organization of a stack of layers, combined with optimization at 

the assembler level, made it possible to achieve the code execution performance which was close to 

the peak performance of hardware. 

3.1 CNN structures 

The CNN architectures composing our cascade are shown in Figure 1. Each CNN solves the prob-

lem of a background/face binary classification and contains 797 (CNN1), 1,819 (CNN2) and 2,923 

(CNN3) parameters. Similarly to the Convolutional Face Finder [5] architecture, the lack of fully-

connected layer gives a 50% increase in the speed of the forward propagation procedure. The convolu-

tion stride is 1 pixel, and the pooling stride is 2 pixels. Rational approximation of a hyperbolic tangent 

is used as an activation function: 
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The relative error of the following approximation does not exceed 1.8% on the entire number axis, 

and only 11 instructions are required to calculate it. Popular ReLU functions turned out to be less effi-

cient in our experiments. It should be noted that CNN1 contains the smallest number of filters in com-

parison with previously proposed network architectures for face detection [3, 5, 16, 23]. 
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Fig. 1. CNN structures 

3.2 Training process 

For the CNN training, aligned face images were taken from YouTube Faces Database [31]. This 

dataset contains face tracks of 1,595 people cut out from 3,425 videos (Fig. 2). Background images 

were selected from random YouTube videos in several stages during the preparation of models. Face 

areas (such as eyes, nose, etc.) were also added to the negatives. The total volume of the training set 

consisted of slightly more than one million grayscale images (433 thousand of positive examples and 

585 thousand of negative ones). 
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The experiments were carried out with simple models which have a small number of parameters. 

We aimed to find the minimal configuration of a CNN which would be able to classify the test set with 

an error below 0.5%. For the CNN training, a Levenberg-Marquardt algorithm was used [36]. 

 

Fig. 2. Example images from the training set 

3.3 Detector design 

The detector design is shown in Figure 3. The first CNN densely scans, in series, each image of 

the pyramid. The responses in the output network layer correspond to the positions of the scanning 

window with a size of 27×31 pixels during its uniform motion with a 4-pixel step. The coordinates of 

the windows where the CNN response exceeded the predetermined threshold T1 are transmitted to the 

selective unit for a further analysis of these regions of the image. Even when T1 = 0, more than 99.99% 

of the total number of positions of the window at all pyramid levels are rejected at this stage. For com-

parison, the first-stage of a Haar cascade of Viola-Jones [30] is able to reject only 50% of negative 

samples, an MCT cascade [4] – 99%, a SURF cascade [17] – 95%, and a CNN cascade [16] – 92%. 

The pre-processing and classification of an image region are carried out in the selective unit, after 

which the final decision about their belonging to a faces class is made. At the step of pre-processing, 

the analyzed region is read from the original grayscale image together with a certain neighborhood and 

is scaled to 51×55 pixels. Then, the equalization of its histogram and mirror reflection with respect to 

the vertical axis are carried out. Illumination alignment enhances the response of the CNN on shaded 

faces and effectively suppresses false detections. The use of mirror reflection also reduces the re-

sponse to complex non-facial images. 

During the second step, the second and third stages of the cascade perform region classification. 

The output of each CNN is a response map of a 5×5 size. Additional classification in the region neigh-

borhood is necessary to prevent the loss of response due to an incorrect positioning of the face in the 

scanning window. The decision about the type of the region is made on the basis of the number of re-

sponses Knn of each classifier that exceeds the predetermined threshold T2: 
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The discrete parameter Tnn makes it possible to control the number of detector false alarms more 

robustly as compared to thresholds T1 and T2. If the response of the CNN2 does not agree with the de-

cision rule, further analysis of the region stops. 

The last stage of the pipeline detector is the Non-Maximum Suppression (NMS) algorithm which 

aggregates the detected regions to form the resulting areas of faces localization. 
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Fig. 3. Detector design 
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3.4 Implementation 

The detector has been implemented using three technologies: SIMD extension of x86 processor 

family (for each of three instructions sets – SSE, AVX, AVX2 – supported by microarchitectures of 

Intel Sandy/Ivy Bridge and Haswell/Broadwell processors), Nvidia CUDA, and OpenCL. The calcula-

tions are carried out using single precision, and the precision-recall characteristic is identical for all 

implementations. 

Thus, the implementations of all stages of the pipeline detector (except for NMS) are presented in 

several versions of a manually vectorized code. We used vector intrinsic functions (which are directly 

translated into the appropriate assembly instructions by the compiler), took into account the limited 

number of logical registers, and minimized the number of queries to the memory. At the same time, 

the SSE code can be ported to the ARM platform since all the SSE instructions used have analogs in 

the NEON set of instructions. The Scalar C++ code and OpenCL allow running the detector on most 

devices though at a lower execution speed. 

Figure 4 shows the comparison of our convolution implementation to its implementation in the In-

tel IPP, Nvidia NPP and cuDNN, and ArrayFire libraries. Time measurements were made for the first 

CNN1 convolution layer calculation (Fig. 1) on an image with a 4K Ultra HD resolution and were av-

eraged over 103 launches. When implementing the convolution for GPU, we used the method pro-

posed by F.N. Iandola et al. [7]. Due to the fine code optimization for each CNN architecture, the 

speed of layers calculation is higher than when using more universal functions from the respective li-

braries. 
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Fig. 4. Comparison of the calculation speed of the first convolution layer for CNN1 for an image with a 4K Ultra 

HD resolution (equipment specifications are listed in section 4) 

 

In order to provide continuous GPU load, the scanning of several levels of the image pyramid (3 

by default) is executed simultaneously in different streams (concurrent kernels). However, a kernel 

computation start is synchronized between streams as they use common pointers to texture memory. 

Also, we implemented several solutions to improve the detection speed. 

3.4.1 Asynchronous mode 

Typically, face images occupy only a small area of the image. The main advantage of cascade de-

tectors is the ability to rapidly reject the majority of background regions as early as during the first 

stages. However, complex non-facial images may be rejected only during the later stages. If there is a 

large number of stages, the speed of detector becomes strongly dependent on the structure of the back-

ground and the number of the objects in the scene. At the same time, the non-uniform distribution of 

the processing load over the image area negatively affects the runtime efficiency of GPU implementa-

tions. 
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In order to solve this problem, we proposed the asynchronous mode of cascade execution. In this 

mode, the first stage which is run on GPU scans each level of the image pyramid sequentially. Coordi-

nates of detected regions are transmitted to CPU which operates as a selective unit. CNN1 proceeds to 

the scanning of the next level of the pyramid regardless of whether the analysis of the detected regions 

on CPU has been finished or not. 

Due to the low-level optimization, the selective unit carries out a single region analysis in 0.1 ms 

on a single core processor (CPU PC2, for AVX code). Since only 0.01% (on average) of all window 

positions passes through CNN1, by the time the scanning of the last level of the image pyramid is 

complete, the majority of the detected regions will have already been processed on CPU. A similar 

situation is possible under the condition of asynchronous execution of the cascade on different CPU 

cores. Thus, the CNN cascade is able to provide a constant frame processing time dependent only on 

frame resolution and the productivity of the first stage execution. 

3.4.2 Hybrid mode 

The effectiveness of GPU in image processing is significantly higher than that of CPU. However, 

if small images (less than 0.01 megapixels) are considered, the calculation time is limited by delays in 

the running of kernels. In order to improve the search speed of large size faces, we made it possible to 

run the first stage of the cascade on CPU and GPU simultaneously. In the hybrid mode, CPU begins 

scanning the image pyramid from the upper level, while GPU processes a high-resolution image on the 

lower level. Also, it is possible to use the asynchronous mode. A similar technique was used in [21]. 

3.4.3 Patchwork mode 

In order to reduce the kernel launch delays to a minimum, it is possible to use a patchwork tech-

nique [6]. We applied the Floor-ceiling no rotation (FCNR) algorithm [20] for the purposes of dense 

image pyramid packing into a semi-infinite strip of a predetermined width. Thus, the scanning of all 

image scales at the same time is carried out in a single run of CNN1. However, it is not possible to use 

the asynchronous mode. In this case, the second stage of the cascade is also performed on GPU by 

means of scanning all the detected regions in a single pass. Usually the asynchronous mode is more 

effective than the patchwork mode, but the latter improves the low-resolution image processing per-

formance. 

4. Experiments 

In this section, the results of the proposed detector testing on two public face detection bench-

marks – FDDB [8] and AFW [37] – are shown. Since the detector was designed for a frontal face 

search only, it is obvious that it cannot surpass the multi-view face detectors with these complex da-

tasets. However, it is comparable to the state-of-the-art frontal face detectors on the FDDB bench-

mark. 

In addition, we tested several face detectors whose source code or demo versions are in open ac-

cess. In order to compare the performance and speed of algorithms for video processing tasks, tests 

were carried out on the annotated video. 

This section also provides execution speed of all detector implementations for different video 

stream resolutions and asynchronous mode demonstration. The test results show that the CNN cascade 

provides a very high data processing speed on both GPU and CPU, outperforming all previously pro-

posed algorithms. 

Specification of the equipment used: 

 PC1 (laptop): Intel Core i7-3610QM CPU (2.3 GHz, Turbo Boost disabled), Intel HD 

Graphics 4000 GPU1 (GT2, 16 core, 1,100 MHz) and Nvidia GeForce GT 640M GPU2 (GK107, 384 

core, 709 MHz); 

 PC2 (desktop): Intel Core i5-3470 CPU (3.2 GHz, 3.6 GHz with Turbo Boost) and Nvidia Ge-

Force GTX 960 GPU (GM206, 1,024 core, 1,228 MHz). 

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

380



4.1 Face Detection Data Set and Benchmark 

The FDDB [8] benchmark consists of 2,845 pictures (no more than 0.25 megapixels), and it has 

elliptical shape annotations for 5,171 faces. The authors provide a standardized algorithm for the 

automatic ROC curves construction based on the detector operation results. The algorithm calculates 

two types of evaluations: the discrete score and continuous score. ROC curve for the discrete scores 

reflects the dependence of the detected faces fraction on the number of false alarms by varying the 

threshold of the decision rule. The detection is considered to be positive if the Intersection-over-Union 

(IoU) ratio of detection and annotation areas exceeds 0.5. Only one detection can be matched with an 

annotation. Continuous score reflects the quality of face localization, i.e. the average IoU ratio. 

The result of the offered detector evaluation is shown in Figure 5. The following search settings 

were used: the minimum object size (minSize) was 15×15 pixels, the scale factor for the image 

pyramid construction (scaleFactor) was 1.05, T1 = 0, T2 = 0, and Tnn = 1. Since the detector localizes 

rectangular areas, in some cases this leads to errors when they are matched with elliptical shape 

annotations. For a correct evaluation, we manually modified 105 received bounding boxes (Fig. 6) so 

that their IoU ratio would exceed a predetermined threshold. 

Based on the adjusted evaluation, the performance of our detector exceeds the performance of 

SURF [17], PEP-Adapt [14], and Pico [18] frontal detectors, approaching the multi-view SURF [17] 

detector performance. Table 1 shows the average number of the sliding window positions selected by 

each CNN cascade stage on the images from the FDDB collection. Even when T1 = 0, more than 

99.99% of window positions were rejected already at the first stage. This is substantially better than 

the result obtained in [16]. 
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Fig. 5. Discrete score ROC curves and Continuous score ROC curves for different methods on the FDDB 

dataset, including: our CNN cascade, Faceness-Net [34], CascadeCNN [16], HeadHunter [19], SURF [17], PEP-

Adapt [14], Pico [18], Jain et al. [9], and Viola Jones (OpenCV) 

 

Fig. 6. Manually corrected detections received by the compact CNN cascade on the FDDB benchmark 

Table 1. Statistics of the CNN cascade operation on the FDDB. It shows the number of detections averaged over 

all images made by each cascade stage and the percentage of rejected windows 

stages 
number of 

windows 

rejected 

windows, % 

sliding window 2 724 768.2   

stage 1 132.7 99.995 

stage 2 57.0 57.019 

stage 3 43.3 24.036 

NMS 1.9   
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4.2 Annotated Faces in the Wild 

The Annotated Faces in the Wild (AFW) [37] benchmark consists of 205 large-scale (0.5-5 mega-

pixels) images and contains rectangular annotations for 468 faces. 

This benchmark was developed relatively recently and is mainly used for multi-view detectors 

evaluation. Because of this, we additionally tested 7 frontal face detectors, including: two Haar cas-

cades (OpenCV-default, OpenCV-alt) and an LBP cascade (OpenCV-lbp) from the OpenCV library; a 

Haar cascade [25] (OpenCV-Pham) and an LBP cascade [11] (OpenCV-Köstinger) trained by the 

OpenCV object detection framework; an SURF cascade [17] (SURF-frontal, not the same model as for 

the FDDB); and a cascade of decision trees using the pixels intensity comparison [18] (Pico). 

For each detector, precision and recall scores were calculated for different values of minNeigh-

bors = {1, 2, 3} (a parameter specifying how many neighbors each candidate rectangle should have to 

retain it), and the mean value of F1 measure. MinNeighbors parameter is used in the OpenCV and 

SURF detectors and is equivalent to Tnn (2) for our detector. In Pico implementation, the level of false 

alarms is regulated by the threshold of the decision rule which in this test was assumed to be equal to 

minNeighbors + 2. 

Comparison of the detectors was carried out with the following search settings: minSize = 80×80 

pixels and scaleFactor = 1.1. The SURF and OpenCV-Köstinger detectors localize a smaller face area 

in comparison with other detectors, which is why their minSize value was reduced by 25%. The con-

figuration of the detectors was as follows: 

 OpenCV: version 3.0.0, useOptimized = 1; 

 SURF: modelType = 0, fast = 1, step = 1; 

 Pico: strideFactor = 0.1. 

A standard IoU ratio with a threshold of 0.5 was used to evaluate the detections. Moreover, 44 

bounding boxes were additionally generated for each annotation by scaling it with a factor from 0.9 to 

1.2 (Fig. 7). Such a multiple check of detections made it possible to take into account differences in 

the size of areas localized by detectors and to eliminate errors appearing during matching. 

The test results are presented in Figure 8. The proposed detector (F1 = 0.75) holds the second po-

sition in terms of F1 measure value. It is second to the OpenCV-Köstinger detector (F1 = 0.78) due to 

producing more false alarms. However, on this benchmark, modern multi-view detectors show signifi-

cantly better results, but they cannot work in real-time mode. For example, the Faceness-Net [34] de-

tector requires 50 ms for image analysis with VGA resolution on Nvidia Titan Black GPU, which is 

about 200 times longer than the working time of our CNN cascade. 

 

Fig. 7. AFW annotations modification 
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Fig. 8. Test results of the frontal face detectors on the AFW benchmark. The numbers in parentheses are mean 

values of the F1-measure for detectors 

Параллельные вычислительные технологии (ПаВТ’2016) || Parallel computational technologies (PCT’2016)

agora.guru.ru/pavt

382



4.3 Video data 

During the last test, the performance of detectors was evaluated on a high-resolution video se-

quence. We annotated the first 12,000 frames of the 12th episode from the 5th season of «How I Met 

Your Mother» TV series in HD resolution. This video segment comprises 10 different scenes, and the 

number of faces in a frame varies from 1 to 88 (39,976 faces in total). 

For testing, we used the same detector parameters as for the AFW benchmark, except the minSize 

parameter which was equal to 40×40 pixels. Also, in this test the parameter T2 for our detector was 

equal to 1.7. All detectors were running on CPU PC1 in a single-threaded mode. 

The proposed detector also ranks second in terms of F1 measure value (F1 = 0.61, 10.6 fps), yield-

ing to OpenCV-Köstinger (F1 = 0.65, 1.7 fps), but it is superior to all the detectors in terms of speed 

(Fig. 10). Thus, the CNN cascade provides the best performance/speed ratio in comparison with boost-

ing cascades. 

A greater level of recall, with a significantly reduced precision, can be achieved by using a weak-

er decision rule in the selective unit: 

2 3CNN CNN

nn nn nn nn
K T K T      (3) 

A higher level of precision can be achieved by performing an additional validation of detections 

with a Haar cascade OpenCV-alt. A Haar cascade was used only after the NMS algorithm, and the 

detections were pre-scaled to the size of 80×80 pixels. This made it possible to keep the high speed of 

video processing. 

The results of the evaluations of detectors with the use of the AFW and video data allow drawing 

the following conclusions. Frontal detectors whose processing speed (on CPU) is comparable to that 

of a compact CNN cascade achieve a significantly lower recall and precision of detection. Detectors 

whose recall is comparable to that of a CNN cascade have a processing speed which is several times 

lower. Thus, we have shown that CNNs (even classic ones) allow building a frontal faces detector with 

better characteristics than it can be achieved using the modern modifications of Viola-Jones algorithm. 

 

Fig. 9. Examples of video frame annotations 
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Ours (0.61), 10.6 fps

Ours−weak (0.59), 9.3 fps

Ours−weak+OpenCV−alt (0.63), 9.1 fps

Pico (0.59), 9.2 fps

SURF−frontal (0.6), 8 fps

OpenCV−Pham (0.59), 4 fps

OpenCV−Koestinger (0.65), 1.7 fps

OpenCV−default (0.43), 1.2 fps

OpenCV−alt (0.61), 1.1 fps

OpenCV−lbp (0.47), 4.1 fps

 

Fig. 10. Test results of the frontal face detectors on HD video. The numbers in parentheses are mean values of 

the F1-measure for detectors 
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4.4 Runtime efficiency 

The runtime efficiency was the key priority at all stages of the proposed detector development. 

Our CNN cascade turned out to be from 2.6 to 10 times faster than Haar and LBP cascades from the 

speed-optimized OpenCV 3.0 library when processing HD video on CPU PC1 (Fig. 10). Meanwhile, 

the computing complexity of our CNN cascade is comparable to that of Haar-like cascades. In case 

with the search parameters from Section 4.3 C++ code (without auto-vectorization), it reaches 1.2 fps, 

whereas the Haar-like classifier from the OpenCV-alt reaches only 1.1 fps. 

Among other open source projects (for example, http://libccv.org and http://dlib.net), we do not 

know a CPU-based algorithm faster than Pico [18] (integer, it does not require the construction of an 

image pyramid) and a SURF cascade [17] (5 stages, SIMD optimization is used). However, despite the 

higher computational complexity, the speed of the CNN cascade execution exceeds the speed of these 

detectors due to the code vectorization and the efficient use of the processor’s cache memory. 

Figure 11 shows the dependence of the speed of various detectors on the content of the scene for 

the first 4,000 frames of the annotated video. When using the asynchronous mode, the CNN cascade 

provides nearly constant processing time on both CPU and GPU even when there is a significant in-

crease in the number of faces in the scene (88 faces in frames from 1,771 to 1,834). This property is 

important for video analytics systems as it makes it possible to predict more precisely the speed of the 

system in different use cases. 
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Fig. 11. Dependence of detector operation speed on the scene content during HD video processing (search set-

tings are the same as in section 4.3, single-threaded execution on PC1) 

For algorithms that have been tested on the FDDB benchmark, the authors reported the following 

data on the detection speed of frontal faces for images with VGA resolution: NPD1 [13] – 178 fps 

(40×40, 1.2, i5-2400 CPU, 4 threads); ACF [35] – 95 fps (i7 CPU, 4 threads); SURF [17] – 91 fps 

(40×40, 1.2, i5-2400 CPU, 4 threads); Joint Cascade [2] – 35 fps (80×80, 2.93 GHz CPU, 1 thread); 

Pico [18] – 417 fps (100×100, i7-2600 CPU, 1 thread); Fast DMP [33] – 42 fps (Intel X5650 CPU, 6 

threads). The speed of other detectors does not exceed 10 fps. Only methods based on the CNN [3, 16, 

34] and HeadHunter [19] support GPU. For typical search settings (minSize = 40×40 pixels, scaleFac-

tor = 1.2), a CNN cascade guarantees 85 fps for a single-threaded and 148 fps for a multi-threaded 

execution on CPU PC2, 171 fps on GPU2 PC1, and 313 fps on GPU PC2 (used hybrid mode). 

The CNN cascade proposed by H. Li et al. [16] processes a VGA image in 110 ms on CPU 

(80×80, 1.414, Intel Xeon E5-2620, 1 thread) and in 10 ms on GPU (Nvidia GeForce GTX TITAN 

Black, 2,880 CUDA core). With similar search settings, our CNN cascade finishes its operation in 

2.5 ms on a single core CPU PC1 and 2 ms on GPU2 PC1. 

                                                      
1 just 39 fps when processing our annotated video (scaled to the VGA resolution) for multi-threaded execution 

on CPU PC1. 
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Many investigations are focused on the optimization of Viola-Jones algorithm for GPU with the 

purpose of increasing the processing speed of a Full HD video stream: D. Oro et al. [22] – 35 fps for 

Haar cascade (24×24, 1.1, Nvidia GTX470 GPU); S.C. Tek and M. Gokmen [28] – 35 fps for MCT 

cascade (24×24, 1.15, Nvidia GTX580 GPU); C. Oh et al. [21] – 29 fps for LBP cascade (30×30, 1.2, 

Nvidia Tegra K1 GPU + Cortex-A15 CPU). Using the same search parameters, the CNN cascade 

speed reaches up to 75, 98, and 108 fps respectively when it runs in the hybrid mode on PC2. Thus, 

the proposed detector provides a higher runtime efficiency on GPU in comparison with Viola-Jones 

cascade detectors. 

Figure 12 shows the diagram of an average video frame rate in 4 standard resolutions which can 

be reached with different detector implementations optimized for CPU and GPU. Testing was con-

ducted on first 4,000 frames of the annotated video that was scaled to the size of the appropriate reso-

lution. The results indicate that the CNN cascade copes even with the extreme task of real-time pro-

cessing of the video stream with a 4K Ultra HD resolution. For example, the speed of an LBP cascade 

face detector from the OpenCV library reaches 3 fps only on GPU2 PC1 with the same search settings. 
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Fig. 12. Processing speed of different frontal face detector implementations based on the compact CNN cascade 

(minSize = 60×60 pixels, scaleFactor = 1.2, minNeighbors = 2) 

5. Conclusion 

In this paper, we proposed a cascade of compact CNNs for a rapid detection of frontal faces in an 

HD video stream. The first stage of the cascade is capable of rejecting 99.99% of windows containing 

background. In combination with the asynchronous execution mode, this factor substantially reduces 

the dependence of the detector speed on image content. 

The CNN cascade performance is comparable with that of the best frontal face detectors on the 

FDDB benchmark, but it surpasses them in speed on both CPU and GPU. Thus, the proposed algo-

rithm establishes a new level of performance/speed ratio for the frontal face detection problem and 

makes it possible to reach acceptable processing speed even on low-power computing devices. 
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