## ИССЛЕДОВАНИЕ ЭКСПЛУАТАЦИОННЫХ РЕЖИМОВ В ПРОГРАММНОМ ПРОДУКТЕ POWER FACTORY

<sup>1</sup>А.А. Мамаев, <sup>2</sup>Н.М. Космынина <sup>1,2</sup>Томский политехнический университет ЭНИН, ЭЭС, <sup>1</sup>группа 5АМ6Р

Программный продукт Power Factory, разработанный компанией DIgSILENT, является инженерным инструментом, с помощью которого можно анализировать промышленные и коммерческие электрические системы. Продукт был разработан как усовершенствованная интегрированная и интерактивная система программного обеспечения, используемая для оптимизации режимов энергетических систем [1].

Хотелось бы отметить, что в настоящее время существующая документация программного продукта Power Factory представлена на английском языке, так как в России идет процесс изучения и внедрения программного продукта Power Factory для решения энергетических задач.

В работе представлен оригинальный перевод документации, необходимой для анализа эксплуатационных режимов одного из объектов электроэнергетики.

Для работы в программном продукте необходимо создать новый файл. Технология создания: выбрать "File", навести курсор на "New", выбрать Project. Всплывет окно, предлагающее выбрать название проекта, и базовые настройки такие, как цвет оборудования и соединений, рабочую частоту 50 Гц. После выполнения необходимого появляется рабочее поле, на котором уже можно составить схему. Так, для исследуемой электростанции Джамбылской ГРЭС [2] составление схемы проще всего начать с выбора распределительных устройств (два распределительных устройства с двумя рабочими секциями и одной обходной): на приборной панели выбираем "Double Busbar with Bypass Busbar" затем нужный класс напряжения 110 кВ и 220 кВ, и далее создаем нужное количество ячеек (рисунок 1, 2).



Рис. 1. Схематичное изображение распределительного устройства 110 кВ в программном продукте Power Factory



Рис. 2. Схематичное изображение распределительного устройства 220 кВ в программном продукте Power Factory

После создания ячеек присоединяем силовое оборудование и нагрузку. Выбор присоединений осуществляется с помощью рабочего меню.

На рисунке 3 приведен результат работы в Power Factory для реальной электростанции.



Рис. 3. Структурная схема Джамбылской ГРЭС, собранная в программном продукте Power Factory

Для ввода параметров оборудования существует несколько способов: выбор стандартного оборудования из библиотеки программы, задание собственных параметров присоединений. Для ручного ввода параметров, требуется выбрать раздел "Basic Data", далее подраздел "Туре" и затем "New project type".

Для генераторов нужно задать номинальную мощность в "Nominal Apparent Power", номинальное напряжение в "Nominal Voltage", коэффициент мощности в "Power Factor", тип соединения нейтрали в "Connection" (рисунок 4).



Рис. 4. Параметры генератора

Далее нужно выбрать раздел "Load Flow" (рисунок 5), указать реактивные сопротивлении в продольной и поперечной осях в относительных единицах, а также сопротивления обратной и нулевой последовательностей.

| Basic Data              | Synchronous Reactances                     |
|-------------------------|--------------------------------------------|
| Load Flow               | xd 1.84 p.u.                               |
| VDE/IEC Short-Circuit   | xq 1.84 p.u.                               |
| Complete Short-Circuit  | Reactive Power Limits                      |
| ANSI Short-Circuit      | Minimum Value 1, p.u.                      |
| IEC 61363               | Maximum Value 1. p.u.                      |
| DC Short-Circuit        | Zee Services Dete                          |
| RMS-Simulation          | Postance x0 0.1 Presidence Data            |
| EMT-Simulation          | Resistance r0 0, r p.u. Resistance r2 0, r |
| Harmonics/Power Quality |                                            |

Рис. 5. Параметры генератора

Для силовых двухобмоточного трансформатора необходимо задать количество фаз в "Technology", номинальную мощность в "Rated Power", номинальную частоту в "Nominal Frequency", номинальное напряжение на высокой и низкой стороне в "Rated Voltage", схему соединения нейтрали] на высокой и на низкой стороне в "Vector Group", напряжение короткого замыкания и потери на холостом ходу в "Positive Sequence Impednce" (рисунок 6).

| Basic Data              | Name                       | T12         |             |              |           |
|-------------------------|----------------------------|-------------|-------------|--------------|-----------|
| Load Flow               | Technology                 | Three Phase | Transformer | •            |           |
| VDE/IEC Short-Circuit   | Rated Power                | 250,        | MVA         |              |           |
| Complete Short-Circuit  | Nominal Frequency          | 50,         | Hz          |              |           |
| ANSI Short-Circuit      | Rated Voltage              |             |             | Vector Group |           |
| IEC 61363               | HV-Side                    | 121,        | kV          | HV-Side      | YN 💌      |
| DC Short-Circuit        | LV-Side                    | 15,75       | kV          | LV-Side      | D 💌       |
| RMS-Simulation          | - Positive Sequence Impeda | nce         |             |              |           |
| EMT-Simulation          | Short-Circuit Voltage uk   | 10,5        | × <b>*</b>  | Phase Shift  | 0, "30deg |
| Harmonics/Power Quality | Copper Losses              | 200,        | kW          | Name         | YNd0      |

Рис. 6. Параметры двухобмоточного трансформатора

Для автотрансформатора необходимо задать номинальную мощность высшей, средней и низшей сторон в "Rated Power", номинальное напряжение на высокой, средней и низкой стороне в "Rated Voltage", схему соединения нейтрали на высокой, средней и низкой стороне в "Vector Group", также необходимо указать напряжение короткого замыкания с высокой стороны на среднюю, с высокой на низкую и со средней на низкую сторону в "Positive Sequence Impednce", для этих же сторон требуется указать потери в меди. Для исследования эксплуатационных режимов электростанции в

Для исследования эксплуатационных режимов электростанции в программном продукте Power Factory необходимо уже к собранной в схеме добавить нагрузку на распределительном устройстве 110 кВ, балансирующий узел (систему), и собственные нужды электростанции. Собственные нужды блока задаются также, как и нагрузка (рисунок 7)



Рис. 7. Результат исследования эксплуатационных режимов электростанции в программном продукте Power Factory

В прямоугольниках на всех присоединения, кроме сборных шин, показываются активная мощность, реактивная мощность и ток, протекающий в ветви (рисунок 8).



Рис. 8. Пример вывода результата Для шин результаты вывода информации приведены на рисунке 9.



Рис. 9. Пример вывода результата

В данной работе проводилось исследование эксплуатационных режимов реального объекта в программе Power Factory. Для этого был изучен алгоритм работы с программой. Проведены все необходимые настройки полученные результаты удовлетворили. Опыт работы с программой Power Factory показал ее удобство и большие возможности.

## ЛИТЕРАТУРА:

- 1. DIgSILENT PowerFactory 15 User Manual Online Edition / DIgSILENT GmbH, Germany, 2013 1427 c.
- 2. Официальный сайт "Жамбыльская ГРЭС им. Т.И. Батурова" [Электронный pecypc] ; URL: http://www.zhgres.kz/about-us/, свободный. – Загл. с экрана. – Яз.рус., англ. Дата обращения: 03.03.2016 г.

Научный руководитель: Н.М. Космынина, к.т.н., доцент ЭЭС ЭНИН ТПУ.