ОПРЕДЕЛЕНИЕ ТРЕЩИНОСТОЙКОСТИ ТИТАНОВОГО СПЛАВА ВТ1-0

<u>Г.В. Проскурников¹, Е.Е. Дерюгин²</u>

¹Национальый исследовательский Томский политехнический университет ²Институт физики прочности и материаловедения СО РАН E-mail: galen.marek.00@mail.ru

DETERMINATION OF FRACTURE TAUGHTNES TITANIUM ALLOY VT1-0

<u>G.V. Proskurnikov¹</u>, Ye.Ye. Deryugin²

¹National Research Tomsk Polytechnic University ²Institute of Strength Physics and Materials Science SB RAS E-mail: galen.marek.00@mail.ru

The problem of the experimental determination of fracture toughness of titanium alloy VT1-0. Spend specific fracture energy calculation according to the method developed by ISPM SB RAS. The characteristics of fracture toughness of titanium alloy VT1-0.

В данной работе приводятся результаты оценки трещиностойкости титанового сплава BT1-0. В качестве основной характеристики трещиностойкости материала использовали удельную энергию разрушения G_{cr} (критическую скорость высвобождения упругой энергии при распространении трещины), которую рассчитывали согласно новой методике, разработанной для малоразмерных образцов с шевронным надрезом [1]. В отличие от подходов линейной механики разрушения, данная методика не накладывает жестких ограничений на размеры пластической зоны у вершины трещины.

Известно, что при нестабильном распространении трещины длиной l на элементарное расстояние dl в образце шириной a энергия разрушения определяется уравнением [2, 3]:

$$G_{\rm cr} = \frac{P_{\rm max}^2 d\eta}{2dl \cdot a},\tag{1}$$

где η – податливость образца (величина, обратная жесткости образца $M = P/\lambda$); λ – упругое смещение под действием внешней нагрузки P; P_{max} – максимальная внешняя нагрузка, при которой возникает спонтанное распространение трещины.

Образец с шевронным надрезом можно рассматривать как двухконсольную конструкцию. Узкий надрез в образце можно представить, как трещину длиной l_0 (рис. 1).

Рис. 1. Схема образца с шевронным надрезом

Будем считать, что фронт трещины представляет собой прямую линию длиной *x*, ориентированную перпендикулярно к оси образца.

Выделим среднюю часть образца шириной x. Согласно [4], упругий прогиб балки шириной x и длиной l на величину $\lambda/2$ обеспечивает нагрузка

$$P = \frac{E\lambda x}{8} \left(\frac{b}{l}\right)^3.$$
 (2)

Ширина балки, согласно геометрическим построениями, равна $x = 2\Delta l^* tg(\alpha/2)$, где α – угол шевронного надреза. Податливость выделенной части образца определяется выражением

$$\eta = \frac{\lambda}{P} = \frac{8}{Ex} \left(\frac{l}{b}\right)^3 = \frac{4}{E\Delta l \cdot \operatorname{tg}(\alpha/2)} \left(\frac{l}{b}\right)^3.$$

Изменение податливости при увеличении длины трещины на величину dl равно

$$\frac{\partial \eta}{\partial l} = \frac{12l^2}{E\Delta lb^3 \mathrm{tg}\,\alpha/2}.$$

Подставляя это значение и выражение (2) в уравнение (1), получим

$$G_{\rm cr} = \frac{3E\lambda_{\rm e}^2 b^3}{16l^4}.$$
(3)

В [5] показано, что λ_е равно

$$\lambda_{e} = \frac{8P_{\max}}{Ea} \left(\frac{l}{b}\right)^{3} \left[\frac{2\Delta l}{a} \operatorname{tg}\frac{\alpha}{2} + \left(1 - \frac{2\Delta l}{a} \operatorname{tg}\frac{\alpha}{2}\right) \left(\frac{l}{l_{0}}\right) \frac{4 + \frac{a}{l_{0}} \operatorname{ctg}\frac{\alpha}{2} + \frac{2\Delta l}{l_{0}}}{\left[2 + \frac{a}{l_{0}} \operatorname{ctg}\frac{\alpha}{2}\right]^{2}}\right]^{-1}$$

где $l = l_0 + \Delta l$, Δl – смещение клина.

Испытание проводили растяжением образцов с шевронным надрезом со скоростью движения захватов испытательной машины v = 5 мкм/с при комнатной температуре. Образцы длиной 20 мм вырезали из прутка квадратной формы сечением 6х6 мм². Шевронный надрез наносили электроэрозионным способом в виде узкой щели шириной 0,25 мм, разделяющей толщину образца на две равные части. Границу надреза задавали в виде V-образной линии с углом $\alpha = \pi/3$ (рис. 1). В процессе нагружения с помощью зеркальной камеры PENTAX K-5 с интервалом 4с фиксировали изображения нагружаемого образца. По изображениям измеряли изменение ширины щели в точках приложения нагрузки и у конца шевронного надреза, а также раскрытие и длину трещины, в процессе нагружения. Полученные данные использовали для расчета критериев трещиностойкости.

В таблице 1 приведены результаты эксперимента.

№ кадра	t, c	<i>P</i> ₁ , H	Δ/, мм	К _I , МПам ^{1/2}	<i>G</i> , кДж/м²
6875	535	879,76	2,59	69,40	43,78
6878	545	821,41	2,70	57,75	30,32
6881	557	801,22	2,87	56,42	28,94
6887	582	816,21	3,54	58,50	31,12
6896	617	829,66	3,80	60,13	32,87
6909	670	830.46	4.63	57.77	30.34

Таблица 1 – Результаты полученные в ходе работы

Испытания малоразмерных образцов сплава BT1-0 показали, что для этого материала на диаграмме «нагрузка P – смещение клина Δl » четко фиксируется момент спонтанного распространения трещины (рис. 2), т.е. хорошо определяется значения критической нагрузки P_{max}, и критическое значение берегов надреза λ_e . Расчеты G_{cr} на стадии стабильного распространения получили усреднением значение $G_{cr} = 30,7\pm2,2$ кДж/м² и К_{Ic} = 58,1±2,0. Полученное значение К_{Ic} практически соответствует значениям для технического титана, приведенным в монографии [6].

Рис.2. Диаграмма нагружения «Нагрузка-смещение»: 1 - стадия зарождения трещины; 2 - стадия стабильного распространения трещины на участке 1-3; 3 - стадия спонтанного распространения трещины

Известно, что распространение трещины сопровождается увеличением податливости образца $\eta = \lambda_e/P$ [2], где λ_e – смещение точек приложения нагрузки P, связанное с увеличением длины трещины. Расчеты по уравнению (3) показывают, что величина λ_e всегда меньше экспериментально измеренного значения λ . Это объясняется тем, что пластическая деформация вносит в смещения дополнительный вклад λ_p , не связанный с изменением податливости образца. В процессе нагружения наблюдаются моменты, когда не происходит увеличения длины трещины. Увеличение смещения точек приложения нагрузки происходит за счет пластической деформации впереди трещины. В общем случае λ можно представить в виде суммы $\lambda = \lambda_e + \lambda_p$. Очевидно, что величина λ_p будет тем больше, чем более вязко будет разрушаться материал. Поэтому отношение λ_p/λ_e является важной характеристикой вязкости разрушения. На стадии зарождения трещины данное отношение равно 0,03 для ВТ1-0.

Список литературы

- Дерюгин Е.Е., Панин В.Е., Суворов Б.И. и др. Характеристики трещиностойкости малоразмерных образцов с ультрамелкозернистой структурой // Международная конференция «Актуальные проблемы прочности». – Уфа, 2012. – 214 с.
 Броек Д. Основы механики разрушения. – М. : Высшая школа, 1980. – 368 с.
- Херцберг Р.В. Деформация и механика разрушения конструкционных материалов. М. : Металлургия, 1989. 575 с.
- 4. Тимошенко С.П., Гудьер Дж. Теория упругости. М. : Наука, 1975. 576 с.
- 5. Дерюгин Е.Е., Суворов Б.И. Определение вязкости разрушения малоразмерных образцов с ултрамелкозернистой структурой // Вестник Сам-ГТУ. Серия «Технические науки». Самара, 2012. 129 с.
- 6. Ильин А.А., Колачев Б.А. и др. Титановые сплавы. Состав, структура, свойства. М. : ВИЛС-МАТИ, 2009. 520 с.