Химия

УДК 546.72:544.778.4:66.094.3-926-217:543.573

ВЛИЯНИЕ ДИСПЕРСНОСТИ ПОРОШКОВ ЖЕЛЕЗА НА ЗАКОНОМЕРНОСТИ ИХ ОКИСЛЕНИЯ ПРИ НАГРЕВАНИИ В ВОЗДУХЕ

А.В. Коршунов

Томский политехнический университет E-mail: korshunov@tpu.ru

Исследованы закономерности процесса окисления промышленного микронного порошка и электровзрывного нанопорошка железа при нагревании в воздухе в условиях линейно возрастающей температуры и в изотермическом режиме. Показано стадийное протекание процесса окисления в условиях линейного нагрева, обусловленное совокупным влиянием фракционного состава порошков и фазового состава и структуры образующегося на поверхности частиц оксидного слоя. Показано, что в изотермических условиях (250...600 °C) процесс окисления нанопорошка, в отличие от микронного порошка, описывается линейным законом и протекает в кинетическом режиме (E₈=100±7 кДж/моль). Установлены условия термогравиметрии, при которых происходит тепловое самовозгорание нанопорошка, на основе численной оценки параметра разогрева поверхности образца обоснована экспериментально фиксируемая величина критической температуры.

Ключевые слова:

Железо, грубодисперсные и нанопорошки, окисление, термогравиметрия.

Key words:

Iron, coarse-grained and nanopowders, oxidation, thermogravimetry.

Введение

Порошки железа широко применяются в порошковой металлургии и электротехнике, используются при получении пигментов и катализаторов, являются компонентами магнитных жидкостей, пиротехнических составов [1]. Высокодисперсные порошки железа могут обладать пирофорными свойствами, что налагает особые требования к их хранению и применению [2]. Существенное повышение реакционной способности металлических порошков (пониженные температуры спекания, окисления, воспламенения) обусловлено увеличением доли атомов на поверхности частиц металла, что позволяет в относительно мягких условиях получать материалы с особыми свойствами. В связи с этим изучение характера влияния размеров частиц на физико-химические свойства порошков представляет несомненный интерес как с фундаментальной, так и с прикладной точки зрения.

Известно, что окисление компактного железа сопровождается формированием на его поверхности многослойной окалины, в состав которой может входить несколько фаз оксидов: Fe_xO (вюстит, x=0,836...0,954), Fe₃O₄ (магнетит), Fe₂O₃ (гематит, маггемит) [3]. Соотношение оксидов в окалине определяется состоянием поверхности металла, температурой, парциальным давлением кислорода в газовой фазе. В условиях высокотемпературного окисления Fe (700...1250 °C) окалина состоит из последовательных слоев вюстит - магнетит гематит, соотношение толщины слоев оксидов в атмосфере воздуха составляет в среднем FeO:Fe₃O₄:Fe₂O₃=100:10:1 [3, 4]. Большая толщина слоя вюстита обусловлена высокими значениями коэффициента диффузии катионов в FeO по сравнению с другими оксидными фазами [4]. Увеличению доли вюстита в окалине способствует повышение температуры окисления, а также понижение P_{0} [5]. Образующийся при данных условиях оксидный слой характеризуется постоянным концентрационным градиентом по железу, обусловленным различиями в составе вюстита на границах железо/вюстит (Fe_{0.954}O) и вюстит/магнетит (Fe_{0.836}O). В случае формирования плотного оксидного слоя, равномерно прилегающего к поверхности металла, лимитирующей стадией процесса окисления Fe является диффузия катионов в направлении поверхности раздела оксид/газ. При этом процесс подчиняется параболическому закону, $E_a=160...170 \text{ кДж/моль [3, 4]}.$

Результаты изучения процесса окисления компактного железа и его порошков при относительно низких температурах ($t \leq 600$ °C) менее однозначны [6–11]. Прежде всего, это обусловлено термодинамической нестабильностью вюстита, претерпевающего при t<560 °C [12] эвтектоидный распад с образованием Fe и Fe₃O₄ в виде слоистой (пористой) структуры [11]. В зависимости от состава и структуры оксидного слоя, образующегося при низкотемпературном окислении, от кристаллографической ориентации металла и Р₀, [6, 9–11] скорость процесса окисления может описываться параболическим [6, 8], линейным или логарифмическим законом (*E*_a=130...170 кДж/моль) [3, 8, 9]. Окисление грубодисперсных порошков (50...100 мкм) [2, 13, 14] подчиняется параболическому закону $(E_{a} \approx 170 \text{ кДж/моль})$, в условиях линейного нагрева прирост массы образцов происходит в одну стадию. Для порошка со среднечисловым диаметром частиц $d_{cp}=23$ мкм в [15] получены значения *E*_a=60...85 кДж/моль.

Для высокодисперсных порошков литературные данные в значительной степени различаются [14–17]. В [14] показано, что увеличение доли субмикронных частиц в порошке способствует понижению температуры начала окисления и протеканию процесса в две стадии в условиях линейного нагрева. На первой стадии окислению могут подвергаться частицы мелкой фракции с образованием Fe₂O₃. Для электровзрывного нанопорошка Fe (*d*_{ср}≈100 нм) в [17] с использованием неизотермических данных (180...600 °С) получены величины E_a, зависящие от степени превращения и принимающие значения 87...183 кДж/моль. Анализ кинетических данных авторы [17] проводили на основе уравнения 4Fe+3O₂=2Fe₂O₃, хотя сведений о фазовом составе продуктов окисления образца при различных температурах в работе не приведено.

Таким образом, единого мнения о характере влияния дисперсности порошков Fe на кинетику и механизм процесса их окисления в литературе нет. В связи с этим целью настоящей работы являлось установление кинетических закономерностей окисления промышленного микронного порошка Fe и электровзрывного нанопорошка Fe при нагревании в воздухе.

Материалы и методы исследования

В работе использовали нанопорошок железа (НПЖ), полученный путем электрического взрыва Fe-проволоки в инертной атмосфере (НИИ BH ТПУ) [18], а также грубодисперсный промышленный порошок Fe марки ПЖВ. Элементный состав порошков изучали с использованием атомно-эмиссионной спектроскопии (iCAP 6300 Duo) и рентгенофлюоресцентного анализа (Quant X). Дисперсный состав и морфологию образцов исследовали при помощи растрового электронного ми-

кроскопа (РЭМ) JSM-5500. Величину площади удельной поверхности (S_{va}) измеряли с использованием метода БЭТ по низкотемпературной адсорбции аргона. Распределение частиц Fe по размерам определяли при помощи приборов Microsizer-201 и Nanosizer ZS при 25 °C в среде этиленгликоля. Структуру и состав поверхностного слоя частиц Fe изучали при помощи просвечивающего электронного микроскопа (ПЭМ) высокого разрешения (JEOL JEM-3010 с EDS-анализатором). Фазовый состав исходных порошков и продуктов их окисления при нагревании в воздухе определяли методом рентгенофазового (РФА) анализа (дифрактометр Shimadzu XRD 6000, Fe_{Ka}-излучение). Кристаллические фазы идентифицировали с использованием базы данных PDF-2, определение структурных характеристик Fe проводили по методикам [19].

Параметры процесса окисления порошков Fe при нагревании в сухом воздухе определяли методом дифференциально-термического анализа (ДТА) с применением термоанализатора SDT Q 600 (Научно-аналитический центр TПУ). Нагрев навесок (m_0 =3...15 мг) порошков проводили до t=1200 °C в открытых алундовых тиглях вместимостью 90 мкл при линейно возрастающей температуре печи со скоростью v_r =5...30 К/мин, а также в изотермических условиях. Объемную скорость потока воздуха ($v_{возд}$) через рабочую зону печи изменяли в интервале 50...200 мл/мин. Изменение массы образцов регистрировали с точностью до 1 мкг, точность измерения температуры по ДТА составляла 0,001 К.

Обсуждение результатов

Усредненные характеристики использованных в работе порошков Fe приведены в табл. 1. Образцы полидисперсны, функция распределения частиц по размерам близка к нормально-логарифмической. Для НПЖ свойственно агломерирование размеры агломератов достигают частиц. 10...20 мкм. Частицы грубодисперсного образца имеют осколочную форму, форма частиц НПЖ близка к сферической (рис. 1). Нанопорошок по сравнению с грубодисперсным образцом в большей степени окислен и характеризуется более высоким содержанием примесей (табл. 1).

Оксидный слой на поверхности частиц Fe является рентгеноаморфным, его толщина составляет в среднем 3...5 нм. В отличие от грубодисперсного образца, в оксидном слое частиц НПЖ наблюдаются участки с упорядоченной структурой α -Fe₂O₃ – гематита (рис. 1).

Судя по данным РФА и ПЭМ, основной кристаллической фазой исследуемых порошков является металлическое Fe с ОЦК-решеткой (α -Fe). Для НПЖ характерны низкие размеры областей когерентного рассеяния $D_{\text{окр}}$, а также повышенные величины микронапряжений $\Delta d/d$ и среднеквадратичных статических смещений u^2 атомов металла относительно положений равновесия (табл. 1), что

Рис. 1. Микрофотографии электровзрывного нанопорошка железа, характеризующие морфологию частиц (1) и структуру поверхностного оксидного слоя (2)

обусловлено высокой степенью локального разупорядочения на границах областей когерентного рассеяния. Анализ изображений ПЭМ свидетельствует о неоднородности металлического ядра частиц НПЖ по плотности, что в совокупности с рентгеноструктурными данными позволяет считать структуру наночастиц Fe поликристаллитной. В отличие от выраженных границ зерен в частицах грубодисперсных порошков, кристаллиты в ядре частиц НПЖ окружены интергранулярными областями значительной протяженности, метастабильное состояние которых стабилизировано за счет образования твердых растворов и соединений Fe с примесями [20]. Наблюдаемое различие структуры частиц порошков Fe обусловлено различными по степени равновесности условиями их формирования.

Таблица 1. Характеристики порошков желе	еза
---	-----

		Параметры дисперсности			Параметры структуры			Состав, мас. %			
Об разе	- ец	<i>S</i> _{уд} .10 ⁻³ , м²/кг	<i>d</i> , мкм	$d_{ m cp}$, MKM	$D_{ m oxp}$, HM	$\Delta d/d,$ %	<i>u</i> ² .10 ³ , нм ²	Fe (мет.)	Mn	Ņ	Cu
ПЖ	В	0,01	3070	45	80	0,11	0,8	95,8	0,10	0,12	0,07
НΠ)	Ж	7,7	0,043,0	0,10	18	0,25	1,9	86,4	0,41	0,20	0,18

Из результатов термогравиметрии (ТГ) следует, что окисление порошков железа протекает в две стадии, различающиеся по температуре (рис. 2, табл. 2). Параметры процесса окисления определяются дисперсностью образцов: температурный интервал полного окисления НПЖ в значительной мере смещен в область более низких температур и составляет порядка 500 °С, тогда как для ПЖВ – 700 °С. При равных условиях ТГ окисление НПЖ в продолжение первой стадии протекает более интенсивно (табл. 2), на второй стадии значения $v_{\text{макс,2}}$ для обоих образцов практически совпадают. Для нанопорошка переход между стадиями выражен менее отчетливо, чем для ПЖВ (рис. 2), и протекает в относительно широком температурном интервале 416...500 °С. Для процесса с участием ПЖВ этот интервал более узок (720...740 °С).

Рис. 2. Зависимости ТГ (1,2) и ДТГ (3,4) порошков Fe в условиях линейного нагрева в воздухе (m₀=5 мг, v₁=10 К/мин, v₀₀₀д=100 мл/мин): 1,3) ПЖВ; 2,4) НПЖ

Таблица 2. Параметры окисления порошков Fe в воздухе в условиях линейного нагрева (m₀=5 мг, vt=10 K/мин, vвозд=100 мл/мин)

		Пер	овая стад	ция	Вторая стадия			
Обра- зец	t _⊬ , °C	t _{Makc,1} , °C	и _{макс,1} .10², МИН ⁻¹	$\Delta m_1/m_0$, %	t _{Makc,2} , °C	V _{макс,2} ·10 ² , МИН ⁻¹	$\Delta m_2/m_0, \ \%$	
ПЖВ	360	652	0,86	17,8	848	0,98	40,7	
НПЖ	178	380	3,06	25,8	525	0,94	37,1	

Рис. 3. Зависимости ТГ (1,2) и ДТГ (3,4) НПЖ в условиях линейного нагрева в воздухе (vt=10 К/мин, vвозд=100 мл/мин) при различных начальных массах образца: 1,3) 3; 2,4) 10 мг

Особенностью протекания процесса окисления НПЖ в условиях линейного нагрева является ярко выраженная зависимость параметров процесса от массы образца. По мере увеличения массы навески от 3 до 10 мг (при равных v_t и $v_{\text{возд}}$) величина $v_{\text{макс,l}}$ процесса окисления на первой стадии возрастает от 0,053 (при $m_0=5...7$ мг) до 0,32 мин⁻¹ (рис. 3).

При увеличении массы навески в области *t*=325...350 °С на ТГ-зависимости фиксируется зигзагообразный участок, свидетельствующий об отклонении температуры рабочей термопары относительно термопары сравнения. При $m_0 = 10$ мг происходит скачкообразное повышение температуры образца нанопорошка на ~30° со скоростью порядка 40 К/мин (рис. 4). За счет возрастания величины $v_{\text{макс.}1}$ происходит увеличение $\Delta m_1/m_0$ (на 11 % в течение ~40 с), на второй стадии скорость процесса и прирост массы образца соответственно уменьшаются (рис. 3). Наблюдаемый характер влияния массы навески образца на температурный режим процесса окисления может свидетельствовать о значительном вкладе внешней диффузии в макрокинетику реакции [21]. Для процесса окисления грубодисперсного порошка такого влияния массы навески не наблюдается.

При относительно больших *m*₀ изменение условий ТГ ($v_{\text{возл</sub>}$ и v_t) приводит к изменению параметров процесса окисления НПЖ. В области низких значений v_t<10 К/мин скорость окисления пропорциональна скорости нагрева, температуры максимумов скорости реакции окисления при этом практически совпадают. При у≥10 К/мин происходит смещение максимума на ДТГ, соответствующего первой стадии, в область более высоких температур. Увеличение *v*_{возд}, наоборот, приводит к понижению величины *v*_{макс.1}: возрастание скорости потока воздуха от 100 до 200 мл/мин (при *v*_t=10 К/мин и *m*₀=10 мг) приводит к снижению значения $v_{\text{макс,1}}$ с 0,31 до 0,03 мин⁻¹, при этом температура $t_{\text{макс I}}$ повышается от 345 до 367 °C. Изменение условий ТГ на параметры второй стадии процесса окисления исследуемых образцов значительного влияния не оказывает.

Рис. 4. Зависимость первой производной температуры рабочей термопары по времени в условиях линейного нагрева НПЖ в воздухе (v_t=10 К/мин, v_{возд}=100 мл/мин) при различных начальных массах образца: 1) 5; 2) 10 мг

С целью выявления особенностей макрокинетического режима окисления порошков Fe были исследованы закономерности протекания процесса в изотермических условиях при массах навесок ~5 мг. Окисление ПЖВ изучали в интервале 450...800 °C, нанопорошка – в интервале 250...600 °C.

На рис. 5 приведены зависимости прироста массы порошков ПЖВ и НПЖ от времени для ряда температур. Продолжительность индукционного периода для обоих образцов незначительна. В отличие от грубодисперсного образца, зависимости $\Delta m/m_0 = f(\tau)$ для нанопорошка характеризуются линейными участками с высокой начальной скоростью возрастания массы (рис. 5), дальнейший нагрев не приводит к существенному изменению массы образца.

Таблица 3. Фазовый состав продуктов окисления порошков железа при прокаливании в воздухе в течение 1 ч по данным РФА

	Содержание фазы, мас.%				
t, °C	Fo	Fe ₃ O ₄	Fe ₂ O ₃		
	Te	(магнетит)	(гематит)		
	ПЖВ				
500	95,2	2,8	2,0		
600	79,0	7,2	13,8		
800	3,5	18,5	78,0		
	НПЖ				
300	88,5	3,0	8,5		
400	45,3	10,3	44,4		
500	16,5	9,8	73,7		
600	4,8	9,7	85,5		

Анализ полученных результатов с использованием метода приведенного времени [21] показывает, что процесс окисления ПЖВ в интервале 450...500 °С описывается параболической зависимостью. При t>500 °С и времени нагрева $\tau>10$ мин зависимость отклоняется от параболической и приближается к кубической. Из этих данных сле-

дует, что в данном интервале температур оксидный слой, формирующийся на поверхности частиц ПЖВ, является плотным и обусловливает протекание процесса окисления в диффузионном режиме. Эффективное значение энергии активации E_a , рассчитанное на основе аппроксимации данных с использованием параболической зависимости, составляет в среднем 144 кДж/моль и согласуется с данными [3, 8, 11]. Наблюдаемое отклонение процесса от параболического закона при t>500 °С можно объяснить формированием на поверхности частиц ПЖВ слоя Fe₂O₃ значительной толщины (табл. 3), что приводит к увеличению диффузионных ограничений процесса.

Рис. 5. Зависимости прироста массы ПЖВ (1) и НПЖ (2−5) от времени в условиях изотермического нагрева при температурах: 1) 500; 2) 300; 3) 370; 4) 500; 5) 600 °С

В отличие от ПЖВ, скорость окисления НПЖ в интервале температур 250...600 °С не подчиняется параболическому закону. Очевидно, что оксидный слой, формирующийся на поверхности частиц в период высокой начальной скорости реакции, не является плотным, и процесс протекает с минимальными диффузионными затруднениями. Из результатов анализа линейных участков зависимости прироста массы НПЖ от времени (табл. 4) с использованием уравнения $\Delta m/m_0 = k_{\text{лин}} \tau$ следует, что увеличение эффективной константы скорости $k_{\text{лин}}$ происходит в интервале t=250...370 °C, при более высоких температурах значения $k_{\text{лин}}$ близки. Увеличение v_{возд} от 100 до 200 мл/мин практически не сказывается на значениях начальной скорости процесса окисления и прироста массы образца.

Достижение некоторого предельного значения скорости окисления НПЖ при $t \ge 370$ °C, выше которой скорость реакции остается относительно постоянной, а происходит только рост величины $\Delta m/m_0$, свидетельствует об участии на начальной стадии окисления определенной мелкой фракции частиц, окисляющихся полностью. По-видимому, при низких температурах окисляются наиболее мелкие частицы. С ростом температуры интервал диаметра частиц, подвергающихся полному оки-

слению, увеличивается. Это предположение также подтверждается асимптотическим характером зависимостей $\Delta m/m_0 = f(\tau)$ с увеличением продолжительности нагрева (рис. 5), обусловленным сменой режима процесса с кинетического на диффузионный. В этих условиях на поверхности частиц крупной фракции формируется относительно толстая защитная оксидная оболочка гематита, которая приводит к резкому снижению скорости окисления [8, 11].

Определение эффективной энергии активации процесса окисления НПЖ проводили по зависимостям $\ln k_{\pi \mu \mu} = f(1/T)$ с использованием данных, полученных в изотермических условиях (табл. 4), $E_{a} = 100 \pm 7 \text{ кДж/моль.}$ Использовать данные по скорости окисления в условиях линейного нагрева образцов для вычисления E_a в случае НПЖ, как это предложено в работе [17], не представляется возможным, поскольку окисление нанопорошка сопровождается саморазогревом образца и переходом процесса из квазиизотермического в неизотермический даже при низких скоростях возрастания температуры печи термоанализатора. В этом случае обработка неизотермических данных дает завышенные значения энергии активации, которая в зависимости от степени превращения для одного и того же образца может быть переменной величиной [17].

Таблица 4. Кинетические параметры процесса окисления НПЖ

t, °C	Интервал $\Delta m/m_{ m 0}$	<i>k</i> _{лин} , мин⁻¹
250	00,02	0,010
300	00,09	0,014
330	00,12	0,042
370	00,14	0,13
400	00,18	0,14
500	00,24	0,13
600	00,31	0,13

Для объяснения причины наблюдаемого скачкообразного повышения температуры рабочей термопары при $t\approx330$ °C (при $m_0=10$ мг) в условиях линейного нагрева (рис. 4) была проведена численная оценка критерия самовозгорания нанопорошка [21]:

$$\theta = \frac{(T_{\rm n} - T_{\rm r})E_{\rm a}}{RT_{\rm r}^2}$$

где θ – безразмерный параметр разогрева поверхности образца; T_n и T_r – температуры, соответственно, поверхности и газа, К; E_a =100 кДж/моль. С учетом фиксируемой в условиях линейного нагрева разности температур рабочей термопары и термопары сравнения $\Delta T = T_n - T_r = 30$ К значение критерия $\theta \approx 1$ свидетельствует о достижении критической температуры самовозгорания (тления) [21] порошка. Из результатов расчетов следует, что макрокинетический режим процесса окисления НПЖ при определенных условиях ТГ (масса образца, скорость возрастания температуры, скорость

потока воздуха) может переходить из кинетического во внешнедиффузионный [21]. При этом поверхность образца достигает температуры саморазогрева (~300 °C), дальнейшее повышение температуры поверхности практически не зависит от внешнего нагрева и происходит вследствие протекания экзотермической реакции окисления НПЖ, что приводит к тепловому самовозгоранию образца. Повышение объемной скорости потока воздуха через рабочую зону печи анализатора интенсифицирует теплообмен, эффект разогрева образца проявляется в меньшей мере (рис. 3). Очевидно, что в зависимости от параметров ТГ самовозгорание образца НПЖ может протекать и при его внесении в предварительно нагретую до определенной температуры печь термоанализатора при проведении эксперимента в условиях изотермической выдержки.

Анализ полученных данных позволяет выявить причины отличия реакционной способности грубодисперсного и нанопорошка Fe в условиях нагрева в воздухе. Окисление ПЖВ в области температур $t \le 500$ °C протекает в диффузионном режиме, при этом на поверхности частиц образца образуется относительно плотная оксидная оболочка. Судя по величине $E_a=144$ кДж/моль, процесс лимитируется диффузией катионов в слое Fe₃O₄ [3, 4]. При более высоких температурах и продолжительности изотермической выдержки процесс окисления от-клоняется от параболического закона в связи с формированием внешнего слоя Fe₂O₃ значительному возрастанию диффузионных ограничений.

Механизм окисления частиц НПЖ вследствие метастабильности их структуры (значительная доля частиц нанодисперсного диапазона, малые значения $D_{\text{окр}}$, протяженные интергранулярные области) принципиально отличается от такового для микронного порошка. Вследствие совокупного влияния значительной кривизны поверхности частиц НПЖ и большой величины отношения молярных объемов $V_{\rm M}({\rm Fe}_{3}{\rm O}_{4})/V_{\rm M}({\rm Fe})=6,28$, образующийся в ходе окисления наночастиц Fe оксидный слой не является сплошным и не несет защитную функцию. Вследствие этого окисление частиц нанодисперсной фракции протекает в кинетическом режиме при намного более низких температурах по сравнению с ПЖВ. Поскольку оксидный слой в данном случае не имеет сплошного контакта с металлическим ядром частицы, магнетит быстро окисляется до гематита. Стадийность процесса в условиях линейного нагрева для обоих образцов можно объяснить окислением частиц мелкой фракции на первой стадии и более крупных – на второй. Помимо реакции окисления металла определенный вклад в прирост массы образца вносит процесс окисления Fe₃O₄, образующегося при непосредственном взаимодействии железа с кислородом. Формирование FeO в области температур окисления НПЖ термодинамически невыгодно, фаза вюстита при помощи РФА в продуктах окисления НПЖ при различных температурах и продолжительности нагрева не была зафиксирована.

Выводы

- Показано, что повышенная реакционная способность электровзрывного нанопорошка железа (среднечисловой диаметр частиц d_{cp}=100 нм) при окислении в воздухе в условиях линейного нагрева, по сравнению с промышленным микронным порошком (d_{cp}=45 мкм), проявляется в значительном понижении температуры начала окисления, повышении скорости процесса и сужении температурного интервала полного окисления образца. Наблюдаемые отличия обусловлены размерным фактором и метастабильной структурой частиц нанопорошка.
- 2. По результатам изучения процесса окисления нанопорошка Fe в изотермических условиях (250...600 °C) установлено, что в отличие от компактного металла и микронных порошков окисление образца протекает в кинетическом режиме (E_a =100±7 кДж/моль). В качестве продуктов окисления в указанном температурном интервале образуются фазы магнетита и гематита.
- 3. Установлено, что при определенных условиях термогравиметрии (*m*₀≥10 мг, *v_i*≥10 К/мин, *v_{возд}*≤100 мл/мин) макрокинетический режим процесса окисления нанопорошка Fe переходит из кинетического во внешнедиффузионный. Поверхность образца за счет значительного теплового эффекта реакции окисления достигает температуры саморазогрева (~300 °C), выше которой происходит тепловое самовозгорание (тление) порошка. Расчетное значение критерия разогрева поверхности образца (*θ*≈1) согласуется с фиксируемым в эксперименте значением критической температуры.

Автор признателен проф. А.П. Ильину за ценные замечания и рекомендации, а также инж. Т.П. Морозовой за помощь в проведении эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- Brown M.E., Tribelhorn M.J., Blenkinsop M.G. Use of thermomagnetometry in the study of iron-containing pyrotechnic systems // J. Therm. Anal. – 1993. – V. 40. – P. 1123–1130.
- Горохов Ю.М. О пирофорных свойствах, взрывоопасности и токсичности порошков и пылей железа и его соединений // Порошковая металлургия. – 1964. – Т. 19. – № 1. – С. 105–110.
- Кубашевский О., Гопкинс Б. Окисление металлов и сплавов. М.: Металлургия, 1965. – 428 с.
- Chen R.Y., Yuen W.Y. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen // Oxidation of Metals. – 2003. – V. 59. – № 5/6. – P. 433–468.
- Lee M., Rapp R.A. Coalescence of wustite grains during iron oxidation in a hot-stage environmental SEM // Oxidation of Metals. – 1987. – V. 27. – № 3/4. – P. 187–197.
- Bertrand N., Desgranges C., Poquillon D., et al. Iron oxidation at low temperature (260–500 °C) in air and the effect of water vapor // Oxidation of Metals. – 2010. – V. 73. – P. 139–162.
- Juricic C., Pinto H., Cardinali D., et al. Evolution of microstructure and internal stresses in multi-phase oxide scales grown on (110) surfaces of iron single crystals at 650 °C // Oxidation of Metals. – 2010. – V. 73. – P. 115–138.
- Del Campo L., Perez-Saez R., Tello M. Iron oxidation kinetics study by using infrared spectral emissivity measurements below 570 °C // Corrosion Science. – 2008. – V. 50. – P. 194–199.
- Hussey R.J., Caplan D., Graham M.J. The growth and structure of oxide films on Fe. II. Oxidation of polycrystalline Fe at 240–320 °C // Oxidation of Metals. – 1981. – V. 15. – № 5/6. – P. 421–435.
- Hussey R.J., Cohen M. The oxidation of Fe in the temperature range 450–550 °C. I. The pressure range 10⁻⁶–10⁻⁴Torr // Corrosion Science. 1971. V. 11. № 10. P. 699–711.
- Hussey R.J., Cohen M. The oxidation of Fe in the temperature range 450–550 °C. II. The pressure range 10⁻³–760 Torr // Corrosion Science. 1971. V. 11. № 10. P. 713–721.

- Диаграммы состояния двойных металлических систем: Справочник: в 3-х т.: Т. 2 / Под общ. ред. Н.П. Лякишева. М.: Машиностроение, 1997. С. 522–524.
- Rebeyrat S., Grosseau-Poussard J., Dinhut J., Renault P. Oxidation of phosphated iron powders // Thin Solid Films. – 2000. – V. 379. – № 1/2. – P. 139–146.
- Zhygotsky G. Determination of active metal in ultradispersed iron powders and TG study of their oxidation // J. Therm. Anal. Calorimetry. – 2000. – V. 62. – P. 575–578.
- Емельянова Т.А., Семенова А.С. Дериватографическое исследование низкотемпературного окисления порошкообразных металлов // Известия вузов. Цветная металлургия. – 2005. – № 5. – С. 48–55.
- An V., Ivchenko E., De Izarra Ch. Laser induced oxidation processes in iron, copper and nickel nanopowders // Materials Letters. 2008. – V. 62. – P. 2211–2214.
- Wen D., Song P., Zhang K., Qian J. Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion // J. Chem. Technol. Biotechnol. – 2011. – V. 86. – № 3. – P. 375–380.
- Тихонов Д.В. Электровзрывное получение ультрадисперсных порошков сложного состава: дис.... канд. техн. наук. – Томск: ТПУ, 1999. – 237 с.
- Русаков А.А. Рентгенография металлов. М.: Атомиздат, 1977. – 480 с.
- Wolf D. Grain boundaries in nanocrystalline materials / Handbook of Materials Modeling. – N.Y., etc.: Springer, 2005. – P. 2055.
- Розовский А.Я. Кинетика топохимических реакций. М.: Химия, 1974. – 224 с.

Поступила 28.02.2011 г.