УДК 666.291.3

КЕРАМИЧЕСКИЕ ПИГМЕНТЫ СО СТРУКТУРОЙ ДИОРТОСИЛИКАТОВ

М.Б. Седельникова, Н.В. Лисеенко, В.М. Погребенков

Томский политехнический университет E-mail: smb@mail.tpu.ru

Изучены процессы синтеза керамических пигментов со структурами диортосиликатов — геленита, гардистонита и окерманита при использовании природного волластонита и нефелинового шлама. Установлено, что реакции синтеза идут в области температур 1100...1200 °С более успешно с участием нефелинового шлама, чем с волластонитом, но наличие в нефелиновом шламе оксида железа негативно сказывается на цветовых свойствах кобальт- и никельсодержащих пигментов.

Ключевые слова:

Диортосиликаты, хромофор, кристаллическая структура.

Key words:

Diortosilikaty, chromophore, crystal structure.

Введение

Синтез керамических пигментов с кристаллическими решетками различных типов происходит в результате введения в них переходных элементов Периодической системы. Окраска пигментов зависит не только от химической природы вводимого иона-хромофора, но и от координации, в которой он находится, а также от уровня симметрии координационного полиэдра. Наиболее устойчивой и яркой окраской обладают пигменты шпинельного ряда, имеющие кубическую структуру [1]; высокими хромофорными качествами отличаются пигменты группы гранатов [2], также кристаллизующихся в кубической сингонии; известны пигменты цирконового ряда [3] тетрагональной сингонии.

Целью представленной работы было исследование возможности получения керамических пигментов со структурами диортосиликатов — геленита, гардистонита, окерманита с использованием слюдянского волластонита и нефелинового шлама Ачинского глинозёмного комбината.

Минералы геленит, гардистонит, окерманит относятся к группе мелилита (тетрагональная сингония). Это ортосиликаты, имеющие в основе структуры кремнекислородные мотивы из сдвоенных изолированных тетраэдров. По составу мелилит можно рассматривать как промежуточный минеральный вид в изоморфном ряду, конечными членами которого являются геленит и окерманит: $Ca_2[Al_2SiO_7]...Ca_2[Mg_2SiO_7].$ Ион Mg^{2+} в структуре окерманита изоморфно замещается ионом $Al^{3+}(Zn^{2+})$ при одновременном замещении одного иона Si⁴⁺ ионом Al³⁺, чем достигается электростати-Ионы нейтральность ческая структуры. $Mg^{2+}(Al^{3+}, Zn^{2+})$ расположены в узлах и в центре квадрата, причем каждый находится в окружении четырех ионов кислорода. Ионы Ca²⁺ располагаются в окружении 8 ионов кислорода [4].

Экспериментальная часть

Синтез структур диортосиликатов осуществляли с использованием волластонита и нефелиново-

го шлама согласно реакциям, представленным на схеме (рис. 1). Химический состав исходных сырьевых материалов представлен в табл. 1.

Таблица 1. Химический состав исходного сырья


Сырьё	Массовое содержание, %							
Сырве	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	R ₂ O	MgO	п.п.п.	
Нефелиновый шлам Ачинского глинозём- ного комбината	29,12	3,66	4,55	53,20	3,06	1,45	4,96	
Слюдянский волластонит	51,70	0,11	-	46,48	0,16	1,23	0,32	

Содержание волластонита $CaSiO_3$ в породе составляет 96 мас. %. Нефелиновый шлам — продукт переработки природных нефелиновых руд при получении глинозема [5]. Минералогический состав нефелинового шлама представлен, в основном, двухкальциевым силикатом β -2CaO·SiO₂, содержание которого составляет в среднем 70...75 мас. %. В качестве второстепенных фаз присутствуют гидросиликаты кальция, гидроферриты и др.

Окрашенные керамические пигменты со структурами геленита, гардистонита и окерманита получали путём эквимолярного замещения оксидов кальция, алюминия, цинка, магния, участвующих в данных реакциях, на оксиды-хромофоры в количестве 0,1; 0,3; 0,5; 0,7; 1,0 моль.

Керамические пигменты получали по следующей методике. Тонкоизмельчённые волластонит и нефелиновый шлам смешивали с подшихтовочными оксидами алюминия, кремния, кальция, магния, в смесь добавляли соли элементов-хромофоров — железа, кобальта, никеля, хрома. Высушенные смеси обжигали при температуре 1100...1200~°C, спек размалывали до остатка на сите № 0063 не более 0,2~%.

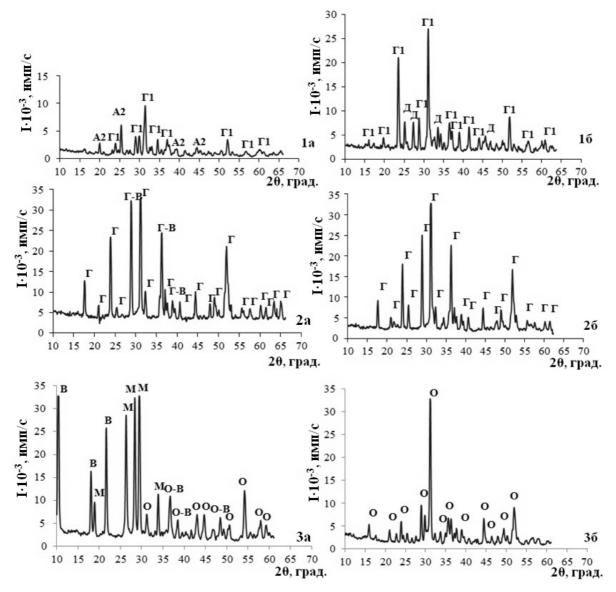
В процессе обжига происходит синтез кристаллических структур диортосиликатов, внедрение ионов-хромофоров в синтезируемые структуры, образование цветонесущих фаз. Кобальтсодержащие пигменты окрашены в синие и сине-зелёные тона, окраска никельсодержащих пигментов коле-

Рис. 1. Схема получения керамических пигментов со структурами диортосиликатов при использовании природного волластонита и нефелинового шлама

Таблица 2. Цвет пигментов и надглазурных красок после обжига

№ пигмента, хромофор	Цвет пигментов	Цвет надглазурных красок	№ пигмента, хромофор	Цвет пигментов	Цвет надглазурных красок				
С использованием волластонита			С использованием нефелинового шлама						
Структура геленита									
ЛВ1, СоО	Ярко-голубой	Ярко-голубой	ЛН15, СоО	Серо-голубой	Сине-фиолетовый				
ЛВЗ, СоО	Сине-зеленый	Тёмно-фиолетовый	ЛН17, СоО	Сине-зелёный	Фиолетовый				
ЛВ6, NiO	Бирюзовый	Бирюзовый	ЛН22, NiO	Коричнево-серый	Зеленовато-коричневый				
ЛВ9, Cr ₂ O ₃	Лимонно-желтый	Лимонно-желтый	ЛН19, Cr ₂ O ₃	Ярко-салатный	Зелёный				
ЛВ13, Fe ₂ O ₃	Кирпичный	Кирпично-коричневый	ЛН26, Fe ₂ O ₃	Красно-кирпичный	Красно-коричневый				
Структура гардистонита									
XB2, CoO	Голубой	Фиолетово-синий	XH19, CoO	Зеленовато-синий	Тёмно-фиолетовый				
XB3, CoO	Зеленовато-синий	Фиолетово-синий	XH20, CoO	Тёмно-синий	-				
XB6, NiO	Светло-песочный	Зеленовато-охристый	XH22, NiO	Светло-кофейный	Желтовато-охристый				
XB7, NiO	Охристый	Охристый	XH23, NiO	Кофейный	Охристый				
XB9, Cr ₂ O ₃	Розовато-бежевый	Зеленовато-коричневый	XH25, Cr ₂ O ₃	Красновато-бежевый	Коричневый				
XB11, Cr ₂ O ₃	Серо-зелёный	Коричневый	XH27, Cr ₂ O ₃	Оливково-зелёный	Шоколадный				
XB13, Fe ₂ O ₃	Золотистый	Золотистый	XH29, Fe₂O₃	Золотисто-коричневый	Светло-коричневый				
XB14, Fe ₂ O ₃	Рыже-золотой	Рыже-золотой	XH30, Fe ₂ O ₃	Коричневый	Коричневый				
Структура окерманита									
OB1, CoO	Светло-синий	Серовато-фиолетовый	OH14, CoO	Сине-серый	Сиренево-фиолетовый				
OB6, NiO	Светло-оливковый	Желто-салатный	OH17, NiO	Кофе с молоком	Салатный				
OB8, Cr ₂ O ₃	Оливково-зеленый	Травянисто-зелёный	OH20, Cr ₂ O ₃	Оливковый	Коричневато-зелёный				
OB13, Fe ₂ O ₃	Шоколадный	Коричневый	OH27, Fe ₂ O ₃	Песочный	Жёлто-коричневый				

блется от светло-бирюзовой до светло-песочной и коричнево-серой, хромсодержащие пигменты имеют лимонно-жёлтую и оливковую окраску, а железосодержащие пигменты — красно-коричневые и золотистые оттенки (табл. 2). При повышении температуры обжига от 1100 до 1200 °C окраска кобальтсодержащих пигментов становится ярче и чище, а цвет железосодержащих пигментов темнеет. Окраска никельсодержащих пигментов зависит не только от температуры, но и от концентрации NiO. При увеличении температуры обжига от 1100 до 1200 °C пигменты с содержанием оксида никеля до 8 мас. % становятся ярче, а цвет пигментов с содержанием NiO 13...17 мас. % ухудшается.


Синтезированные пигменты исследовали с помощью рентгенофазового анализа с использованием излучения $Cu_{K\alpha}$, шаг сканирования 4 °/мин, вре-

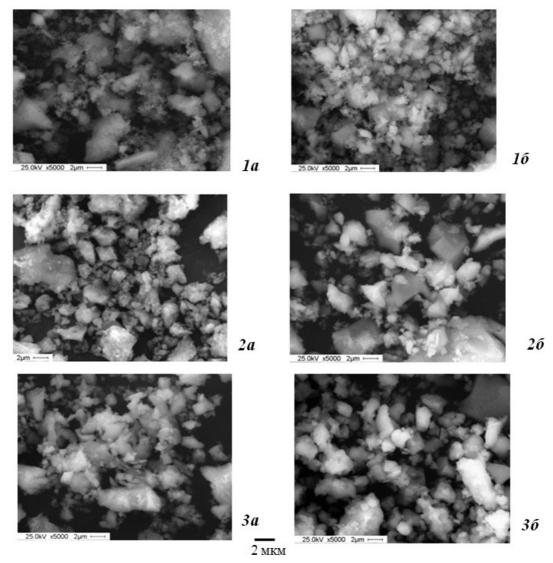
мя измерения интенсивности в точках сканирования 1 с, напряжение на трубке 35 кВ, сила тока 25 мА.

Результаты эксперимента

Исследование показало, что в результате синтеза геленита с использованием волластонита в пробе идентифицируется доминирующая фаза геленит (d=0,307; 0,284; 0,175 нм), где d — межплоскостное расстояние, а также присутствуют рефлексы, характерные для алюмината кальция (d=0,554; 0,367; 0,298 нм) и диалюмината кальция (d=0,444; 0,350; 0,323 нм), рис. 2.

Анализ рентгенограмм проб, полученных с использованием нефелинового шлама, показал, что в них образуется основная кристаллическая структура — геленит (d=0,285; 0,231; 0,176 нм); некото-

Рис. 2. Дифрактограммы геленитовых (1), гардистонитовых (2) и окерманитовых (3) проб, полученных при использовании волластонита (а) и нефелинового шлама (б), Г1 – геленит; А2 – алюминаты кальция; Д – двухкальциевый силикат; В – волластонит; М – мервинит; О – окерманит; Г – гардистонит


рые рефлексы небольшой интенсивности относятся к остаточной структуре двухкальциевого силиката (d=0,379; 0,267; 0,189 нм).

Фазовый состав пигментов кроме доминирующей кристаллической фазы геленита включает в себя шпинели $NiAl_2O_4$ (d=0,465; 0,243 нм), $CoAl_2O_4$ (d=0,244; 0,156 нм), а также оксиды Cr_2O_3 и Fe_2O_3 при содержании их в пигментах 0,1 моль (соответственно 5,36 и 5,63 мас. %). Сравнение рентгенограмм геленитовых проб из волластонита и нефелинового шлама показывает, что интенсивность дифракционных максимумов, характерных для геленита, выше для пробы, полученной с использованием нефелинового шлама (рис. 2).

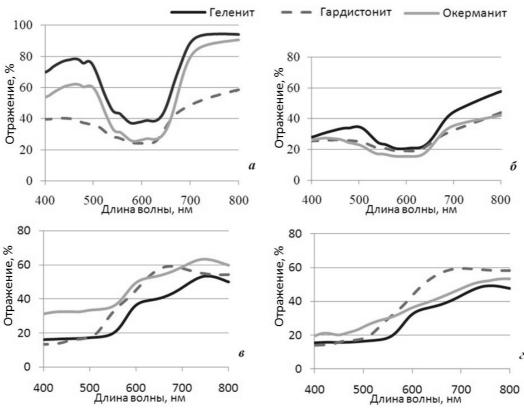
Было также установлено, что полное формирование структуры гардистонита из волластонита происходит при температуре 1200 °С. При добавлении хромофоров основная структура не изменяется, но появляются дополнительные кристаллические фазы: в никельсодержащих пигментах иден-

тифицируется свободный NiO (d=0,240; 0,208; 0,147 нм), в хромовых и железосодержащих пигментах — шпинели ZnCr₂O₄ (d=0,251; 0,241; 0,208 нм) и ZnFe₂O₄ (d=0,298; 0,254; 0,162 нм).

При синтезе гардистонита с использованием нефелинового шлама данная структура полностью формируется уже при температуре 1100 °C. Но в пигментах присутствуют те же дополнительные кристаллические фазы. Наличие в фазовом составе пигментов хромсодержащих шпинелей обуславливает александритовый эффект в окраске пигментов. При небольшом содержании оксида хрома наблюдается розовато-бежевый цвет, вызванный встраиванием ионов хрома в более плотную кубическую структуру шпинели. С увеличением содержания Ст₂О₃ ионы хрома начинают встраиваться и в более рыхлую структуру гардистонита, в результате образуется зелёная окраска. Данный эффект может быть также связан с разрыхлением структуры шпинели при увеличении количества

Рис. 3. Микрофотографии проб геленитового (1), гардистонитового (2) и окерманитового (3) состава, полученных при использовании волластонита (а) и нефелинового шлама (б)

ионов-хромофоров по аналогии с изменением окраски гранатов [6].


Из анализа рентгенограмм окерманитовых образцов следует, что в пробе, полученной с использованием волластонита при температуре 1200 °C, присутствуют несколько кристаллических фаз: мервинит (d=0,469; 0,315; 0,303 нм), окерманит (d=0,287; 0,210; 0,167 нм), волластонит (d=0,491;0,406; 0,247 нм). Доминирует структура мервинита. Рентгенофазовый анализ окерманитовых проб, полученных с использованием нефелинового шлама, показал, что доминирующей фазой при температурах 1100 и 1200 °C является окерманит. На рентгенограммах железосодержащих окерманитовых пигментов с содержанием оксида железа 0,3 моль (15 мас. %) данный оксид фиксируется в виде самостоятельной фазы, общая интенсивность дифракционных максимумов снижается. В хромсодержащих пигментах кроме окерманита присутствует шпинель $MgCr_2O_4$ (d=0,251; 0,208; 0,147 нм).

Геленит, гардистонит и окерманит имеют одинаковую симметрию кристаллической решётки и характеризуются похожими морфологическими свойствами кристаллов. Микрофотографии, полученные с помощью растрового электронного микроскопа Philips SEM 515, рис. 3, подтверждают, что гардистонитовые и окерманитовые образцы, полученные как с использованием волластонита, так и нефелинового шлама, имеют похожую микроструктуру. Форма кристаллов — толстотаблит-

чатая, короткостолбчатая тетрагональная, октаэдрическая — характерная для минералов группы мелилита. Геленитовые образцы отличаются нечёткими очертаниями кристаллов.

Анализ спектральных данных отражения пигментов (рис. 4), записанных с помощью спектрофотометра Cary 100 Scan, показывает, что при внедрении хромофоров одного типа в структуры геленита, гардистонита и окерманита образуется примерно одинаковая окраска, различающаяся лишь оттенками. В структуре перечисленных диортосиликатов встраивание ионов-хромофоров может идти в позициях $Mg^{2+}(Al^{3+}, Zn^{2+})$ с координационным числом 4 или Са²⁺ с координационным числом 8. Исходя из близости ионных радиусов предполагается, что встраивание ионов-хромофоров предпочтительнее идёт в позициях магния (алюминия, цинка), что подтверждается окраской кобальтсодержащих пигментов, поскольку известно, что в тетраэдрической координации для Со²⁺ характерна синяя, сине-зелёная окраска [7]. На спектрах кобальтсодержащих пигментов наблюдается широкая полоса поглощения с максимумом в жёлто-оранжевой части спектра. Гардистонитовые пигменты с СоО отличаются более тёмной окраской, максимум поглощения имеет меньшую высоту.

Разнообразие окраски соединений железа зависит не только от различных типов оптического поглощения комплексов, но и от d-d-переходов и пе-

Рис. 4. Спектры отражения пигментов с CoO (a, б) и Fe_2O_3 (в, г), синтезированных с использованием волластонита (a, в) и нефелинового шлама (б, г)

реноса заряда $O^2 oup Fe^{3+}$ [7]. Например, зелёная окраска Fe^{3+} соответствует спектральным полосам d-d-переходов, которые находятся в фиолетовой, синей и красной областях спектра. Красный, коричневый и бурый цвета в основном определяются интенсивной полосой переноса заряда.

Спектры отражения для железосодержащих пигментов характеризуют поглощение световых волн в сине-зелёной области и отражение в оранжево-красной; для гардистонитовых пигментов наблюдается сдвиг максимума отражения в область жёлто-оранжевых оттенков.

Сравнение спектров отражения пигментов, полученных с использованием волластонита и нефелинового шлама, подтверждает ухудшение окраски кобальтсодержащих пигментов, поскольку нефелиновый шлам содержит значительное количество оксида железа (4,55 мас. %), влияющего на изменение цвета. Спектры отражения становятся более «сглаженными», уменьшается глубина максимума поглощения. Для железосодержащих пигментов изменения окраски практически не наблюдается.

Синтезированные пигменты были опробованы в качестве надглазурных керамических красок. Цвет красок представлен в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Туманов С.Г., Потраков В.П. Получение новых хромовых пигментов шпинельного типа // Стекло и керамика. 1965. $N\!\!\!_{2}$ 6. С. 2—5.
- Masashi Shoyama, Hiroyuki Nasu, Kanichi Kamiya. Preparation of rare earth-zircon pigments by the sol-gel method // Journal of the Ceramic Society of Japan. – 1998. – V. 106. – № 1231. – P. 279–284.

Выводы

- 1. Путём обжига в области температур 1100...1200 °C синтезированы керамические пигменты со структурой диортосиликатов геленит, гардистонит и окерманит. Пигменты имеют яркую, разнообразную окраску и могут быть рекомендованы для получения керамических красок, окрашивания керамических масс, эмалей и глазурей.
- 2. Наличие в нефелиновом шламе оксида железа при концентрации свыше 4,55 мас. % негативно сказывается на цветовых свойствах кобальти никельсодержащих пигментов.
- 3. Использование нефелинового шлама для получения кристаллических структур геленита, гардистонита и окерманита даёт больший выход целевых минералов по сравнению с использованием волластонита. Основным минералом нефелинового шлама является β-2CaO·SiO₂, имеющий островную структуру. В отличие от данной структуры, в цепочечной структуре волластонита имеются прочные силоксановые связи Si-O-Si между тетраэдрами в цепочке. Для разрыва этих связей требуется больше энергии, поэтому процесс формирования производных структур диортосиликатов при участии волластонита идёт труднее.
- Бетехтин А.Г. Минералогия. М.: Гос. изд-во минералог. литры, 1950. – 958 с.
- Шморгуненко Н.С., Корнев В.И. Комплексная переработка и использование отвальных шламов глиноземного производства. – М.: Металлургия, 1982. – 128 с.
- Васильев А.В. Александритовый эффект // Вестник геммологии. – 2003. – № 1 (8). – С. 28–38.
- Масленникова Г.Н., Пищ И.В. Керамические пигменты. 2-е изд. перераб. и доп. – М.: Стройматериалы, 2009. – 224 с.

Поступила 15.02.2011 г.