ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ НА D-ЛИНИЯХ НАТРИЯ ПРИ ШИРОКОПОЛОСНОЙ ОПТИЧЕСКОЙ НАКАЧКЕ

<u>Т.Д. Петухов</u>, С.Н. Торгаев, Г.С. Евтушенко, Е.Н. Тельминов

Научный руководитель: профессор, д. т. н. Г.С. Евтушенко Национальный исследовательский Томский политехнический университет E-mail: smileedition@gmail.com

В связи с развитием лазеров на парах щелочных металлов с диодной накачкой интересно рассмотреть возможность применение такого типа лазеров в усилителях яркости изображения [1–5].

В данной работе рассматривается механизм получения генерации в ячейке с парами натрия при продольной накачке лазером на красителе, при длине волны меньшей, чем переход из основного состояния в уровень D₂, что моделирует накачку лазерными диодами. Приводится расчет уширения линии излучения.

Схема эксперимента

Упрощенная схема переходов в спектре натрия и схема эксперимента представлены на рисунках 1 и 2, соответственно. В работе использована ячейка с парами натрия, с длиной подогреваемой зоны 10,5 см и диаметром 2,6 см. Температура внешней стенки ячейки составляла 200–250 °C, давление буферного газа – гелия при рабочей температуре достигает 500 Торр (исходное давление 300 Торр).

Рис. 1. Схема рабочих переходов натрия

Рис. 2. Схема эксперимента

Результаты эксперимента

Вынужденное излучение на линиях натрия регистрировалось на краю прошедшего излучения накачки. При движении приемника от центра к краю излучения наблюдалось уменьшение интенсивности излучения накачки, и увеличение интенсивности вынужденного излучения (рис. 3).

При фокусировке излучения накачки, вынужденное излучение наблюдалось при площади пятна 20,4 мм² и энергии излучения 3,3 мДж, что соответствует плотности мощности 1,6 МВт/см².

Без фокусировки излучения накачки, вынужденное излучение наблюдалось при энергии накачки 12 мДж и площади пятна 94,2 мм², что соответствует плотности мощности 1,3 МВт/см².

Из рисунка 3 отчетливо видно, что мы имеем дело с вынужденным излучением на обеих линиях натрия D_1 и D_2 . Ширина линии регистрируемого излучения не больше ширины линии накачки и составляет порядка 2–3 нм по полувысоте, с максимумами, соответствующим линиям D_1 и D_2 . Точность определения максимумов и полуширин линий ограничена разрешающей способностью спектрометра. Мы попытались оценить предельную минимальную полуширину излучения расчетным путем.

Расчет полуширины линии излучения

Ниже приведен расчет полуширины линии излучения D_1 (589,6 нм). При расчете ширины линии излучения необходимо учесть, что среда находится под достаточно высоким давлением, а, следовательно, необходимо учитывать не только Доплеровское (тепловое) уширение линии, но и столкновительное. Получение результирующего уширения линии излучения возможно при использовании функции свертки (функцию Фойгта) [6]:

$$S(\lambda) = \frac{\Delta v_L}{\Delta v_D \cdot \pi^{\frac{3}{2}}} \cdot \int_{-\infty}^{+\infty} \left(\frac{\Delta v_L}{\Delta v_D} \cdot \sqrt{\ln(2)}\right)^2 + \left(\frac{\frac{c}{\lambda} - v_0}{\Delta v_D} \cdot 2 \cdot \sqrt{\ln(2)} - z\right)^2 dz$$

Результаты расчета контура линии D₁ приведены на рисунке 4. Результирующее значение уширения линии излучения по полувысоте составляет $\Delta \lambda = 2.9 \cdot 10^{-12} \, m$. Расчеты показывают, что для используемых условий (температуры ячейки, давлении буферного газа) вклады доплеровского и ударного механизмов уширения в результирующее уширение оказываются одного порядка.

Обобщение результатов

В ходе работы получено вынужденное излучение в ячейке с парами натрия при продольной оптической накачке лазером на красителе. Регистрируемое излучение содержит две линии D_1 =589,6 нм и D_2 =588,9 нм и имеет расходимость, близкую по величине к излучению накачки. Определены пороговые значения плотности мощности, при которых регистрируется вынужденное излучение с фокусировкой 1,6 MBt/cm² и без фокусировки 1,3 MBt/cm².

Рассчитанная полуширина линии излучения 2,5 пм, оказывается одного порядка с полуширинами атомных линий на самограниченных переходах меди и других металлов, используемых в активных оптических системах (лазерном проекционном микроскопе и лазерном мониторе) [1].

В дальнейшем планируется проведение экспериментов по оценке величины однопроходового усиления среды.

Авторы выражают благодарность Суханову В.Б. и Соковикову В.Г. за помощь при подготовке экспериментов. Работа выполнена при поддержке Российского научного фонда, проект № 14-19-00175.

Список литературы

Evtushenko G.S. From a metal vapor laser projection microscope to a laser monitor (by the 50 year-anniversary of metal vapor lasers) // Proc. of International Conference on Atomic and Molecular Pulsed Lasers (AMPL-2015) Tomsk, Russian Federation, September, December 15, 2015 / (eds.) V.F. Tarasenko, A.M. Kabanov // Proc. of SPIE. – Vol. 9810. – P. 98101F1-98101F-9.

- Evtushenko G.S., Trigub M.V., Gubarev F.A. et al. Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting // Review of Scientific Instruments. – 2014. – Vol. 85, Issue 3, Article number 033111. – P. 1– 5.
- Shalagin, A.M. Celebrating 50 years of the laser (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 13 December 2010) // Physics-Uspekhi. – 2011. – Vol. 54, No. 9. – P. 975–980.
- 4. Gao, F., Chen, F., Xie, J.J. et al. Review on diode-pumped alkali vapor laser // Optik. 2013. Vol. 124, No. 20. P. 4353–4358.
- 5. Zhdanov, B.V., Knize, R.J. Efficient diode pumped cesium vapor amplifier // Optics Communications. 2008. Vol. 281, No. 15–16. P. 4068–4070.
- 6. Varghese P.L., Hanson R.K. Collisional narrowing effects on spectral line shapes measured at high resolution // Appl. Opt. 1984. Vol. 23, No.14. P. 2376–2385.