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Abstract. The paper shows the possibility of carburization of low-carbon steel surface layers 

using high-frequency currents. The mathematical modeling of carburization using high-energy 

heating by high-frequency currents (HEH HFC) has been carried out, the temperature fields 

formed during the given processing have been calculated, as well as the structural changes in 

the surface layers have been simulated. The features of the structure formation in the surface 

layers of low-carbon steel after carburizing via HEH HFC have been determined by optical and 

scanning microscopy, which is confirmed by the computational models. The rational mode of 

fusion via HEH HFC has also been determined (power density of the source qs = (1.5 ... 4.0) ∙ 

108 W m-2, (the relative travel speed of parts Vp  = 5 ... 100 mm / sec), with forming the 

compressive retained stresses in the surface layer (RS ≈ -300 ... -400 MPa). 

1. Introduction 

The problem of improving the abrasion resistance of the surface layers of metallic materials for 

constructional purposes is relevant. This is due to the fact that a large amount of machine parts and 

structural elements are out of order due to their abrasion [1 - 10]. One of the most cost-effective 

methods for solving the problem is chemical and thermal processing of steel. The most common 

method today is the cementation process followed by quenching and tempering. The main disadvantage 

of this method is high labor intensity and duration of the process. The second problem is that in the 

standard processes of surface saturation of steel by reinforcing elements it is almost impossible to 

handle large-size items. An effective solution of the problem is the use of high-energy heating 

processing of the surface layer of the material for the purpose of alloying. In modern production such 

methods of surface hardening of materials as laser treatment [11, 12], and plasma arc welding [13 - 

17], electron-beam treatment [18 - 22] are successfully used. These technologies can significantly 

accelerate the process of hardening of the surface layer. Such heat sources as laser beam, plasma and 

electron beam can be used for rapid heating or melting the surface in a short period of time during 

which the heat is not able to penetrate deep into the product, and therefore, will not change its 

properties. 

There is little research devoted to surface carbon alloying of low-carbon steels when exposed to 

high-frequency currents [23, 24]. This is probably due to the fact that during this type of processing it 

is very difficult to secure the saturant (carbon) on the surface of the part. During HFC processing, when 

Materials and Technologies of New Generations in Modern Materials Science IOP Publishing
IOP Conf. Series: Materials Science and Engineering 156 (2016) 012022 doi:10.1088/1757-899X/156/1/012022

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:n.plotnikova@corp.nstu.ru


exposed to a strong magnetic field, the carbon powder “is blown” off the sample surface. To find the 

solution of this problem is also an urgent task. 

The aim of this work was to develop a surface carbon alloying technology of low carbon steel using 

high-energy heating by high-frequency currents. 

2. Materials and methods 

2.1. Materials and methods of field experiments 

The samples used for the surface hardening were the bars with the dimensions 10 × 10 × 100 mm made 

of steel 20 (0.19% C, 0.47% Mn, 0.20% Si, 0.009% P, 0.042% S, 0.15% Ni, 0.15% Cu), pre-treatment 

of which was carried out on the machining center DMC 635 and on the surface grinder 3G71. Graphite 

GL-1 (GOST 5279-74) was used as a saturant. 

The bar surface was coated with graphite epoxy resin, after solidification of which the surface 

grinding was repeated. The saturant thickness was 0.1 ... 0.2 mm. The size control was carried on 

profilograph-profilometer Form Talysurf Series 2. 

The samples with the hardened coating were processed on the contrivance, the main drive of which 

has stepless speed control in the range Vp = (5 ... 200) mm / sec. The energy source was the vacuum-

tube generator HFG 6-60 / 0.44 with an operating frequency of the current 440 103 Hz. The heating 

process was carried out on the depth pattern (the 

thickness of the hardened layer did not exceed the 

penetration depth of the current into the hot metal - 0.6 

... 0.8 mm) in a continuous-sequential manner. When 

hardening, a loop-type inductor, equipped with a ferrite 

magnetic core N87, was used (Figure 1) [25 - 28]. HEH 

HFC of the experimental samples was carried out in the 

following modes: the power density of the source qs = 

(1.5 … 4.0)∙108 W m-2, the travel speed of parts Vp = (5 

... 100) mm / sec. The active inductor wire width was Rs  

= 2 mm, the processing was carried out with a gap Δ = 

0.1 ... 0.2 mm, followed by intensive water shower 

cooling of  the surface (heat transfer coefficient α = 

30∙103 W / (m2 ∙°C) or by air cooling. 

Structural studies of the samples were carried out 

using a light microscope Axio Observer A1m and 

scanning microscope EVO 50 XVP of the company 

«Carl Zeiss». 

 

2.2. Mathematical modeling 

Preparation of the finite element of the model was carried out in the program complex ANSYS. 

ANSYS Meshing Generator formed the hexahedral mesh using the following types of finite elements: 

Solid bodies - solids were simulated by the 8-node tetrahedrons SOLID 45; Surface bodies - surface 

bodies were simulated by the 4-node 4- carbon shell elements - SHELL 63; Line bodies - linear bodies 

were simulated by the 2-node linear elements LINK 8. The size of finite elements was 0.01 ... 1 mm. 

The total number of elements (Elements) was 108800. 

The modeling of the HEH HFC process was carried out in SYSWELD system allowing by using 

the model of elastic and viscoplastic response of the material and the modern mathematical apparatus 

to calculate the temperature fields, distribution of the structural components, hardness, internal stress 

and strain [28 - 30]. 

The advantage of the mathematical apparatus of the heat conductivity theory can be taken only 

when describing the heat source at the point of action properly. [23] 

The adequacy of the mathematical model was tested indirectly via the structural studies carried out 

beforehand and the determination of micro-hardness of the hardened layer.  

 
Figure 1. HEH HFC processing scheme 
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3. Results and discussion 

The calculations have shown that when HEH HFC heating we can achieve sufficiently high heating 

rates Vhr = 5 ... 50 ∙ 103 °C/sec and quenching rates (in the temperature range (700 ... 500) °C – Vqr_700-

500 = 3 ... 33 ∙ 103 °C/sec, in the temperature range (400 ... 150) °C – V qr_400-150 = 200 ... 4100 °C/sec). 

When the maximum surface temperature is 1700 ... 1750 °C, the formation of high-carbon layer is 

realized simultaneously with the surface fusion. 

Such dynamics of the distribution of the thermal field in the cross section of the plate causes non-

uniform structural and phase transformations in the material and occurrence of residual strains and 

stresses, the level of which on the surface may reach  = -300 ... -400 MPa. When checking the 

adequacy of the mathematical model, the maximum error did not exceed 4 ... 8%. 

Figure 2 shows the results of optical microscopy and modeling of structural and phase 

transformations for steel 20 with high-carbon surface layer formed after the air quenching. When HEH 

HFC processing the gradient material structure is formed: the structure of hypoeutectic cast iron is 

formed, and then the zone typical for hypereutectoid steel can be observed, which lengthens into the 

zone of the base metal (Figure 2). In this case the depth of the hardened layer was h = 0.23 mm, and 

the size of the transition zone was 0.04 mm. The microhardness of the surface layer was 6000 MPa, 

while the maximum compression residual stress on the surface  = -340 MPa (calculated  = -384 

MPa). The feature of the transition zone in this case is the precipitation of excess cementite of 

widemanstatten type, indicating high heating temperatures and high quenching rate in that area (Figure 

3a). 

Figure 4 shows the results of metallographic analysis and modeling of structural and phase 

transformations for steel 20 with high-carbon surface layer formed after water quenching. The 

formation of martensite is observed both in austenite forming a part of ledeburite fused layer (Figure 

4a) and in the transition zone (Figure 3b). The formed structure has raised microhardness up to 7000-

7500 MPa. 

 
a                                                                    b 

Figure 2. Distribution of structural components of steel 20 with high-carbon surface layer: 

a) optical microscopy; b) the results of the simulation of structural and phase transformations. 
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4. Conclusions 

1. The proposed technology of high-energy heating by high-frequency currents for producing high-

carbon layers with increased hardness can compete with classic carburizing of the low-carbon steel. 

Due to instantaneous heating of the surface the carburizing layer is melted, mixed with the base and in 

the process of fast cooling the material forms a complex structure. 

2. Via the optical and scanning microscopy it has been shown that in the process of HEH HFC 

heating followed by air quenching the hypoeutectic cast iron with high microhardness (6000-6500 

MPa), and therefore high abrasion-resistance, is formed. If the processing finishes in water quenching, 

it will lead to the formation of the martensitic phase and, consequently, to an increase in the 

microhardness (7000-7500 MPa) and wear resistance. 

3. By applying finite element method we have computationally solved the problem of modeling the 

stress and strain state of the material when surface high-energy hardening by high-frequency currents. 

It is shown that when high-energy heating by high-frequency currents the heating and quenching rates 

are, respectively: Vhr = 5 ... 50 ∙ 103 oC/sec and V qr_700-500 = 3 ... 33 ∙ 103 oC/sec (in the temperature range 

700 ... 500 °C). The level of residual compressive stresses on the surface of the sample is max -300… 

-400 MPa. The developed mathematical model is recommended for optimization of technological 

      
a                                                                    b 

Figure 3. The structural features of the transition zone: a) in air cooled samples; b) in water 

cooled samples 

 
a                                                                    b 

Figure 4. Distribution of structural components of steel 20 with high-carbon surface layer near 

the transition zone: a) optical microscopy; b) the results of the simulation of structural and 

phase transformations. 
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modes of processing, while ensuring large-sized hardened layers, comparable to the thickness of 

carburized layers produced by methods of classical carburizing technology (1-1.5 mm). 
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