СЕКЦИЯ 11. ПЕРЕРАБОТКА УГЛЕВОДОРОДНОГО СЫРЬЯ И ПОЛУЧЕНИЕ НЕФТЕПРОДУКТОВ ДЛЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ АРКТИКИ

РЕОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ ЭМУЛЬСИЙ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЕЙ

Д.В. Фисенко¹, М.С. Фуфаева¹, В.Г. Бондалетов¹, В.Н. Манжай²

Научные руководители профессор В.Г. Бондалетов, старший научный сотрудник А.Н. Манжай

Замораживание концентрированных водных растворов поливинилового спирта (ПВС) при отрицательной температуре до состояния ледяных образцов и последующее оттаивание при комнатной температуре приводит к образованию упругих криогелей [1]. При приготовлении криогелей использовали водный раствор поливинилового спирта (ПВС) концентрацией 5 мас.%. В качестве жидкого наполнителя использовали ароматическую нефтеполимерную смолу фракции С9 полученную термической полимеризацией (НПСС9) в количество 30 мас.%.

Для дальнейшего применения нефтеполимерной смолы в качестве наполнителя для криогелей, проведено окисление 30 %-го раствора $H\Pi C_{C9}$ в смеси растворителей сольвент: дизельное топливо в соотношение 90:10 мас.% пероксидом водорода, концентрация перекиси составляет 1 % ($OH\Pi C_{1\%}$) и 3 % ($OH\Pi C_{3\%}$) от массы смолы. В качестве поверхностно-активного вещества (ΠAB) использовали водорастворимый образец Неонол $A\Phi_{9-12}$ в количестве 0,1 мас.%.

Исходная НПСс9 и ОНПС были исследованы титриметрическими методами на содержание двойных связей и на наличие кислородсодержащих групп [2].При окисление НПСс9, происходит образование карбоксильных и эпоксидных групп, что подтверждает увеличение кислотного числа с 2,6 до 10,5 мг КОН/ 100 г НПС и эпоксидного числа с 2,6 до 20,2 %. Для формирования наполненных криогелей, предварительно необходимо получить стабильные эмульсии с соответствующими компонентами. В исходные растворы ПВС разной концентрации небольшими при перемешивании вводили заданное количество окисленной нефтеполимерной смолы и получали эмульсии. Диспергирование эмульсии проводили с помощью роторного диспергатораIKAULTRATURRAXT18 (Диапазон вращающего момента 3000 - 25000 об/мин) в течение 10 минут при 16 000 об/мин. Стабильность эмульсий проверялась визуальным способом и заключалась в определении количества часов (дней), при которых эмульсия сохраняла свои исходные свойства. Для получения криогелей водные растворы ПВС различной концентрации заливали в цилиндрические металлические ячейки и замораживали при температуре – 20 °C в течение 20 часов. Затем твердые ледяные образцы размораживали в течение 4 часов при комнатной температуре 20 °C. После цикла замораживания - оттаивания получали упругие криогели.

Первоначально проведено измерение динамической вязкости при отрицательных температурах для 5% водного раствора ПВС и эмульсии с соотношением компонентов ПВС/ОНПС : 5/30 масс.%, измерение проводили на на приборе «Измеритель низкотемпературных показателей нефтепродуктов ИНПН-SX-850». Результаты представлены на рисунке 1.

¹Национальный исследовательский Томский политехнический университет, г. Томск, Россия

² Институт химии нефти Сибирского отделения Российской академии наук, г. Томск, Россия

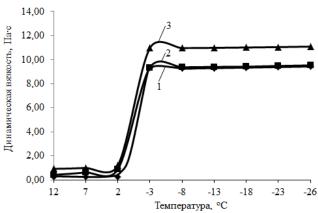


Рис. 1 Динамическая вязкость при отрицательных температурах: 1-5% ПВС; $2-OH\Pi C_{1\%}$; $3-OH\Pi C_{3\%}$

Из рис. 1 следует, что кривые на этом графики показывают повышение вязкости водомасляных эмульсий. Чем больше пероксида водорода при окислении, тем выше вязкость у полученных эмульсий. Динамическую вязкость водного раствора ПВС, а также эмульсий, дисперсионной средой которых является водный раствор ПВС, а дисперсной фазой — ОНПС, измеряли на ротационном вискозиметре в широком интервале температур при различных скоростях сдвига (рис.2).

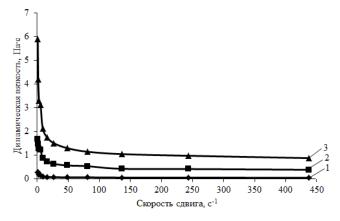


Рис. 2 Зависимость динамической вязкости от скорости сдвига: 1-5% ПВС; $2-OH\Pi C_{1\%}$; $3-OH\Pi C_{3\%}$

Установили, что вязкостьэмульсий с добавлением $OH\Pi C_{1\%}$ и $OH\Pi C_{3\%}$ в количестве 30 мас.% в полимерный раствор, также как и вязкость дисперсионной среды (водный раствор ΠBC), уменьшаются с увеличением скорости сдвига, т.е. для этих систем характерно неньютоновское поведение.

Таким образом, полученные результаты показывают возможность формирования криогелей с ОНПС. Криогели с добавкой в виде ОНПС найдут практическое применение в технологиях блокирования нежелательной фильтрации воды через промытые зоны гидротехнических сооружений. Возможно, применение при строительстве и ремонте дорог в районах с резко континентальным климатом.

Литература

1. Лозинский В.И. Криотропное гелеобразование растворов поливинилового спирта // Успехи химии. — 1998. — Т. 67. — № 7. — С. 641—655.

СЕКЦИЯ 11. ПЕРЕРАБОТКА УГЛЕВОДОРОДНОГО СЫРЬЯ И ПОЛУЧЕНИЕ НЕФТЕПРОДУКТОВ ДЛЯ ЭКСТРЕМАЛЬНЫХ УСЛОВИЙ АРКТИКИ

2. Одабашян Г.В. Лабораторный практикум по химии и технологии основного органического и нефтехимического синтеза: учебное пособие для вузов // М.: Химия. - 1982.

ПОВЕДЕНИЕ ВОДОМАСЛЯНЫХ ЭМУЛЬСИЙ ПРИ ПОНИЖЕННЫХ ТЕМПЕРАТУРАХ

Д.В. Фисенко, М.Ю. Филиппова, В.А. Якимова, В.Г. Бондалетов, А.А. Мананкова

Научные руководители профессор В.Г. Бондалетов, старший преподаватель А.А. Мананкова

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Эмульсиями называются дисперсные системы, в которых одна жидкость диспергирована в виде мельчайших сферических капель в другой жидкости. Вещество капель считается дисперсной, дискретной, или внутренней фазой. Вещество, составляющее окружающую жидкость, называется дисперсионной, непрерывной, сплошной, или внешней средой[1, 4].

Для стабилизации водомасляных эмульсий применяют эмульгаторы. Нефтехимические компоненты, в главной степени, производные продуктов переработки нефтяной промышленности находят все более широкое применение в качестве эмульгаторов водомасляных эмульсий, из-за их экологической совместимости и благодаря некоторым техническим преимуществам [2]

Объектом исследования является ароматическая нефтеполимерная смола фракции C_9 полученная термической полимеризацией. Для дальнейшего применения нефтеполимерной смолы в качестве эмульгатора водомасляной эмульсии провели окисление 30 %-го раствора $H\Pi C_{C9}$ в ксилоле пероксидом водорода, концентрация перекиси изменялась от 1-5 % от массы смолы.

Исходная $H\Pi C_{C9}$ и окисленная нефтеполимерная смола были исследованы титриметрическими методами на содержание двойных связей и на наличие кислородсодержащих групп [3].

При окислении $H\Pi C_{C9}$, происходит образование карбоксильных и эпоксидных групп, что подтверждает увеличение кислотного числа с 2,6 до 10,5 мг КОН/ 100 г НПС и эпоксидного числа с 2,6 до 20,2 %.

Далее были получены водомасляные эмульсии на основе минерального масла марки И-20A, в качестве эмульгатора выступает окисленная нефтеполимерная смола, также использовалась присадка — ингибитор атмосферной коррозии на основе солей циклогексиламина и синтетических жирных кислот $C_{10}-C_{16}$. Измерение динамической вязкости при отрицательных температурах проводили на приборе «Измеритель низкотемпературных показателей нефтепродуктов ИНПН-SX-850».

Стабильность эмульсий проверялась визуальным способом и заключалась в определении количества дней (часов), при которых эмульсия сохраняла свои исходные свойства. Результатом исследования эмульсии являлось определение времени разрушения. За время разрушения принималось время отделения дисперсионной среды от дисперсной фазы и невозможность восстановить прежнее состояние без нагрева и повторного диспергирования.