МОДЕЛИРУЮЩАЯ СИСТЕМА ПРОЦЕССА ДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ТОПЛИВ

Афанасьева Д.А., Белинская Н.С., Францина Е.В., Попова Н.В. Ассистент кафедры ХТТ и ХК, к.т.н. Н.С. Белинская Томский политехнический университет vafand@mail.ru

Введение

На сегодняшний день в России наблюдается производства низкозастывающих дефицит дизельных топлив, обусловленный климатом значительной части регионов страны, а также освоением северных регионов и Арктики [1]. Таким образом, повышается потребность в дизельных топливах и, соответственно, возрастает значимость их производства. Одним современных процессов производства дизельных топлив является процесс каталитической депарафинизации [2].

Данная работа посвящена изучениювлияния изменения состава сырья процесса каталитической депарафинизации за счет вовлечения в сырье побочного продукта установки извлечения парафинов на выработку дизельной фракции с улучшенными низкотемпературными свойствами.

Для исследования использовалась математическая модель процесса каталитической депарафинизации, разработаннаянаоснове учета физико-химических закономерностей протекания процесса.

Описание программы

Платформой для системы служит объектноориентированная среда программирования Delphi 7 [3].

Активное окно программы представлено на рис. 1.

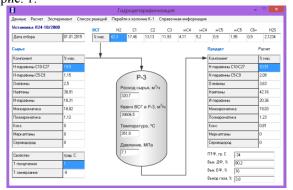


Рисунок 9. Моделирующая система процесса гидродепарафинизации

Окно компьютерной моделирующей системы содержит информацию о составе сырья, составе водородсодержащего газа (ВСГ), технологических условиях и о наименовании продуктов реакции.

Схема превращений углеводородов в процессе депарафинизации.

Для составления списка реакций процесса

гидродепарафинизации был проведен термодинамический анализ c применением квантово-химических методов, который показал, что в процессе гидродепарафинизации наиболее вероятнопротекание реакций гидрокрекинга нпарафиновС10-С27, изомеризации н-парафинов C5-C9. гидрирование полиароматических моноароматических углеводородов, углеводородов, олефинов и нафтенов, образования КГС (коксогенных структур). Изменение энергии Гиббса в ходе данных реакций находится в диапазоне от -4,98 до -85,16 кДж/моль[3].

Таким образом, на основании выявленных теоретических и экспериментальных закономерностей, термодинамического анализа, с учетом агрегирования реагирующих веществ по химическимпринципам составлена схема превращений углеводородов в ходе процесса гидродепарафинизации (рис. 2)

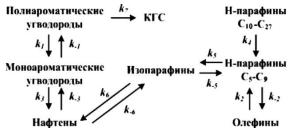


Рисунок 10.Формализованная схема превращений углеводородов в ходе процесса гидродепарафинизации: k_j – константа скорости прямой химической реакции; k_{-j} – константа скорости обратной химической реакции

Описание исследования и результатов

Исходными данными для моделирования процесса депарафинизации являются технологический режим, материальный баланс и экспериментальные данные по составу сырья с установки Л-24-10/2000 ООО «КИНЕФ» [4]. Данные представлены в таблице 1 и 2.

Таблица 1. Состав сырья процесса депарафинизации

Компонент	Содержание,% масс	
Н-парафины С10-С27	19,9	
Н-парафины С5-С9	1,15	
Олефины	2,50	
Нафтены	38,91	
И-парафины	18,31	
Моноароматика	18,82	
Полиароматика	1,12	

Таблица 2. Технологические параметры работы установки каталитической депарафинизации

скои депарафинизации
Значение
32,7
12,591
60103
351,9
7,1

Так как работа направлена на изучение влияния изменения состава сырья установки депарафинизации, в сырье была вовлечена фракция нормальных парафинов C18-C21. Полученный состав изображен в таблице 3.

Таблица 3. Состав сырья после вовлечения

Компонент	% масс		
Н-парафины С10-С27	22,7		
Н-парафины С5-С9	1,11		
Олефины	2,41		
Нафтены	37,55		
И-парафины	17,67		
Моноароматика	18,16		
Полиароматика	1,08		

На моделирующей системе процесса каталитической депарафинизации производится расчет необходимых для исследования данных, таких как содержание продуктов, предельная температура фильтруемости (ПТФ), выход дизельной фракции, выход бензиновой фракции и выход газа в зависимости от состава сырья.

С помощью модели были получены данные как без вовлечения побочного продукта установки, так и с вовлечением, представленные в таблице 4.

Таблица 4. Результаты расчета на модели

	Без вовлечения фракции С ₁₈₊	${\rm C}$ вовлечени ем фракции ${\rm C}_{18+}$
Содержание н- парафинов в продукте, % мас.	10,51	11,56
ПТФ, гр.С	-34	-31
Выход ДФ, %	80,2	82,5
Выход БФ, %	16	14,1
Выход газа, %	3,8	3,4

По численным результатам исследования видно, что выход целевого продукта повысится и можно сделать вывод, что вовлечение побочного продукта является эффективным способом

получения дизельной фракции с улучшенными низкотемпературными свойствами. При этом выработка дизельной фракции при данных условиях увеличился на 6,6 %, но при этом качество продукта по показателю ПТФ будет хуже.

Поэтому, помимо основных расчетов по изменению состава сырья произведена оптимизация технологического режима температуре. То есть был осуществлен подбор такой температуры в реакторе депарафинизации, чтобы получить продукт с такой же ПТФ как и без побочного продукта установки вовлечения парафинов. На математической извлечения модели было выявлено, что температуру в реакторе депарафинизации нужно повысить с 351,9°C до 353,9°C. При этом увеличение выработки целевого продукта с требуемой ПТФ составит 4.1%.

Заключение

Таким образом, использование математической модели процесса каталитической депарафинизации позволяет рассчитывать состав, низкотемпературные свойства и выход продукта в зависимости от состава сырья и технологических условий на промышленной установке, а также позволяет оптимизировать производство дизельной фракции на этой промышленной установке без дополнительных средств на данную оптимизацию.

На примере данной работы показано, как с помощью вовлечения в сырье малоценного продукта и оптимизации работы установки каталитической депарафинизации можно повысить ресурсоэффективность переработки нефтяного сырья в дизельное топливо.

Список использованных источников

- 1. Груданова А.И., Хавкин В.А., Гуляева Л.А., Сергиенко С.А., Красильникова Л.А., Мисько О.М. Перспективные процессы производства дизельных топлив для холодного и арктического климата с улучшенными экологическими и эксплуатационными характеристиками // Мир нефтепродуктов. Вестник нефтяных компаний. − 2013. № 12. С. 3-7.
- 2. Камешков А.В., Гайле А.А. // Известия Санкт-Петербургского государственного технологического института (технического университета). -2015. №29(55). с. 49-60.
- 3. Фалеев С.А., Белинская Н.С., Иванчина Э.Д., Ивашкина Е.Н., Францина Е.В., Силко Г.Ю. // Нефтепереработка и нефтехимии. 2013. № 10. С. 14-18.
- 4. BelinskayaN.S., IvanchinaE.D., IvashkinaE.N., ChuzlovV.A., FaleevS.A. // ProcediaEngineering, 2015.- Vol.113.- P.68-72.