УДК 621.316.97:620.193.7

РАСЧЕТ КАТОДНОЙ ЗАЩИТЫ ЭКВИПОТЕНЦИАЛЬНЫХ ЗАЗЕМЛЯЮЩИХ СИСТЕМ ЭЛЕКТРОУСТАНОВОК

Л.Д. Сафрошкина, Ю.Р. Гунгер, Ю.В. Демин

Новосибирская государственная академия водного транспорта. г. Новосибирск E-mail: ngavt@ngs.ru

Рассматривается метод расчета катодной защиты линейных коррозионных систем. При этом между заземляющей системой и анодами подключается источник постоянного напряжения, которое делится между анодными и катодными частями сооружения пропорционально их входным сопротивлениям.

Расположение заземляющих систем в агрессивных грунтово-климатических условиях приводит к интенсивной коррозии их элементов. Разрушаются искусственные заземлители, кабели, трубопроводы и железобетонные конструкции [1]. Одним из вариантов повышения их долговечности является применение катодной защиты.

С этой целью необходимо разработать математическую модель катодной защиты с учетом действующего на элемент напряжения, его поперечного сопротивления и взаимных сопротивлений.

Основой для математической модели катодной защиты может быть метод расчета коррозионных токов заземляющей системы, основанный на теории многоэлектродных электрохимических систем Н.Д. Томашова [2].

При применении катодной защиты от коррозии между анодными (предназначенными для разрушения) и катодными (защищаемыми) элементами сооружения подключается источник постоянного напряжения E. Это напряжение E делится между анодными E_A и катодными E_K частями сооружения пропорционально их входным сопротивлениям:

$$E_A = E \frac{R_A}{R_A + R_K} \quad \text{i} \quad E_K = E \frac{R_K}{R_A + R_K}, \qquad (1)$$

где R_A и R_K – входное сопротивление анодной и катодной частей сооружения.

Соответственно этому определяется и тип сопротивления поляризации для анодных R_{ii}^{κ} и катодных R_{ii}^{κ} элементов сооружения.

Характер поляризации как бы определяется выбранной схемой защиты. Вместе с тем, как будет показано ниже, примененная защита может оказаться недостаточной и отдельные защищаемые элементы будут иметь анодную поляризацию, а, следовательно, и соответствующее ему сопротивление R_{ii}^{A} .

При эквипотенциальном характере сооружения, когда продольным сопротивлением элементов можно пренебречь, напряжения E_A и E_K непосредственно добавляются (алгебраически) к электродным потенциалам защищаемых (катодных) и разрушаемых (анодных) элементов:

$$U_i^A = U_i - E_A$$
 и $U_i^K = U_i - E_K$. (2)

Собрав поперечные сопротивления анодных и катодных элементов в отдельные квадратные мат-

рицы, порядок которых будет определяться соответственно числом анодных (n_A) и катодных (n_K) элементов, обратив эти матрицы, получим:

$$G_{ij}^{A} = \left\| R_{ij}^{A} \right\|^{-1} \quad \left\| G_{ij}^{K} \right\| = \left\| R_{ij}^{K} \right\|^{-1}.$$
(3)

Просуммировав все проводимости обращенных анодных $\|G_{ij}^{\kappa}\|$ и катодных $\|G_{ij}^{\kappa}\|$ матриц, найдем входные сопротивления анодной и катодной частей сооружения для случая эквипотенциальной расчетной модели:

$$G_{\Sigma}^{A} = \sum_{i=1}^{n_{A}} \sum_{j=1}^{n_{A}} G_{ij}^{A} \Longrightarrow R_{A} = \frac{1}{G_{\Sigma}^{A}},$$

$$G_{\Sigma}^{K} = \sum_{i=1}^{n_{K}} \sum_{j=1}^{n_{K}} G_{ij}^{K} \Longrightarrow R_{K} = \frac{1}{G_{\Sigma}^{K}}.$$
(4)

Определив из ур. (3) и (4) значения входных сопротивлений R_A и R_K , найдем с помощью выражений (1) и (2) величины анодных и катодных защитных напряжений и суммарные значения (U_i^A, U_i^K) электродных потенциалов для всех элементов сооружения. Собрав после этого исходную систему уравнений для рассматриваемого вида коррозии, где последнее уравнение системы фиксирует равенство нулю суммы стекающих с элементов (катодных) и втекающих в них (анодных) токов:

$$\begin{vmatrix} R_{11}, \dots, & R_{1p}, \dots, & R_{1n}, \dots, & 1 \\ R_{p1}, \dots, & R_{pp}, \dots, & R_{pn}, \dots, & 1 \\ R_{n1}, \dots, & R_{np}, \dots, & R_{nn}, \dots, & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix} \times \begin{vmatrix} I_1 \\ \overline{I}_p \\ \overline{I}_n \\ U_0 \end{vmatrix} = \begin{vmatrix} U_1 \\ U_p \\ U_n \\ 0 \end{vmatrix}, \quad (5)$$

где R_{ij} – собственные и взаимные значения поперечных сопротивлений между *i*-ым и *j*-ым элементами; $\overline{I_j}$ – поперечный ток, стекающий (втекающий) с *j*-ого элемента; U_0 – компромиссный потенциал системы рассматриваемых элементов, соединенных "звездой"; U_i – исходные (задаваемые) электродные потенциалы одиночных элементов (до их соединения в систему).

В состав собственного (i=j) значения поперечного сопротивления $R_{ii}=R_{ii}^{z}+R_{ii}^{u}+R_{ii}^{A,K}$ входят: R_{ii}^{z} – сопротивление растеканию металл-грунт; R_{ii}^{u} – поперечное сопротивление изоляционного покрытия элемента (при его наличии); $R_{ii}^{A,K}$ – сопротивление поляризации (анодное или катодное) рассматриваемого элемента.

Решив систему уравнений, найдем значения коррозионных токов, для анодной и катодной частей рассматриваемого сооружения:

 $\left\|R_{ij}^{*}\right\| \times \left\|I_{j}^{*}\right\| = \left\|U_{i^{*}}^{A,K}\right\| \Longrightarrow \left\|R_{ij}^{*}\right\|^{-1} \times \left\|U_{j^{*}}^{A,K}\right\| = \left\|\overline{I}_{i}^{*}\right\|, \quad (6)$

где индексом "A, K" обозначена принадлежность рассматриваемого суммарного потенциала к анодной или катодной поляризации, а "*" указывает на наличие в числе "неизвестных" компромиссного потенциала U_0 .

Контрольные расчеты катодной защиты

Контрольные расчеты для модели заземлителя (рис. 1 [3]) и исходных данных (табл. 1) катодной защиты приведены в табл. 2. В качестве анодной (разрушаемой) части сооружения принимался один вертикальный элемент № 13, все же остальные элементы (горизонтальные) рассматривались в качестве защищаемых (катодных). Таким образом, защитное напряжение E=6,0 В подключалось как бы "вразрез" узла № 5 между верхним концом вертикального элемента № 13 и примыкающими к названному узлу концами горизонтальных элементов №№ 3, 4, 9 и 10.

Таблица 1. Электрохимические характеристики элементов заземляющей системы для контрольной расчетной модели

Номер элементов	Сопротивление поляризации, Ом		Электродный потенциал, В	Сопротивления растеканию «металл-грунт»,
	R_{\ni}^{A}	R_{\ni}^{κ}		$\mathbf{R}_{\mathrm{ii}}^{\mathrm{r}}$, Ом
1	82,22	36,30	-0,12	
2	183,48	27,12	-0,10	
3	400,27	36,91	-0,24	
4	221,87	21,87	-0,28	
5	57,14	60	-0,35	
6	51,51	40,40	-0,21	6.11
7	18,69	20,56	-0,33	-,
8	33,73	19,68	-0,28	
9	61,92	16,54	-0,30	
10	6,30	6,30	-0,51	
11	40,00	53,53	-0,51	
12	40,00	37,37	-0,47	
13	14,04	137,37	-0,37	16,6

Примечание: Взаимные сопротивления растеканию элементов, Ом, для:

параллельных горизонтальных 0,87;

ортогональных горизонтальных 1,10;

- горизонтального и вертикального 1,93

Для рассматриваемой эквипотенциальной расчетной модели входные сопротивления анодной и катодной частей сооружения $R_A=31,63$ Ом и $R_k=3,16$ Ом, а защитные напряжения – соответственно $E_A=5,46$ В и $E_k=0,54$ В. Полученные при этом суммарные (вместе с защитными напряжениями) значения электродных потенциалов (для случая грунтовой коррозии) и расчетные значения коррозионных токов приведены в табл. 2. Величина компромиссного потенциала составила – 0,15 В. Как следует из расчетов, в результате катодной защиты электродные потенциалы всех горизонтальных (защищаемых) элементов оказались выше величины компромиссного потенциала, что и определило катодный характер действующих на них коррозионных токов. С другой стороны, резко отрицательный электродный потенциал вертикального элемента № 13 определяет большой уровень действующих на него анодных коррозионных токов, ведущих к его усиленному разрушению.

В случае катодной защиты прямая зависимость между действующим на элемент напряжением, его поперечным сопротивлением R_{ii} и коррозионным током I_{ij} нарушается из-за действия взаимных сопротивлений R_{ij} особенно со стороны *j*-ых элементов с большими коррозионными токами I_j . Так, например, для элемента № 10, обладающего минимальным потенциалом (175 мВ) и сопротивлением R_{ij} =12,4 Ом, получен максимальный коррозионный ток 33,7 мВ, в тоже время, для элемента № 2 (потенциал 596 мВ и R_{ij} =33,2 Ом) катодный ток 18,1 мА.

В целом, защита от грунтовой коррозии достигнута, о чем свидетельствуют положительные (катодные) значения токов на горизонтальных элементах.

Таблица 2. Суммарные (с защитными напряжениями) значения электродных потенциалов и коррозионных токов для катодной защиты от грунтовой коррозии

Номер	Электродные	Коррозионный
элементов	потенциалы, В	ток, мА
1	0,43	13,64
2	0,44	18,11
3	0,30	15,52
4	0,26	23,32
5	0,20	5,22
6	0,34	10,63
7	0,22	14,10
8	0,26	16,51
9	0,24	27,70
10	0,02	33,69
11	0,03	3,07
12	0,08	5,38
13	-5,82	-186,88

К недостаткам катодной защиты следует отнести:

- Сравнительно большие затраты (по сравнению с пассивными методами защиты), в том числе на электроэнергию. Следовательно, необходимо решать вопросы по экономии электроэнергии.
- Катодная поляризация элементов заземляющей системы обеспечивает только защиту металлических конструкций и не может защитить бетон от разрушения, т.к. он разрушается по другому механизму (например, от действия "физической коррозии"). Для таких элементов необходима разработка других методов защиты.

Выводы

 Разработана математическая модель для расчета катодной защиты от коррозии заземляющих систем, состоящих из горизонтальных и вертикальных линейных элементов, учитывающая электродные электрохимические потенциалы элементов, их коррозионные токи, сопротивления поляризации, а также их (элементов) сопротивления растеканию и взаимные сопротивления. 2. Установлено, что при осуществлении катодной защиты прямая зависимость между действующим на элемент напряжением, его поперечным сопротивлением и коррозионным током нару-

СПИСОК ЛИТЕРАТУРЫ

1. Демин Ю.В., Демина Р.Ю., Горелов П.В. Обеспечение долговечности электросетевых материалов и конструкций в агрессивных средах. Кн. 1. Теоретические основы / Под ред. д.т.н., проф. В.П. Горелова. - Новосибирск: НГАВТ, 1998. - 209 с.

шается из-за большого влияния взаимных сопротивления, особенно со стороны *і*-ых элементов с большими коррозионными токами І.

- 2. Томашов Н.Д. Теория коррозии и защиты металлов. - М.: Изд-во АН СССР, 1959. — 600 с.
- 3. Сафрошкина Л.Д., Гунгер Ю.Р., Демин Ю.В. Расчет коррозионных токов для модели заземляющей системы // Известия Томского политехнического университета. - 2004. - Т. 307. -№ 3. – C. 109–113.

УДК 621.313.322-81:621.314:21.3.042.681

ВЛИЯНИЕ ВХОДНЫХ ПАРАМЕТРОВ НА МАКСИМАЛЬНУЮ ТЕМПЕРАТУРУ НАЖИМНОЙ ПЛИТЫ ТУРБОГЕНЕРАТОРА

В.С. Логинов, В.Е. Юхнов

Томский политехнический университет E-mail: loginovvs@tpu.ru

Показано влияние продолжительности нагрева и параметров тепловыделения на максимальную температуру активного элемента при отсутствии отвода теплоты. Точность расчета температурного поля в активном элементе зависит от невязки дифференциального уравнения теплопроводности и числа Фурье. Установлен диапазон входных параметров, при которых сложная двумерная задача теплообмена сводится к одномерной.

В [1] для обоснования точности инженерного расчета нестационарного температурного поля в активном элементе конечных размеров было предложено ввести в практику критерии качества расчета. Они позволяют провести проверку результатов аналитического расчета на раннем этапе моделирования теплового процесса в конкретном элементе. Проверка состоит в подстановке расчетных значений в исходные дифференциальные уравнения и краевые условия исследуемой задачи. После этого этапа рекомендуется провести сравнение с опытными или другими надежными данными и приступить к самому процессу моделирования в широком диапазоне изменения параметров исходной задачи.

Целью данной работы является выяснение влияния входных параметров на тепловое состояние нажимной плиты турбогенератора. В таком активном элементе распределение удельных тепловых потерь подчиняется следующей зависимости

$$Po(X, Y, Fo) = Po_0 \cdot W_1(X) \cdot W_2(Y) \cdot exp(-SFo), (1)$$

где
$$W_1(X) = \exp(-NX), W_2(Y) = 1 + MY + DY^2.$$
 (2)

$$\theta(X,Y,Fo) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{T_1(\mu_n, \gamma_m, Fo)K_1(\mu_n, X)K_2(\gamma_m, Y)}{K_{11}(\mu_n)K_{22}(\gamma_m)}.$$
 (3)

Здесь μ_n , γ_m – собственные числа. Они находятся из трансцендентных уравнений

$$\operatorname{ctg} \mu = \frac{\mu^2 - \operatorname{Bi}_1 \operatorname{Bi}_2}{\mu(\operatorname{Bi}_1 + \operatorname{Bi}_2)},$$
 (4)

$$\operatorname{ctg} \gamma R = \frac{\gamma^2 - \operatorname{Bi}_3 \operatorname{Bi}_4}{\gamma(\operatorname{Bi}_3 + \operatorname{Bi}_4)}.$$
 (5)

$$\begin{split} K_{1}(\mu_{n}, X) &= \mu_{n} \cos \mu_{n} X + \operatorname{Bi}_{2} \sin \mu_{n} X, \\ K_{2}(\gamma_{m}, Y) &= \gamma_{m} \cos \gamma_{m} Y + \operatorname{Bi}_{4} \sin \gamma_{m} Y; \\ K_{11}(\mu_{n}) &= \frac{1}{2} \begin{cases} \mu_{n}^{2} + \operatorname{Bi}_{2}^{2} + (\mu_{n}^{2} - \operatorname{Bi}_{2}^{2}) \times \\ \times \frac{\sin 2\mu_{n}}{2\mu_{n}} + \operatorname{Bi}_{2}(1 - \cos 2\mu_{n}) \end{cases} \end{cases}, \\ K_{22}(\gamma_{m}) &= \frac{1}{2} \begin{cases} (\gamma_{m}^{2} + \operatorname{Bi}_{4}^{2})R + (\gamma_{m}^{2} - \operatorname{Bi}_{4}^{2}) \times \\ \times \frac{\sin 2\gamma_{m} R}{2\gamma_{m}} + \operatorname{Bi}_{4}(1 - \cos 2\gamma_{m} R) \end{cases} \end{cases}, \\ T_{1}(\mu_{n}, \gamma_{m}, \operatorname{Fo}) &= \operatorname{Po}_{0} F_{1}(\mu_{n}) F_{2}(\gamma_{m}, R) F_{3}(\mu_{n}, \gamma_{m}, \operatorname{Fo}), \end{split}$$

....

где

$$F_{1}(\mu_{n}) = \frac{\mu_{n}^{2}}{(\mu_{n}^{2} + N^{2})} \left\{ \begin{bmatrix} \left(1 - \frac{\operatorname{Bi}_{2}N}{\mu_{n}^{2}}\right) \sin \mu_{n} - \frac{1}{\mu_{n}} (N + \operatorname{Bi}_{2}) \cos \mu_{n} \end{bmatrix} \times \\ \times \exp(-N) + \frac{1}{\mu_{n}} (N + \operatorname{Bi}_{2}) \\ F_{2}(\gamma_{m}, R) = \left(W_{2}(R) - \frac{2D}{\gamma_{m}^{2}}\right) \left(\sin \gamma_{m} R - \frac{\operatorname{Bi}_{4}}{\gamma_{m}} \cos \gamma_{m} R\right) + \\ + \frac{1}{\gamma_{m}^{2}} (M + 2DR) \cdot K_{2}(\gamma_{m}, R) + \frac{\operatorname{Bi}_{4}}{\gamma_{m}} \left(1 - \frac{2D}{\gamma_{m}^{2}}\right) - \frac{M}{\gamma_{m}}; \\ W_{2}(R) = 1 + MR + DR^{2}; \\ K_{2}(\gamma_{m}, R) = \gamma_{m} \cos \gamma_{m} R + \operatorname{Bi}_{4} \sin \gamma_{m} R; \\ F_{3}(\mu_{n}, \gamma_{m}, \operatorname{Fo}) = \frac{1}{\mu_{n}^{2} + \gamma_{m}^{-2} - S} \left\{ \exp(-S\operatorname{Fo}) - \exp[-(\mu_{n}^{2} + \gamma_{m}^{-2})\operatorname{Fo}] \right\} \right\}$$

При отсутствии охлаждения Ві_{1,2,3,4}→0 собственные числа находятся из уравнений вида: