емой поверхности, $BT/(M^2 \cdot K)$; $Fo = a\tau/b^2 - число$ Фурье; k, p — принятое ограниченное число членов каждого ряда при расчете конкретного варианта рассматриваемой задачи; i, j — число членов ряда при ко-

торых наблюдается минимальная невязка в уравнении теплопроводности. Индексы: ж – охлаждающая среда; м – масштаб.

СПИСОК ЛИТЕРАТУРЫ

 Логинов В.С., Дорохов А.Р. Критерии качества аналитического расчета нестационарного температурного поля активного электромагнита // Инженерно- физический журнал. — 2002. — Т. 75. — \mathbb{N}_2 2. — С. 148—151.

УДК 622.86:622.26.004.5

ПРИМЕНЕНИЕ МЕТОДИЧЕСКОГО ПОДХОДА К ОЦЕНКЕ ПРОИЗВОДСТВЕННОГО ТРАВМАТИЗМА В ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ ОЧИСТНЫХ ЗАБОЯХ

Т.В. Дёмина

Карагандинский государственный технический университет. E-mail: dentalia@mail.ru

Произведен расчет коэффициента производственной безопасности, который складывается из коэффициента исполнительной деятельности работников, коэффициента технической безопасности машин и установок технологического цикла и степени соответствия проектных решений конкретным условиям. При этом установлено, что уровень безопасности можно повысить за счет применения разработанных прогрессивных технологических решений для условий высокопроизводительной отработки угольных пластов.

Введение

На шахтах Угольного департамента ОАО "Испат-Кармет" продолжается процесс интенсивной реструктуризации и оптимизации шахтного фонда. В условиях концентрации горных работ и использования высокопроизводительной горной техники, а также прогрессивных технологических решений успешно внедряется отработка шахтных полей по принципу "шахта-лава" или "шахта-пласт". Наряду с повышением интенсивности выполнения процессов очистной выемки, ухудшением горно-геологических условий и наличием высокого объема ручных немеханизированных работ необходимо обеспечение безопасных условий труда и соблюдение санитарно-гигиенических норм. Соблюдение техники безопасности важно для снижения уровня производственного травматизма. В этих условиях вопросам безопасности уделяется повышенное внимание.

Существующая законодательная база Республики Казахстан и международные соглашения на основе Конвенции № 148, № 155 Международной организации труда требуют обеспечения работодателем безопасных условий труда. Для оценки выполнения на предприятии требований законодательства по условиям труда необходимо производить качественную и количественную оценку безопасности на предприятии.

Постановка вопроса

Для количественной оценки применения технологических решений в теории и практике горного

производства существует ограниченное количество методик. Одна из известных [1], заключается в применении вероятностных зависимостей. Зависимость вероятности (P_m) несчастного случая от факторов, обусловленных технологией, описывается формулой:

$$P_m = 1 - e \cdot \lambda \cdot t_{\kappa}$$

где λ — параметр распределения, характеризующий интенсивность несчастных случаев за анализируемый период (t_{κ}).

Вероятность безопасной работы (P_{δ}) в течение срока ресурса техники (t_{m}) рассчитывается по формуле:

$$P_{\delta} = (1 - P_{m}) \cdot t_{m}/t_{\kappa},$$

Годовой социально-экономический эффект (\mathfrak{I}_i) в результате применения нового варианта технического решения на улучшение *i*-ого социального фактора определяется по формуле:

$$\Theta_i = (1 - \gamma_i) \frac{R_{\text{Ri}}}{K_{\text{Ri}}} K_{ni},$$

где $R_{\rm Ri}$ — приведенные годовые затраты, необходимые для достижения i-ого социального результата в базовом варианте; λ_i — коэффициент, характеризующий соотношение удельных затрат, необходимых для достижения единицы i-ого социального результата, доли единицы; $K_{\rm Ri}$ и $K_{\rm ni}$ — соответственно фактическое и нормативное значение i-ого социального фактора, натуральные единицы.

Приведенный методический подход дает возможность определять уровень безопасности технологических схем в зависимости от производственных

факторов, однако применение его связано необходимостью наличия дополнительных объемов информации, что не всегда достижимо. Более приемлемым является методический подход, изложенный в [2–4], основанный на оценке технического уровня оборудования, производственной деятельности работающих и эффективности применяемых технологических решений в заданных горно-геологических условиях.

Новизна представленных результатов заключается в том, что проведенные исследования позволили произвести оценку производственного травматизма в высокопроизводительных очистных забоях, работающих по схеме "шахта-лава" или "шахта-пласт" при внедрении в технологическую схему разработанных новых прогрессивных способов выполнения процессов горных работ.

Существующие наработки по обеспечению безопасности работ в техносфере позволяют выделить три области, которые определяют безопасность труда на производстве: исполнительная деятельность работника; техническая безопасность машин и агрегатов и степень совершенства технологических решений принятых инженерных разработок [2].

Коэффициент производственной безопасности $K_{\scriptscriptstyle 6}$ рассчитывается по формуле:

$$K_{\delta} = K_{u.\partial.} \cdot K_{\delta.M.} \cdot K_{n.p.}, \quad (*)$$

где K_{6} , $K_{u.d.}$, $K_{6.м.}$ – коэффициенты производственной безопасности: исполнительной деятельности работников; технической безопасности машин и установок технологического цикла, соответственно; $K_{n,n}$ — степень соответствия проектных решений конкретным условиям.

Коэффициент исполнительной деятельности ра*ботников* $K_{u,d}$ отражает выполнение работниками законодательства по охране труда и правил техники безопасности и других нормативных документов. Расчет коэффициента исполнительной деятельности работников необходимо производить по оценке надежности функционирования анализируемой области. Исполнительная деятельность работника оценивается по принятию неправильного решения и бездействия, которое согласно общепринятым стандартам по охране труда [3] определяется классом профессионального риска уровня жизни трудящихся, заболеваемостью и снижением планируемой производительности труда и другими факторами.

$$K_{u.\partial} = 1 - K_p - K_3 - (\Pi - \Pi_{\phi})/\Pi$$

где K_{ν} – коэффициент профессионально риска; K_3 – коэффициент заболеваемости; Π – производительность труда (проектная) и \varPi_{ϕ} – фактическая.

$$K_p = \frac{n_m + 10 \cdot n_n}{n},$$

где $n_{\scriptscriptstyle m}$ – число травмированных за отчетный период; n_n — число погибших за анализируемый период; за каждый смертельный случай берется цифра 10; n — среднесписочное число работающих.

$$K_{_3}=\frac{n_{_{3a\delta}}}{n},$$

где n_{3ab} — число случаев заболеваний (включая профзаболевания).

Результаты исследований и их обсуждение

Для оценки предлагаемых мероприятий по улучшению состояния безопасности труда рассчитываются коэффициенты безопасности труда применительно к очистным забоям шахты им. Кузембаева УД ОАО "Испат-Кармет" (табл. 1).

Таблица 1. Расчет коэффициентов для определения $K_{u,n}$; $\Pi = 20; \Pi_{\phi} = 25$

Мероприятия	n _m	n,	п	K_{ρ}	Пзаб	п	K ₃	Килд
1. Механизированная крепь сопряжения на вентиляционном штреке	8	0	30	0,26	11	30	0,37	0,62
2. Этажно-панельный способ подготовки	20	1	300	0,1	36	300	0,12	1,03
3. Поддержание конвейерной выработки породными опорами	4	0	50	0,08	15	50	0,3	0,87
4. Демонтаж механизированных комплексов	20	1	300	0,1	36	300	0,12	1,03
5. Система участковый транспорт – ленточный конвейер	4	0	50	0,08	15	50	0,3	0,87

Коэффициент безопасности машин и установок технологического цикла, оценивается критерием надежности работы машин и установок технологического цикла, отражающим возможный отказ техники и выделениями опасных и вредных активных газов и других вредностей в рабочей зоне. Согласно принятым стандартам и нормативным документам [4] надежность второй области рабочих зон определяют условиями эксплуатации машин и механизмов, оцениваемыми уровнем сертификации оборудования и оценкой состояния рабочей зоны при ведении технологических операций:

$$K_{6M} = 1 - K_{conm} - K_{na}$$

 $K_{\!\scriptscriptstyle \textit{6.м.}} = 1 - K_{\!\scriptscriptstyle \textit{cepm}} - K_{\!\scriptscriptstyle \textit{p.s.}},$ где $K_{\!\scriptscriptstyle \textit{cepm.}} -$ коэффициент сертификации оборудования (по результатам аттестации производственного объекта); $K_{_{\!\scriptscriptstyle P,3.}}$ – коэффициент состояния рабочей зоны.

Коэффициент сертификации ($K_{cenm.}$) определяется следующим образом:

 $K_{cenn} = 1 - (полученный уровень сертификации / 100),$

Полученный уровень сертификации определяется из табл. 2.

В зависимости от коэффициента риска определяется класс профессионального риска. Если коэффициент риска изменяется от 0 до 1,0, то класс профессионального риска первый, а если коэффициент риска от 1,01 до 2,0, то – второй. Для выше предложенных мероприятий класс профессионального риска первый. Тогда уровень сертификации обследуемого оборудования – 85 %.

Таблица 2. Полученный уровень сертификации

Класс профессионального риска	Уровень сертификации обследуемого оборудования, машин, механизмов, %
1	10085
2	8575
3	7465
4	6455
5	5445
6	4435
7	34 и ниже

Коэффициент состояния рабочей зоны $(K_{p,3})$ зависит от условий труда. В свою очередь условия труда определяются на основании фактического уровня производственного фактора и степени превышения его ПДК и ПДУ. Коэффициент оценивается на основании критериев труда и определяется как интегральная оценка тяжести M_m , согласно формуле:

$$M_m = \left(x_{\text{omp}} + \sum_{i=1}^n \frac{(6 - x_{\text{omp}})}{(n-1) \cdot 6}\right) \cdot 10,$$

где x_{onp} — фактор, получивший наибольшую оценку в баллах; Σx_{i} — факторы, определяющие условия труда.

Рассчитаем интегральную оценку тяжести [5] (табл. 3).

Таблица 3. Расчет интегральной оценки тяжести U_m при n=3

Предлагаемые мероприятия	X _{onp}	\mathbf{M}_m
1. Механизированная крепь сопряжения на вентиляционном штреке	4	$\left(4 + \frac{3+4}{3} \cdot \frac{6-4}{2 \cdot 6}\right) \cdot 10 = 43,68$
2. Этажно-панельный способ подготовки	4	$\left(4 + \frac{3+2}{3} \cdot \frac{6-4}{2 \cdot 6}\right) \cdot 10 = 42,56$
3. Поддержание конвейерной выработки породными опорами	5	$\left(5 + \frac{2+4}{3} \cdot \frac{6-5}{2 \cdot 6}\right) \cdot 10 = 51,6$
4. Демонтаж механизированных комплексов	4	$\left(4 + \frac{3+2}{3} \cdot \frac{6-4}{2 \cdot 6}\right) \cdot 10 = 42,56$
5. Система участковый транспорт – ленточный конвейер	5	$\left(5 + \frac{2+4}{3} \cdot \frac{6-5}{2 \cdot 6}\right) \cdot 10 = 51,6$

По интегральной оценке условий труда определяется критерий безопасности рабочей зоны (табл. 4).

Для мероприятий № 1, 2, 4 индекс категории тяжести труда будет III, а для мероприятий № 3 и 5 — IV. Критерий безопасности рабочей зоны для мероприятий № 1, 2, 4 будет 0,422, а для мероприятий № 3 и 5 — 0,585.

Таблица 4. Определение безопасности рабочей зоны

			17	
Индекс	Средняя величина	Интегральная	Критерий	
категории	элементов условий	количественная	безопасности	
тяжести	труда, влияющих на	оценка тяжести	рабочей зоны,	
труда	тяжесть труда	труда, \mathbf{H}_{m}	$K_{p.3.}$	
I	До 1,0	До 18	0,00390,109	
Ш	1,12,0	19,733,0	0,1100,341	
III	2,13,0	34,445,0	0,3420,524	
IV	3,14,0	45,753,0	0,5250,647	
V	4,15,0	53,958,5	0,6470,720	
VI	5,16,0	58,960,0	0,73	

Затем определяется коэффициент технической безопасности машин и установок технологического цикла (табл. 5).

Таблица 5. Расчет коэффициента технической безопасности машин и установок технологического цикла $K_{\text{б.м.}}$ при $K_{\text{серт.}}$ =0,15

Предлагаемые мероприятия	$K_{\rho,s}$	К _{б.м.}
1. Механизированная крепь сопряжения на вентиляционном штреке	0,422	1 - 0.15 - 0.422 = 0.428
2. Этажно-панельный способ подготовки	0,422	1 - 0.15 - 0.422 = 0.428
3. Поддержание конвейерной выработки породными опорами	0,585	1 - 0.15 - 0.585 = 0.265
4. Демонтаж механизированных комплексов	0,422	1 - 0.15 - 0.422 = 0.428
5. Система участковый транспорт – ленточный конвейер	0,585	1 - 0.15 - 0.585 = 0.265

Далее рассчитывается коэффициент степени соответствия проектных решений. Он отражает степень безопасности технологического процесса и конкретное инженерное решение, которое сводится к оценке себестоимости продукции предприятия. В этой связи надежность характеризуется по абсолютному показателю разницы фактической и плановой себестоимости:

$$K_{n.p.} = 1 - \frac{C_{n\pi} - C_{\phi}}{C_{n\pi}},$$

где C_{ϕ} — фактическая себестоимость; C_{ni} — плановая себестоимость.

Устанавливается коэффициент степени соответствия проектных решений согласно (табл. 6).

Таблица 6. Расчет коэффициента степени соответствия проектных решений К_{п.р.}

Предлагаемые мероприятия	C _{nn}	C_{ϕ}	$K_{np.}$
1. Механизированная крепь сопряжения на вентиляционном штреке	1050	1000	$1 - \frac{1050 - 1000}{1050} = 0,95$
2. Этажно-панельный способ подготовки	1474	334	$1 - \frac{1474 - 334}{1474} = 0,23$
3. Поддержание конвейерной выработки породными опорами	685	94	$1 - \frac{685 - 94}{685} = 0,14$
4. Демонтаж механизированных комплексов	4,3	3,1	$1 - \frac{4,3 - 3,1}{4,3} = 0,72$
5. Система участковый транспорт – ленточный конвейер	1050	1000	$1 - \frac{1050 - 1000}{1050} = 0,95$

СПИСОК ЛИТЕРАТУРЫ

- 1. Евдокимов Ф.И., Мизина Е.В. Социально-технический уровень технологических схем угледобычи и методы их количественной оценки // Уголь. -1991. -№ 7. -C. 32-36.
- Белов П.Г. Теоретические основы системной инженерии безопасности. — Каранганда: Изд-во КМУГА. — 1997. — 426 с.

Затем вычисляется коэффициент производственной безопасности по формуле (*) — в скобках даны значение коэффициента по базовому варианту для мероприятий:

- No 1: $K_6 = 0.62 \cdot 0.428 \cdot 0.95 = 0.25 (0.20)$;
- \mathbb{N}_{2} 2: $K_{5}=1,03\cdot0,428\cdot0,23=0,10(0,05)$;
- No 3: $K_6 = 0.87 \cdot 0.265 \cdot 0.14 = 0.03 (0.02)$;
- No 4: $K_6 = 1,03.0,428.0,72 = 0,32(0,15)$;
- N_{0} 5: K_{6} =0,87·0,265·0,95=0,22 (0,11).

Выводы

Произведенные расчеты позволяют сделать вывод о более высоком уровне безопасности при предлагаемых технических мероприятиях за счет повышения степени механизации выполнения производственных процессов, снижения объема трудоемких работ и уменьшения уровня производственного травматизма.

- Харьковский В.С., Демин В.Ф., Демина Т.В. Социально-технический уровень технологических схем очистной выемки угольных пластов // Новое в охране труда, окружающей среды и защите человека в чрезвычайных ситуациях: Тр. V Междунар. конф. —Алматы: Изд-во КазНТУ. —2002. —Ч. 1. —С. 353—355.
- 4. Денисенко Г.Ф. Охрана труда: Учеб. пособие для инж.-экон. спец. вузов. М: Высшая школа, 1985. 319 с.

УДК 681.3.01

АНАЛИЗ И ОБРАБОТКА ИНФОРМАЦИИ В ЗАДАЧАХ ОЦЕНИВАНИЯ КАЧЕСТВА ОБУЧЕНИЯ СТУДЕНТОВ ВУЗА

О.В. Марухина, О.Г. Берестнева

Томский политехнический университет E-mail: olgmik@osu.cctpu.edu.ru

Оценка качества обучения в высшей школе является в наше время одной из актуальных задач, стоящих перед высшей школой. На основе анализа статистических показателей экспертной оценки качества объектов образовательного процесса сделан вывод о том, что использование того или иного показателя обусловлено типом шкалы экспертных оценок. Предложен комплексный алгоритм обработки и анализа результатов экспертной оценки в соответствии с типом измерительной шкалы. Рассмотрен ряд алгоритмов: построения формализованных критериев для оценки качества объектов образовательного процесса, принятия решений по результатам тестирования, принятия решения на основе неоднородной последовательной процедуры распознавания. Все предложенные авторами алгоритмы входят в состав информационной технологии, построенной для решения задач оценки качества обучения в высшей школе.

Одной из наиболее актуальных проблем в области образования является повышение его качества. В настоящее время произошли важные изменения в процессах международной стандартизации в области менеджмента качества — разработана и принята новая версия стандартов ИСО серии 9000 в версии 2000 года, регламентирующих процесс создания, сертификации и поддержания в актуальном состоянии систем менеджмента качества на

предприятии (в организации). Актуальность исследований обусловлена необходимостью разработки и внедрения новых методов измерения и алгоритмов обработки информации для оценки качества обучения студентов, в том числе необходимостью дальнейших исследований в области оценки и управления качеством в Томском политехническом университете — для развития и усовершенствования существующей системы менеджмента качества