УДК 66.012-52:004

КОНЦЕПЦИЯ СИСТЕМЫ КОНТРОЛЯ И УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ПРОЦЕССОМ ФОРМИРОВАНИЯ МИКРОПЛАЗМЕННЫХ ПОКРЫТИЙ

В.Н. Бориков, П.Ф. Баранов

Томский политехнический университет E-mail: borikov@tpu.ru

Предложена концепция построения автоматизированной системы для контроля и управления технологическим процессом нанесения покрытий методом микроплазменного оксидирования с разделением функций систем сбора, анализа и накопления данных на отдельных серверах. Разработана и описана модульная структура программного обеспечения автоматизированной системы.

Ключевые слова:

Автоматизированная система, база данных, модульный подход, LabVIEW, микроплазменное оксидирование.

Key words:

Automated system, database, modular approach, LabVIEW, microplasma oxidation.

Введение

Современная промышленность предъявляет высокие и разнообразные требования к качеству покрытий на металлах и сплавах. Одним из эффективных методов модифицирования поверхности является метод микроплазменного оксидирования — обработка в электролитах токами большой плотности, которая сопровождается появлением локальных плазменных разрядов. Микроплазменное оксидирование — это сложный многостадийный процесс, состоящий из химических, электрохимических реакций, стадии микроплазменных разрядов, а также стадий массопереноса за счет диффузии, миграции и конвекции, усиливающихся при высоковольтной поляризации [1, 2].

Автоматизация процесса получения покрытий методом микроплазменного оксидирования является необходимой в связи с выходом его на промышленный уровень. В процессе автоматизации возникают два основных вопроса: что контролировать и чем управлять. Ответы на эти вопросы, с точки зрения системного подхода, могут позволить синтезировать структуру автоматизированной системы контроля и управления. При использовании такого подхода следует помнить, что все элементы системы и все операции в ней должны рассматриваться как единое целое, в совокупности и во взаимосвязи друг с другом. Локальные решения, учет недостаточного числа факторов, локальная оптимизация на уровне отдельных частей системы почти всегда приводит к неэффективному в целом, а иногда и опасному по последствиям, результату.

На рис. 1 представлено разделение процесса получения покрытий по параметрам контроля и управления. Для системы управления процессом получения покрытий можно выделить четыре подсистемы, отвечающих на вопрос, чем управлять:

- технологический источник питания;
- электролит;
- средства измерений;
- вспомогательное оборудование.

Декомпозиция каждой из подсистем управления позволяет сформировать множество параметров управления влияющих в конечном итоге на качество покрытия. Например, для технологического источника питания управляемыми параметрами являются амплитуда, длительность, частота и форма сигнала воздействия. Для электролита — электропроводность, состав и концентрация отдельных его компонентов. К параметрам вспомогательного оборудования можно отнести скорость вращения крыльчатки для перемешивания электролита, температуру воды в системах охлаждения технологического процесса.

Формирование множества измеряемых параметров процесса позволяет ввести обратную связь для подсистем управления.

Так вольтамперные характеристики, построенные по измеренным значениям мгновенных напряжений и токов микроплазменного процесса, зависят от вида обрабатываемого материала и состава электролита, что позволяет использовать их для диагностики природы сплавов, прогнозирования и конструирования качества покрытий [3] и в конечном итоге изменения режимов технологического процесса.

Измерение концентрации отдельных компонентов и общей электропроводности электролита позволяет контролировать его выработку и производить при необходимости его корректировку. Выработка электролита влияет на продолжительность процесса микроплазменного оксидирования и качество формируемого покрытия. При частичной выработке необходимо увеличивать длительность процесса для формирования покрытия приемлемого качества, при полной выработке электролита получаются детали с некачественным покрытием.

На эффективность процесса микроплазменного оксидирования и качество получаемых покрытий значительно влияет температура электролита. При температуре менее 5...8 °C процесс замедляется, а выше 45...50 °C качество модифицированной поверхности серьезно ухудшается, вплоть до необходимости полной отбраковки изделий [4].

Структура автоматизированной системы

Проектирование автоматизированной системы, включающей средства вычислительной техники и автоматизации, сталкивается с необходимостью стыковки различного и уникального оборудования с ПЭВМ, при этом должны быть согласованы функциональные и технические возможности всех устройств в условиях многообразия и сложности решаемой задачи. Кратно усложняет задачу множество возможных вариантов интерфейсов оборудования соответствующего разным стандартам.

В процессе нанесения покрытий методом микроплазменного оксидирования пользователю должна быть предоставлена возможность активно участвовать в работе производственной системы, быстро перестраивать структуру ее функционирования в соответствии с динамикой и требованиями самого процесса нанесения покрытий. При этом процесс работы с оборудованием должен быть максимально проблемно-ориентированным и выдвигать минимальные требования к знанию средств вычислительной техники. Необходимо также отметить, что одновременно с различными модулями системы может работать большое количество пользователей, что в свою очередь требует организации путей доступа и разграничения прав пользователей.

Решить данные задачи позволяет построение автоматизированной системы контроля и управления процессом формирования покрытий методом микроплазменного оксидирования в растворах электролитов на основе многоуровневой архитектуры клиент-сервер с использованием модульного подхода и технологии виртуальных приборов.

Под многоуровневой архитектурой клиент-сервер будем понимать такую разновидность архитектуры клиент-сервер, в которой функция систем сбора, анализа и накопления данных вынесена на несколько отдельных серверов. На рис. 2 представлена структура автоматизированной системы контроля и управления процессом нанесения покрытий микроплазменным оксидированием.

Рис. 1. Классификация процесса нанесения покрытий методом микроплазменного оксидирования по параметрам контроля и управления

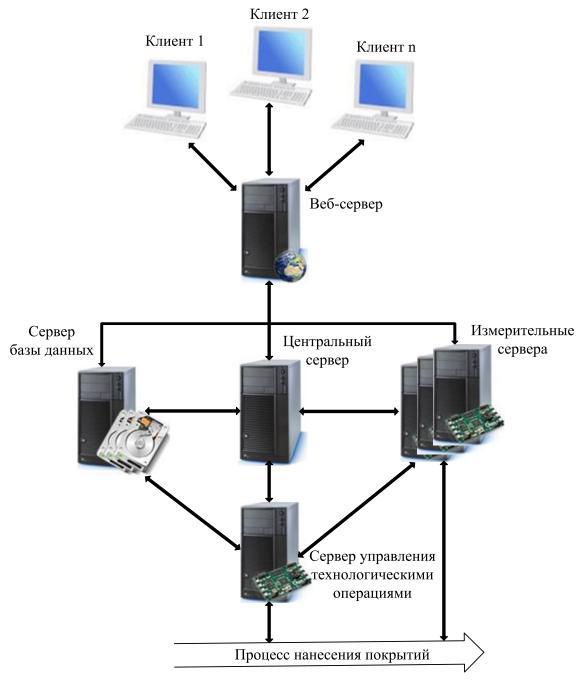


Рис. 2. Структура автоматизированной системы контроля и управления процессом нанесения покрытий

Веб-сервер предназначен для аутентификации и авторизации пользователей различной категории (администратор, технолог, оператор технологической линии и т. д.) и осуществления доступа пользователей к ресурсам системы. Центральный сервер предназначен для организации взаимодействия пользователей с элементами системы и общего их взаимодействия. Сервер управления технологическими операциями формирует управляющую информацию для подсистем процесса нанесения покрытий. Измерительные сервера предназначены для измерения заданного множества параметров технологического процесса. Вся информация в

процессе формирования покрытий поступает в базу данных.

Применение модульного подхода при проектировании автоматизированной системы контроля и управления процессом нанесения покрытий заключается в построении аппаратных и программных устройств из более мелких унифицированных модулей. Система таких модулей строится по иерархическому принципу, когда более сложный модуль состоит из нескольких более простых модулей, при этом более сложный модуль приспособлен к интеграции с другими модулями своего уровня, для построения модуля уровнем выше.

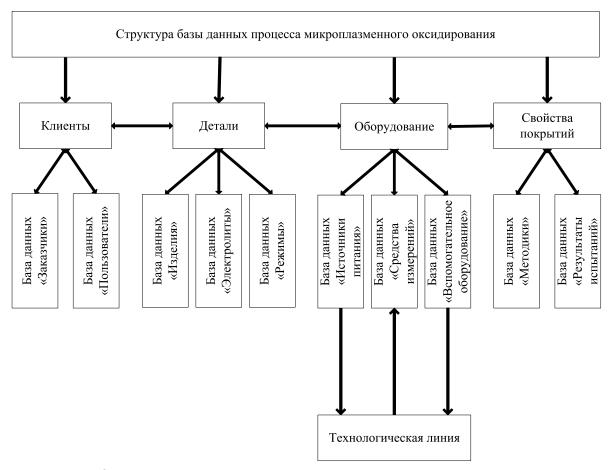


Рис. 3. Структура базы данных процесса нанесения покрытий микроплазменным оксидированием

База данных системы

Для организации взаимодействия между элементами системы была спроектирована структура баз данных процесса нанесения покрытий, рис. 3.

Все данные о процессе объединены в четыре основных группы данных: «Клиенты», «Детали», «Оборудование» и «Свойства покрытий». Последняя группа данных включает: базу данных «Методики», в которой систематизированы методики исследований и испытаний покрытий и базу данных «Результаты испытаний», в которую занесены результаты испытаний конкретных образцов покрытий.

Группа данных «Клиенты» включает в себя базу данных «Заказчики» и базу данных «Пользователи». База данных «Заказчики» является типовой клиентской базой, содержащей наименование организации заказчика, ее адрес, контактные телефоны, а также дату обработки, наименование и код обрабатываемого изделия. База данных «Пользователи» содержит учетные записи, права и способы аутентификации пользователей системы.

В группе данных «Детали» содержатся частные характеристики обработанных изделий и образцов, а также условия их обработки. Детализация отдельных параметров осуществляется в базах данных «Изделия», «Электролиты» и «Режимы». В базе данных «Изделия» приводятся код и наименова-

ние изделия, назначение микроплазменного покрытия, эскиз или фотография изделия, стандартное обозначение материала, обрабатываемый сплав, площадь обрабатываемой поверхности. База данных «Электролиты» содержит поля: наименование и код электролита, его состав, дата и процедура приготовления, состояние, текущая и допустимая (до корректировки) выработка, объем. В базе данных «Режимы» систематизируются задаваемые технологические параметры для нанесения покрытий: амплитуда выходного напряжения и тока, длительность и частота следования импульсов.

Группа данных «Оборудование» включает базы данных «Источники питания», «Средства измерений» и «Вспомогательное оборудование». База данных «Источники питания» содержит информацию о технических характеристиках источников питания: режимы работы, мощность, выходное напряжение, частота и форма сигналов воздействия. В базе данных «Средства измерений» содержатся технические и метрологические характеристики используемых средств измерений, а также систематизируются технологические параметры, измеряемые непосредственно в процессе нанесения покрытий. База данных «Вспомогательное оборудование» включает технические данные о вспомогательном оборудовании.

Базы данных позволяют формировать новые технологические процессы обработки или корректировать существующие. Особое внимание уделяется сбору информации в процессе формирования покрытия и информации о физико-химических испытаниях. Такая информация используется не только в технологическом процессе, но и в научных целях для изучения явлений в процессе микроплазменного оксидирования.

Технология программирования

Для программирования автоматизированной системы контроля и управления процессом формирования покрытий микроплазменным оксидированием предлагается использовать графическую среду *LabVIEW*.

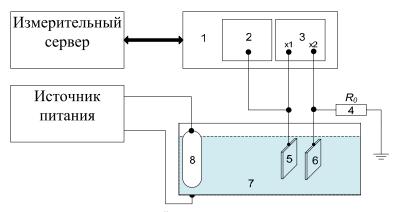
LabVIEW предоставляет большие возможности для реализации обмена данными через TCP/IP сети и передачи данных через веб-сервер. Администратору системы доступны возможности разграничения доступа к публикуемым передним панелям виртуальных приборов и назначения элементов управления и индикации, которые будут доступны удаленному пользователю.

Для пользователей организовано дистанционное:

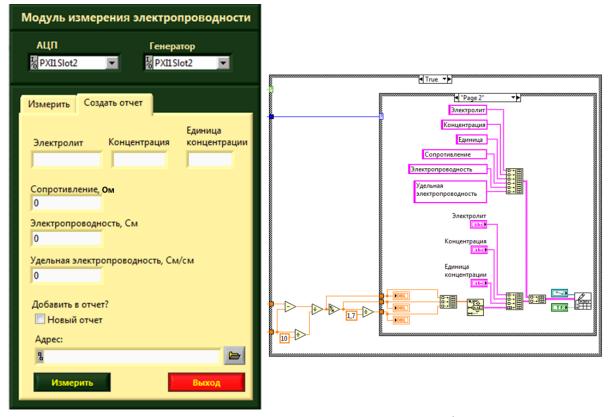
- наблюдение (мониторинг) процессы, происходящие при нанесении покрытий, и результаты измерений отображаются через веб-браузер. Отсутствует обратная связь и возможность вмешаться в управление процессом.
- управление процессом нанесения покрытий.

Применение технологий *LabVIEW* позволяет минимизировать временные и экономические затраты на разработку новых программных модулей и модернизацию уже существующих путем применения модульного подхода к программированию. *LabVIEW* позволяет реализовать широкое использование стандартных модулей путем их параметрической настройки, автоматизацию сборки готовых модулей, создание и управление библиотеками готовых модулей [5].

В качестве примера элемента предлагаемой системы на рис. 4 представлена структурная схема разработанного авторами программно-аппаратного модуля измерения электропроводности электролита в процессе нанесения покрытий микроплазменным оксидированием.


Измерительный сервер используется для обработки информации и управления измерительной системой — 1, в состав которой входят модуль генератора тестовых сигналов — 2 и модуль двухканального аналого-цифрового преобразователя — 3. Сигнал с генератора подается на электроды — 5, 6, погруженные в ванну с электролитом — 7. С помощью аналого-цифрового преобразователя производится измерение напряжения на электроде — 5 относительно заземленного корпуса и резистивной образцовой мере — 4. Измерения выполняют в паузах между импульсами воздействия источника питания на деталь — 8. Результаты измерения обрабатываются измерительным сервером и записываются в базу данных [6].

Лицевая панель для управления модулем измерения электропроводности и элемент блок-диаграммы представлены на рис. 5.


Предложенная структура автоматизированной системы контроля и управления процессом нанесения покрытий имеет открытую архитектуру, что позволяет дополнять ее новыми аппаратными и программными модулями. Применение Интернет-технологий позволяет организовать дистанционный доступ для использования системы и уникального оборудования для нанесения наноструктурных неметаллических неорганических покрытий в учебном процессе Томского политехнического университета [7].

Выводы

1. Предложена концепция автоматизированной системы контроля и управления процессом формирования покрытий методом микроплазменного оксидирования с разделением функций систем сбора, анализа и накопления данных на отдельных серверах.

Рис. 4. Программно-аппаратный модуль измерения электропроводности электролита в процессе микроплазменного оксидирования

Рис. 5. Лицевая панель для управления модулем измерения электропроводности и элемент блок-диаграммы виртуальной панели

- 2. Разработана структура базы данных процесса микроплазменного оксидирования, включающая систему взаимосвязанных данных о клиенте, обрабатываемой детали, параметров технологического процесса и результатов исследования полученных покрытий.
- Предложено в качестве среды разработки программного обеспечения использовать среду графического программирования LabVIEW. Это позволяет применять модульный подход к программированию, минимизировать затраты
 - СПИСОК ЛИТЕРАТУРЫ
- Мамаев А.И., Мамаева В.А. Сильнотоковые процессы в растворах электролитов. Новосибирск: Изд-во СО РАН, 2005. 255 с.
- 2. Суминов И.В., Эпельфельд А.В., Людин В.Б., Крит Б.Л., Борисов А.М. Микродуговое оксидирование (теория, технология, оборудование). М.: ЭКОМЕТ, 2005. 368 с.
- Borikov V. Neural Method Alloys Identification by the Microplasma Oxidation Process in the Electrolyte Solutions // Materialwissenschaft und Werkstofftechnik. – 2006. – V. 37. – № 11. – P. 915–918.
- Мамаев А.И., Мамаева В.А., Бориков В.Н., Дорофеева Т.И. Формирование наноструктурных неметаллических неорганических покрытий путем локализации высокоэнергетических

- на разработку новых программных модулей и модернизацию существующих.
- На примере измерения электропроводности электролита показан модульный подход к построению аппаратного и программного обеспечения автоматизированной системы контроля и управления процессом микроплазменного оксидирования.

Работа выполнялась при поддержке федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. в рамках государственного контракта N Ω Ω Ω

- потоков на границе раздела фаз. Томск: Изд-во Том. ун-та, $2010.-360\ {\rm c}.$
- Муравьев С.В., Ким В.Л., Комаров А.В., Октябрьский В.В., Сарычев С.В. Компьютерные лабораторные работы на основе графической программной технологии // Датчики и системы. – 2000. – № 10. – С. 23–31.
- Borikov V. Virtual Electrolyte Conductivity Analyzer for Microplasma // 17th Symp. IMEKO TC4: Proc. – 8–10 September 2010. – Kosice, Slovakia: Technical University of Kosice, 2010. – P. 14–18.
- Баранов П.Ф., Бориков В.Н. Дистанционный лабораторный практикум на основе графической программной технологии // Дистанционное и виртуальное обучение. — 2011. — № 1. — C. 81–88.

Поступила 28.02.2011 г.