
 

 

 

 

 

 

Complex defects in crystal scintillation materials and 

phosphors 

V Lisitsyn
1
, L Lisitsyna

2
 and E Polisadova

1
 

1
National Research Tomsk Polytechnic University, Lenin Avenue, 30, Tomsk, Russian 

Federation 
2
Tomsk State University of Architecture and Building, Solyanaya sq., 2, Tomsk, 

Russian Federation 

 

E-mail: lisitsyn@tpu.ru 

 
Abstract. The possibility of the existence of complex defects in pure and doped crystal 

phosphor discussed in work. The luminescent properties of mono- and nanocrystals of zinc 

tungstate, the powders of YAG with various compositions are studied. It is shown that the 

intrinsic defects, impurities, oxygen vacancies, the hydroxyl groups may be present in the 

structure of the complex defects (nanodefects). Nanodefects form during synthesis and have 

high efficiency of the transfer of excitation energy to the emission centres. 

1. Introduction 

The existing models assume uniform distribution of the lattice defects in the crystal. A defect, 

a dopant, is an elementary unit that possesses specific properties which do not depend on the 

matrix it is located in. This assumption is confirmed by the studies of radiation-induces 

processes in the crystal with a perfect structure and a low dopant concentration. This approach 

was used to establish the structure of defects of different types (emission centers in 

particular), the processes associated with defect migration, transformation, and transfer of 

excitation energy and excitation relaxation. However, crystal phosphors frequently contain 

large concentrations of defects, dopants; the crystal structure is complex and imperfect. 

Therefore, it can be assumed that defects enter these crystals in the form of complex systems 

during synthesis. The complexes are supposed to contain a dopant, co-dopants and intrinsic 

lattice defects to compensate the difference in the charge of the matrix and dopant ions, and 

elastic tension in the region of the dopant location. This complex is expected to be a nano-

sized formation as compared to a point defect and it can be referred to as a nanodefect [1,2]. 

Crystal phosphors with high concentration of defects which form nanodefects can be referred 

to as highly imperfect phosphors. Formation of these complex defects with emission and 

absorption centers during synthesis is supposed to significantly affect the processes of the 

excitation energy transfer to emission and relaxation centers. 

The key information on the formation of nanodefects and their structure available to date 

was obtained from the study of LiF crystals doped with polyvalent Fe, Ti, U and W ions. The 
                                                      
1
  To whom any correspondence should be addressed. 

1

XII International Conference Radiation-thermal Effects and Processes in Inorganic Materials         IOP Publishing
IOP Conf. Series: Materials Science and Engineering 168 (2017) 012086  doi:10.1088/1757-899X/168/1/012086

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0


 

 

 

 

 

 

charge of multivalent ions differs from the charge of Li replaced by these ions. To 

compensate the charge and elastic stresses, intrinsic defects are introduced in the vicinity of 

the dopant ion: interstitial ions and vacancies. Crystals containing multivalent ions are grown 

from the mix with ions incorporated in the mix in the form of oxides, which means that 

oxygen ions enter the crystal. High multivalent ion concentrations can be incorporated in the 

crystal in case the crystal is grown in air in the presence of LiOH in the mix. During 

synthesis, multivalent ions introduced in the LiF crystal with oxygen ions, OH, and intrinsic 

defects form nanodefects. It was experimentally shown that nanodefects contain oxygen ions 

[3–6], OH [7–8], interstitial ions and vacancies [2]. A nanodefect contains an emission center 

with О
2– 

ion in its structure and, probably, an anion vacancy [1, 9–11]. 

A nanodefect has a large capture cross section for charge and energy carriers. Electronic 

excitations captured by nanodefects are effectively transferred to the emission center. 

Therefore, the presence of nanodefects makes the LiF crystal containing multivalent ions an 

efficient converter of radiation energy into luminescence. It can be assumed that in 

scintillators and phosphors, which typically contain a high concentration of defects (impurity 

and intrinsic defects), nanodefects formed during synthesis can significantly affect radiative 

processes. This paper presents experimentally obtained information on the presence of 

nanodefects  in scintillation crystals and phosphors. 

2. Research Methods 
The time-resolved luminescence spectroscopy were used to find out the presence of nanodefects in 

highly imperfect scintillator and phosphor crystals. The luminescence in the samples was excited by 

high-energy pulsed electron fluxes, laser radiation with λexit of 337, 266 and 355 nm and LED chip 

with λexit=452 nm. The density of the electron flux energy was 70 mJ/cm
2
, the average energy of the 

accelerated electrons was ~250 keV and the duration of the excitation pulse was 10 ns. The pulse 

duration of the laser flux was 2 ns. Phosphors were excited using LED chips with an emission band at 

360, 395 and 452 nm. To measure kinetic characteristics, pulse voltage was applied to the chip to 

generate a 70 ns flash. 

In excitation by electron fluxes and laser radiation, the spectra and kinetics of luminescence decay 

were recorded using the PMT-84-6 photomultiplier with MDR-3 monochromator and LECROY 

digital oscilloscope 6030 (350 MHz). The time resolution of the measuring system was 7 ns. When 

excited by chip, the luminescence decay kinetics was recorded using the MDR-204 monochromator 

PMT "Hamamatsu 10720-20" and Tetronix DPO-3033 oscilloscope with 2 ns time resolution. 

In steady-state measurements, the luminescence and excitation spectra were measured using the 

Agilent Cary Eclipse spectrofluorimeter, and a pulsed xenon lamp was used as a light source. The 

integrated luminescence spectra were recorded using the Avantes AvaSpec-3648 and AvaSpec-2048 

fiber optic spectrometers in the range of 200–1100 nm. 

The elemental phosphor composition was determined using the Quanta3D 200i scanning electron 

microscope with an energy dispersive X-ray analysis system (EDAX). The morphology of the 

phosphor powder was investigated with the Leica DM 6000 M optical microscope and Quanta3D 200i 

electron microscope. 

The scintillation material samples were provided by the Institute for Scintillation Materials NAS of 

Ukraine. The phosphors chosen for the study were commercial samples. 

3. Experimental results and discussion 

3.1. Existence of nanodefects in metal tungstate crystals 

It has been found that radioluminescence of РbMoO4, СаМоО4, СаWO4, PbWO4, CdWO4; CdWO4-

Li2CO3; CdWO4- Li2CO3-Bi2O3, LiF:WO3 and Li2W0.95Mo0.05O4 crystals and other crystals of this type 
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have similar spectral characteristics. The luminescence spectra of the crystals contain a band with a 

maximum of about 2.6 eV and half-width ~0.6 eV. Similar spectral-kinetic parameter values of the 

excited emission in oxygen-containing materials different both in the crystal lattice type and in the 

type of the co-dopant indicate some common features of the radiative center structure [12–14]. 

Tungstate and molybdate crystals are typically grown by the Czochralski method from the mix 

prepared by mixing Zn, Pb and Cd metal oxides with tungsten and molybdenum oxides in appropriate 

proportions to obtain a stoichiometric composition. The crystal grown by this method is supposed to 

contain numerous lattice defects, and this should affect the material characteristics. In [13], the authors 

suggest that highly imperfect crystals, tungstates, molybdates and polyvalent ion doped LiF crystals, 

contain complex defects (nanodefects) which represent a set of intrinsic lattice defects incorporated 

during the growth of impurity ions, including oxygen ions, OH
–
. 

Introduction of Li and Bi impurities in CdWO4 crystal leads to uncontrolled changes in the light 

output. This suggests an indirect role of Li and Bi in the scintillation process. Doping should have an 

effect on the degree of intrinsic imperfection due to mutual charge compensation and, consequently, 

on nanodefect formation. Therefore, incorporation of the dopant impurity results in changed light 

output, but this change depends on the nanodefect formation associated processes during crystal 

growth [15,16]. 

The spectral-kinetic characteristics of the luminescence were studied for ZnWO4 and ZnWO4-Eu 

prepared in the form of nano- and bulk crystals. Bulk crystals were grown in air by the Czochralski 

method, and nanocrystals were grown under microwave activation at 120° C for 30 minutes by the 

hydrothermal method. The size of the grain nanocrystals was about 25 nm. 

 

Figure 1. Kinetic curves of PCL decay for ZnWO4 single crystal, single crystal doped 

3% Eu ions, powder crystals with size grains 250 nm 
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In work [17] it was found that the spectra of the macro- and nanocrystal luminescence are similar 

in shape and position. In the ZnWO4 crystal spectrum, a characteristic scintillation band can be 

observed with a maximum at 490 nm. In the ZnWO4-Eu crystal spectrum, apart from this band, a 

narrow band caused by europium can be observed at 614 nm in the long wavelength region [18]. 

However, after pulse excitation, the kinetic curves of the luminescence decay in ZnWO4 nano- and 

bulk crystals are found to be distinctly different. 

The kinetic curves of the luminescence decay for the studied samples are shown in Fig. 1. The 

investigation of the spectral-kinetic curves of the PCL decay of undoped ZnWO4 crystals of different 

dispersion indicated the following results. The characteristic luminescence decay time of single 

crystals is 26 µs. The luminescence decay time of grain-like nanocrystals with a size of 25 nm is about 

 7 µs. The kinetic characteristics in the main scintillation band (host luminescence) in monocrystals 

and nanocrystals ZnWO4:Eu change in a similar manner (Fig.1). However, the decay time in the band 

614 nm caused by europium ions is weakly dependent on the morphology and size of the crystal of 

zinc tungstate. The decay time at  band of luminescence 614 nm for mono- and nanocrystals it is about 

0.4 ms. 

These findings indicate that in a nanometer-sized crystal, the surface of the crystal significantly 

affects its radiative characteristics. When the crystal size is greater than one micrometer in diameter, 

the radiative characteristics remain unchanged. This occurs if the sizes of the emission complexes are 

comparable to those of the crystals. This assumption is supported by a weak effect of crystal sizes on 

the radiative characteristics of the europium centers. 

3.2. The possibility of existence of nanodefects in white LED phosphors 

LEDs with blue light converted by phosphor to visible one are the most effective sources of white 

light. Most commonly used phosphors are those based on yttrium aluminum garnet doped with rare 

earths. The phosphors are synthesized in air from the mix, a mixture of powders of at least four oxides. 

The crystal produced contains a high concentration of crystal defects. Therefore, it can be expected 

that nanodefects are formed in white LED phosphors during synthesis that determines high efficiency 

of blue light to white light conversion. 

A set of commercial YAG phosphors taken for the study differed in the ratio of the basic elements 

of their composition. The studied phosphors were solid solutions of Y, Al, Gd and Ga oxides doped 

with Ce. All the phosphors represented powders of microcrystals or microfluxes less than 30 µm in 

size. 

In the phosphors, the deviation from the average aluminum content does not exceed 20%, the 

content of yttrium changes by 4 times, and that of gadolinium changes from 0 to 12%. According to 

the specification, all the samples are doped with cerium. In a number of phosphors, cerium was not 

detected as its weak band is often overlapped by the spectral background caused by other elements 

present in the phosphor. 

The excitation and luminescence spectra of all the phosphors were measured. Table 1 shows the 

results of the characteristics obtained for the excitation and luminescence spectra measured by 

conventional method using the Cary Eclipse spectrofluorimeter. In the table, λem, λex, λemm, λex-m 

indicate the wavelengths of the luminescence and excitation spectra, and FWHM of the corresponding 

bands in electron-volt. 

The kinetic characteristics of photoluminescence decay in phosphors were measured under 

excitation by radiation from the chip with λex-m=452 nm. The values of the characteristic luminescence 

decay times are given in Table 2. The characteristic decay times τ of all the investigated phosphors are 

found within 60–66 ns. An exception is the SOM-5000 phosphor; its decay time is 53 ns. The 

measured decay times coincide with those obtained in [19–20]. 
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Table 1. Characteristics of the luminescence and excitation spectra of the studied phosphors. 

Phosphors 

The spectral characteristics 

Luminescence 
Excitation emm 

ex=340 nm ex=440 nm 

λemm, 

nm 

ΔЕ,е

V 

λemm, 

nm 

ΔЕ, 

еV 

λex-m 

nm 

ΔЕ, 

еV 

λex-m 

nm 

ΔЕ, 

еV 

SDL5000 515 0.396 515 0.393 344 0.257 446 0.441 

SDL 4100  532 0.413 533 0.403 341 0.322 446 0.457 

SDL 3000 - - - - 341 0.273 453 0.421 

SDL1000 532 0.416 530 0.440 340 0.273 446 0.419 

SD3300 532 0.390 532 0.384 340 0.261 448 0.447 

MG 531 W S800 533 0.398 533 0.399 340 0.313 445 0.447 

MG 633 1 W S800 533 0.401 533 0.405 340 0.322 448 0.447 

L-2083-2-+L2085-1-S1000 533 0.408 533 0.415 340 0.332 446 0.409 

AWS5-90818-1 533 0.398 533 0.406 340 0.332 448 0.447 

EDL5100 511 0.420 511 0.411 340 0.322 448 0.447 

FL-4255 512 0.411 512 0.419 345 0.331 450 0.494 

FL-5049 560 - 564 0.502 340 - 480 0.448 

FL-6040 500 - 510 0.273 - - 510 0.542 

 

 

Table 2. Characteristics of the photoluminescence bands and decay times in 

the maxima of the luminescence bands for phosphors. 

Phosphors Characteristics of band.  λex-m = 452 nm 

λem-m, nm FWHM, eV τ, ns 

AWS-5/90818-1 535±2 0.474 61 

L-2086/2W 550±2 0.457 62 

MG-397/2W 545±2 0.438 64 

MG-531/W 532±2 0.447 62 

MG-558/2W 537±2 0.457 65 

MG-571/W 535±2 0.447 62 

SDL3300 553±2 0.443 64 

SDL3000 556±2 0.475 66 

SDL3400 550±2 0.455 65 

SDL4000 532±2 0.468 61 

SDL4100 530±2 0.462 60 

SDL5000 517±2 ~0.450 53 

The comparison of the results obtained in the study of the radiative characteristics of 

phosphors and their elemental composition allows the following conclusion. No direct 

relation of the radiation characteristics can be observed, i.e. spectral and kinetic characteristics 

are not related to the composition of the studied phosphors. This implies that the emission 

characteristics of phosphors depend not only on the elemental composition, but on the lattice 

defects introduced into the crystal during synthesis. Variation in the elemental composition 

causes changes in the defect structure of the crystal, which can result in the formation of 

similar type of defect and nanodefect complexes. 

4. Conclusion 

The results obtained in the study of zinc tungstate based scintillation crystals imply that 

complex nanometer-sized defects are formed in these crystals during synthesis. The kinetic 
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characteristics of the luminescence of the investigated ZnWO4 and ZnWO4:Eu crystals 

dramatically change for crystals which are 10 nm and less in size. 

In the studied white LED phosphors, the spectral and kinetic characteristics of the 

luminescence in the main bands are similar irrespective of the great difference in the 

elemental composition of the phosphors. This suggests that the emission centers and 

relaxation of these centers in the studied phosphors are similar. Apparently, the radiative 

characteristics of the phosphor depend not only on the composition but also on the 

imperfection of the medium related primarily to the intrinsic defects. It may be assumed that 

during synthesis complex defects (nanodefects) with emission centers containing intrinsic 

defects are formed in the phosphor. Nanodefects cause a sharp increase in the efficiency of 

the transfer of excitation energy to the emission centers. 
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