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Abstract. Inductive voltage dividers have the most appropriate metrological characteristics on 
alternative current and are widely used for converting physical signals. The model of a double-
decade inductive voltage divider was designed with the help of Matlab/Simulink. The first 
decade is an inductive voltage divider with balanced winding, the second decade is a single-
stage inductive voltage divider. In the paper, a new transfer function algorithm was given. The 
study shows errors and differences that appeared between the third degree reduced model and a 
twenty degree unreduced model. The obtained results of amplitude error differ no more than by 
7 % between the reduced and unreduced model.  

1.  Introduction 
Inductive voltage dividers (IVD) are widely used in measurement of impedance [1], circuit 
parameters, gain or attenuation, non-electrical values, physical constant; in realization of the Farad 
from the DC Quantum Hall Effect [2]; in calibration of high-voltage transformers [3], amplifiers, 
voltmeters, ADC, DAC; in attenuation measurement systems in the HF and UHF range [4]; in a low-
frequency AC power standard based on the programmable Josephson voltage standard [5,6]; in 
precision AC–DC transfer measurement systems [7,8]. Frequency range extension for IVD is a 
problem of the present-day interest, because IVD have the most appropriate metrological 
characteristics in the ultrasonic and sonic frequency ranges. The design concept based on a system 
approach, mathematical and physical modelling is a solution to frequency range extension for IVD. A 
perspective method to increase the upper frequency limit is a design of IVD with balanced winding 
(IVDBW) [9]. Divider concatenation allows extending the dynamic range. Calculation and analysis of 
these IVDs is complex because of the high order system of equations describing physical processes 
occurring in them. 

In this regard, the complex and correct multistage IVDs design requires new mathematical 
modeling methods. The most suitable form of the mathematical model is a transfer function. The 
transfer function must have at most the third order for using in the analysis of the measurement and 
control systems having the IVD. In [10], V.L. Kim already mentioned the methods of IVD modeling. 
It is a laborious and time-consuming procedure to carry out experiments. We suggest an automatic and 
universal method of modelling multidecade IVD, and changes in Simulink models are not needed, 
only parameters in Matlab code should be involved.  

2.  Creating the double-decade Simulink model 
We consider the methods of taking the double-decade IVD transfer function in Matlab with Simulink 
(Fig. 1). Figure 1 shows that the first decade is IVDBW (L1-L3) and the second is single-stage IVD 
(SSIVD) (L4). Both decades are placed on one magnetic core (TV1) [10]. The decade commutation is 

1

International Conference on Information Technologies in Business and Industry 2016                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012003         doi:10.1088/1742-6596/803/1/012003

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0


performed by switches SW1, SW2. 
Matlab Simulink is the suitable software for creating the IVD model. The software tools of Matlab 

allow obtaining the analytical formulas of the main dynamical characteristics of the electrical model. 

 
Figure 1. Schematic diagram of IVD with gain 0.01. 
 
The Simulink-model “Fivd” of the IVDBW decade is given in Figure 2. The values of the input 

network elements are R1 = R2 = 0.01 Ohm; R3 = 1.2 Ohm; R4 = 10 kOhm; L1 = L2 = 0.01 µH; L3 = 
11 µH; L4 = 4 H; C1 = 500 pF. The values of the output network elements are calculated from 
equation 
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where k, m (k ϵ j, m ϵ j) are winding taps, r j = 0.12 Ohm; lsj = 1.1 µH; Cj are represented in Fig. 1, 
С0 = 300 pF [10]. 
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Figure 2. Input (a) and Output (b) parts of the first decade. 
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For gain K = Uout / Uin = 0.1, we have R5 = 1.08 Ohm; L5 = 9.9 µH; С2 = 357 pF; R6 = 0.12 Ohm; 
L6 =1.1 µH; С3 = 2.55 nF; R7 = R8 = 10-5 Ohm. Besides R, L, C elements, the Simulink-model has the 
following blocks: controlled voltage source (CVS1, CVS3-CVS6), voltage measurement (VM1–VM4), 
inport (In1-In5), outport (Out1-Out4), gain (G1 = 0.9, G2 = 0.1). 

The gain error, calculated with this model and with formulas [10], differ from each other not more 
than by 7 % at 100 kHz work frequency. 

The Simulink-model “Sivd” of the SSIVD decade is given in Figure 3. The values of the output 
network elements are r0 = 0.15 Ohm; ls0 = 0.1 µH; С0 = 20 pF from the table [10]. For example, for 
gain Kj = 0.1, we have R9 = 0.208 Ohm; L7 = 1.09 µH; R10 = 1.35 Ohm; L8 = 0.9 µH; R11 = 0.15 
Ohm; L9 = L10 =0.1 µH; R12 = 0.1 Ohm; R13 = R14 = 10-5 Ohm; C4 = 39,6 pF; C5 = 90 pF. Besides 
R, L, C elements, the Simulink-model have the following blocks: controlled voltage source (CVS1-
CVS4), voltage measurement (VM4), inport (In1-In4), outport (Out1), gain (G1=0.9, G2=0.1). 
Elements R7–R8, R13-R14 are necessary to start the Simulink-model simulation. As the computer 
experiment shows, such small values of resistance do not influence the simulation results. 

 
Figure 3. An output part of the second decade. 
 
Figure 4 represents two models “FivdT” – one decade IVD, “SivdT” – two decade IVD. It can be 

used for higher decade IVDs and other types of decade placement on the cores, because it depends 
only on input state space models. In the model “FivdT” in blocks LTI System(tf(·)), the argument is a 
state space model: 1 – ssFivd(1,1); 2 – ssFivd(2,1); 3 – ssFivd (4,1); 4 – ssFivd (3,3); 5 – ssFivd (3,5); 
6 – ssFivd(3,4); 7 – ssFivd (3,2). In the model “SivdT” in blocks LTI System(tf(·)), the argument is a 
state space model: 1 – ssFivdT13; 2 – ssFivd(2,1); 3 – ssFivd (4,1); 4 – ssFivd (1,1); 5 – ssSivd (1,2); 
6 – ssSivd (1,3); 7 – ssSivd (1,4). 

 
Figure 4. Structural diagram of IVD. 
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It is also necessary to set the parameters of simulation. In the menu Simulation/Simulation 
parameters/Solvers, the following data are set: Start time - 0.0; Stop time - 1.0; Type - Variablestep, 
ode 23 tb [stiff/TR-BDF2]. It is important to pay attention to the last option (the solution method of the 
differential equations). As the computer experiments have shown, only ode 23 tb allows simulating the 
design of IVD Simulink-model. 

3.  Transfer function calculation 
The transfer function is taken with the LTI-Viewer of Control System Toolbox. It is necessary to do the 
following: 

• Open the Simulink models: Fivd, FivdT, Sivd, SivdT. 
• The A, B, C, D matrices of the state space equations from Simulink model may be represented 

in the following way: 
[A,B,C,D] = linmod ('Fivd'); 

• Transform matrices to state space model: 
ssFivd = ss (A,B,C,D); 

• Get space model of the first decade from Simulink model by the previous way: 
[A,B,C,D]=linmod ('FivdT'); 
ssFivdT =ss (A,B,C,D); 

• Decrease the model order to 12. Get g vector of the resulting gramian: 
[ssFivdTb,g] = balreal (minreal(tf(ssFivdT))); 

• Now decrease the model order to 12, removing zero states of gramian: 
ssFivdT13=modred(ssFivdT13b,13:length(g),'del'); 

• Get space model of the second decade and full IVD from Simulink models: 
[A,B,C,D]=linmod ('Sivd'); 
ssSivd = ss (A,B,C,D); 
[A,B,C,D]=linmod (SivdT'); 
ssSivdT =ss (A,B,C,D); 

• Decrease the model order by deleting high degree until 9: 
deg=9; inss= ssSivdT; 
[num,den] = tfdata(inss); 
for k = 1:1:(length(num{1,1}) - (deg+1)) 
num{1,1}(k) = 0; 
end 
for k = 1:1:(length(den{1,1}) - (deg+1)) 
den{1,1}(k) = 0; 
end 
outtf = tf(num,den); 

• Decrease the model order to 3, removing zero states of gramian: 
[outtfb,g] = balreal (outtf); 
resss=modred(outtfb,4:deg,'del'); 

• Call tf-function 
restf = tf(resss) 
The transfer functions expression for the first tapping of the second decade appears in the 

command window: 
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4.  Results 
The model error may be estimated with the real IVD gain-frequency characteristic and the IVD model 
gain-frequency characteristic. But this method is not available, because complex natural experiments 
must be done. The model accuracy was estimated comparing to the reduced and unreduced models. 
We attempted to model and describe double-decade IVD, where the first is IVDBW, the second 
decade is SSIVD. The experiment results are shown in table 1 (work frequency is 100 кHz). 

The table shows that the third degree reduced models are acceptable. The model accuracy is 
enough for practical calculations. This Simulink-model allows studying frequency characteristics and 
calculations of the IVD amplitude error. 

 
Table 1. Calculated gain of the model 

Gain Kj Full model Reduced model Relative error 
of reduced 
model, % 

0.01 0.009994 0.0099955 0.02 
0.02 0.0200009 0.0199866 0.07 
0.03 0.0300078 0.0299778 0.01 
0.04 0.0400148 0.0399689 0.12 
0.05 0.0500218 0.0499601 0.12 
0.06 0.0600288 0.0599505 0.13 
0.07 0.0700358 0.0699426 0.13 

 

5.  Conclusion 
The effectiveness of analysis and synthesis tasks of IVD depends on the accurate mathematical 
models. The transfer function is the primary IVD mathematical model, as it allows finding other 
dynamic characteristics. The suggested method of calculation transfer function in Matlab allows 
describing one-decade and multi-decade dividers, using the third order transfer functions with 
acceptable accuracy. It is suitable for functional modelling of measurement systems, having the IVDs, 
and for solving the task of divider response to external stimuli. 
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