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The paper discusses the impact of the von Kármán type geometric nonlinearity introduced to a mathematical model of beam
vibrations on the amplitude-frequency characteristics of the signal for the proposed mathematical models of beam vibrations. An
attempt is made to separate vibrations of continuous mechanical systems subjected to a harmonic load from noise induced by the
nonlinearity of the system by employing the principal component analysis (PCA). Straight beams lying onWinkler foundations are
analysed. Differential equations are obtained based on the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Levinson-Reddy
hypotheses. Solutions to linear and nonlinear differential equations are found using the principal component analysis (PCA).

1. Introduction

Numerous methods can be employed to clean a signal from
noise. For instance, wavelet transform [1], Fourier transform
[2], Hilbert-Huang transform [3], or empirical mode decom-
position [4] is often applied for this purpose. In all of the
methods, the goal is to decompose the signal to a variety
of fundamental constituents and enable analysing each of
them separately. As a result, various features of the signal can
be detected and the signal can be properly analysed. In this
paper, the attention is paid to the method called the principal
component analysis (PCA), which is widely used to amplify
variation in the spectral data and reveal strong patterns in a
dataset.

PCA [5] is an approach usually utilised to simplify investi-
gation and visualisation of data. In particular, it is commonly
used in pattern recognition and compression of various types

of data, especially images, having high correlation between
their components. For instance, it is implemented in frontal
face databases, where the goal is to process images in such a
way that noise is removed from a neighbourhood of a block of
pixels. In order to accomplish it, it is necessary to present this
block as a set of points in a multidimensional space. Then,
the PCA can be applied, as a result of which only the first
conversion components, assumed to contain the most useful
information, are left. The remaining components are said to
comprise unwanted noise. Thus, if an inverse transformation
is applied to the first conversion components, a denoised
image is obtained as output.One of advantages of thismethod
is that no specified accuracy is required.

To assess the number of principal components in the
appropriate proportion of variance, an objective approach
can be always applied. However, when the signal and noise
are not separated, no predetermined accuracy is of particular
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Figure 1: The beam model.

meaning. Thus, if one considers projections of the compo-
nents on different planes, the components of the signal are
tightly packed, keeping the amplitude relatively large. On
the contrary, noise components associated with a relatively
small amplitude occupy larger space (are scattered more
strongly). Thus, in the above-described case, the principal
component analysis plays a role of a filter. Namely, the signal
is mainly contained in the projection of the first principal
components, whereas other components exhibitmuch higher
noise content.

In this paper, the principal component analysis is
employed to analyse the signal coming from vibrations of
beams. For this purpose, it is necessary to supplement this
method with a mathematical model of a vibrating beam.
As it is well known, there are several theories associ-
ated with the beam model. Particularly, Bernoulli-Euler [6]
and Timoshenko model [7] are widely employed in many
mechanical problems. In addition, a generalisation of the
Timoshenko model, invented in 1964 by two Ukrainian
scientists, Sheremetev and Pelekh [8], is often considered. It
should be mentioned that this model was rediscovered 27
years later by Levinson [9] and Reddy [10]; thus in English
literature, it is typically called the Levinson-Reddy model.

In this paper, a comparative analysis of the amplitude-
frequency characteristics for all the above-mentioned, that
is, Euler-Bernoulli, Timoshenko, and Sheremetev-Pelekh-
Levinson-Reddy, beam models is conducted. Comparison
of the amplitude-frequency characteristics is based on the
signal analysis of solutions of systems of linear and nonlinear
differential equations.

2. Problem Formulation

The study is conducted on a single-layer beam occupying
a two-dimensional region of 𝑅2 space with the Cartesian
coordinate system 𝑂𝑥𝑦𝑧 introduced in the following way:
the 𝑂𝑥 axis is directed from the left to the right along the
beam midline, and the 𝑂𝑧 axis is directed downwards, per-
pendicularly to the 𝑂𝑥 axis (see Figure 1). In the introduced
coordinate system, the two-dimensional domain Ω of the
beam is defined as follows: Ω = {𝑥 ∈ [0, 𝑎]; −ℎ ≤ 𝑧 ≤ℎ}, 0 ≤ 𝑡 ≤ ∞. Here and below we use the following
notation: ℎdenotes the beamheight and 𝑎 stands for the beam
length. The beam is subjected to the load 𝑞(𝑥, 𝑡) acting in the
direction normal to the midline of the beam. In addition, the
beam lies on an elastic Winkler foundation.

The mathematical model of the Sheremetev-Pelekh-
Levinson-Reddy beam is a third-order approach based on
the following hypotheses: (i) rotational inertia effects of beam
elements are ignored, but inertial forces responsible for the
displacement of the beam along the line normal to the
midline are taken into consideration; (ii) external forces do
not change their direction during deformations of the beam;
(iii) the beam longitudinal dimension is significantly larger
than its transverse dimensions; (iv) geometric nonlinearity
is taken in the form proposed by von Kármán; (v) a beam
cross-section does not remain flat and perpendicular to the
deformed beam axis; (vi) the inertial components associated
with rotation are included.

The displacements of an arbitrary beam point are as
follows:

𝑢𝑧 = 𝑢 + 𝑧𝛾𝑥 + 𝑧2𝑢𝑇 + 𝑧3𝛾𝑇;
𝑤𝑧 = 𝑤, (1)

where 𝛾𝑥 is the angle of rotation of the normal to the beam
midline, 𝑢𝑇 and 𝛾𝑇 are unknown functions, and 𝑤 stands
for the beam normal deflection. The equation of the beam
motion and boundary conditions for this equation can be
obtained using a standard approach, that is, by computing
kinetic and potential energies as well as works done by
external forces [11].

The true trajectory differs from other possible trajectories
when the following condition is satisfied:

∫𝑡1
𝑡0

(𝛿𝐾 − 𝛿^ − 𝛿󸀠𝐴)𝑑𝑡 = 0, (2)

where 𝛿𝐾 and 𝛿^ are variations of the kinetic and potential
energies of the system, respectively, and 𝛿󸀠𝐴 is the sum of
elementary works of external forces. Using the variational
principles, we obtain the equations of motion taking into
account the energy dissipation.

A mathematical model of the beam based on the
Sheremetev-Pelekh-Levinson-Reddy hypothesis and includ-
ing the geometric nonlinearity is governed by a system of the
following nonlinear PDEs:

1𝜆263 [45 𝜕
3𝛾𝑥𝜕𝑥3 − 14 𝜕

4𝑤𝜕𝑥4 ] + 𝑘2𝐺13𝐸1 [𝜕𝛾𝑥𝜕𝑥 + 𝜕2𝑤𝜕𝑥2 ]
+ 1𝜆2 [𝐿3 (𝑤, 𝑢) + 𝐿1 (𝑤, 𝑢) + 32𝐿2 (𝑤, 𝑤)]
+ 1𝜆2 (𝑞 − 𝑘1𝑤) − 𝜕2𝑤𝜕𝑡2 − 𝜀𝜕𝑤𝜕𝑡 = 0;

𝜕2𝑢𝜕𝑥2 + 𝐿4 (𝑤, 𝑤) − 𝜕2𝑢𝜕𝑡2 = 0;
204315 𝜕
2𝛾𝑥𝜕𝑥2 − 48315 𝜕

3𝑤𝜕𝑥3 − 12𝜆2𝑘2𝐺13𝐸1 [𝛾𝑥 + 𝜕𝑤𝜕𝑥 ]
− 𝜕2𝛾𝑥𝜕𝑡2 = 0,

(3)
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where 𝐿1(𝑤, 𝑢) = (𝜕2𝑤/𝜕𝑥2)(𝜕𝑢/𝜕𝑥), 𝐿2(𝑤, 𝑤) = (𝜕2𝑤/𝜕𝑥2)(𝜕𝑤/𝜕𝑥)2, 𝐿3(𝑤, 𝑢) = (𝜕𝑤/𝜕𝑥)(𝜕2𝑢/𝜕𝑥2), and 𝐿4(𝑤,𝑤) = (𝜕𝑤/𝜕𝑥)(𝜕2𝑤/𝜕𝑥2) are nonlinear operators, 𝑤(𝑥, 𝑡) is
the beam deflection in the normal direction, 𝑢(𝑥, 𝑡) is the
beam displacement in the beam longitudinal direction, 𝜀 is
damping coefficient, E is Young’s modulus, ℎ is beam height,𝛾 is specificmaterial gravity, 𝑔 is the gravity of Earth, 𝑡 is time,
and 𝑘1 is a proportionality constant representing contact
pressure per unit beamdeformation, commonly referred to as
the modulus of subgrade reaction [12, 13]. Thus, 𝑘 is the only
quantity characterising the functionally graded material.

The below dimensionless parameters are introduced:

𝑤 = 𝑤2ℎ ,
𝑢 = 𝑢𝑎(2ℎ)2 ,
𝑥 = 𝑥𝑎 ,
𝜆 = 𝑎(2ℎ) ,
𝑞 = 𝑞𝑎4 (1 − ]2)(2ℎ)4 𝐸 ,
𝑡 = 𝑡𝜏 ,
𝜏 = 𝑎𝑐 ,
𝑐 = √ 𝐸𝑔(1 − ]2) 𝜌 ,
𝜀 = 𝜀𝑎𝑐 ,

𝛾𝑥 = 𝛾𝑥𝑎(2ℎ) ,
𝑘1 = 𝑎4𝐸 (2ℎ)3 𝑘1.

(4)

Also, the following boundary condition (fixed support) is
added to (3):

𝑤 (0, 𝑡) = 𝑤 (1, 𝑡) = 𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝛾𝑥 (0, 𝑡)= 𝛾𝑥 (1, 𝑡) = 0,
𝜕𝑤 (0, 𝑡)𝜕𝑥 = 𝜕𝑤 (1, 𝑡)𝜕𝑥 = 𝜕𝑢 (0, 𝑡)𝜕𝑥 = 𝜕𝑢 (1, 𝑡)𝜕𝑥 = 0,
165 𝜕2𝛾𝑥 (0, 𝑡)𝜕𝑥2 − 𝜕3𝑤 (0, 𝑡)𝜕𝑥3

= 165 𝜕2𝛾𝑥 (1, 𝑡)𝜕𝑥2 − 𝜕3𝑤 (1, 𝑡)𝜕𝑥3 = 0,

136315 𝜕𝛾𝑥 (0, 𝑡)𝜕𝑥 − 0.038𝜕2𝑤 (0, 𝑡)𝜕𝑥2
= 136315 𝜕𝛾𝑥 (1, 𝑡)𝜕𝑥 − 0.038𝜕2𝑤 (1, 𝑡)𝜕𝑥2 = 0,

(5)

and the following initial conditions are taken:

𝑤 (𝑥, 𝑡)|𝑡=0 = 𝑢 (𝑥, 𝑡)|𝑡=0 = 𝛾𝑥 (𝑥, 𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 0,
𝜕𝑤 (𝑥, 𝑡)𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝜕𝑢 (𝑥, 𝑡)𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝜕𝛾𝑥 (𝑥, 𝑡)𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 0. (6)

The above equations contain a fourth-order derivative
with respect to a coordinate variable, which is extremely
important in proving the existence of solutions to the men-
tioned PDEs as well as the convergence of different methods
employed to find them.

The Sheremetev-Pelekh-Levinson-Reddy beam is gov-
erned by a system of linear PDEs:

1𝜆263 [45 𝜕
3𝛾𝑥𝜕𝑥3 − 14 𝜕

4𝑤𝜕𝑥4 ] + 𝑘2𝐺13𝐸1 [𝜕𝛾𝑥𝜕𝑥 + 𝜕2𝑤𝜕𝑥2 ]
+ 1𝜆2 (𝑞 − 𝑘1𝑤) − 𝜕2𝑤𝜕𝑡2 − 𝜀𝜕𝑤𝜕𝑡 = 0,

204315 𝜕
2𝛾𝑥𝜕𝑥2 − 48315 𝜕

3𝑤𝜕𝑥3 − 12𝜆2𝑘2𝐺13𝐸1 [𝛾𝑥 + 𝜕𝑤𝜕𝑥 ]
− 𝜕2𝛾𝑥𝜕𝑡2 = 0.

(7)

Boundary and initial conditions (5) and (6) are also
employed, respectively.

The mathematical model of the Timoshenko beam
assumes that the normal does not remain perpendicular to
the beam midline and it rotates by an angle 𝛾𝑥, remaining
rectilinear.The formulas for the displacements of an arbitrary
beam point have the form

𝑢𝑧 = 𝑧𝛾𝑥,
𝑤𝑧 = 𝑤. (8)

In this case, the following system of governing PDEs is
derived:

13 (𝜕2𝑤𝜕𝑥2 + 𝜕2𝛾𝑥𝜕𝑥2 ) + 1𝜆2 (𝐿1 (𝑤, 𝑢) + 12𝐿2 (𝑤, 𝑤)
+ 𝐿3 (𝑤, 𝑢) + 𝐿2 (𝑤, 𝑤)) + 1𝜆2 (𝑞 − 𝑘1𝑤) − 𝜕2𝑤𝜕𝑡2
− 𝜀𝜕𝑤𝜕𝑡 = 0,

𝜕2𝑢𝜕𝑥2 + 𝐿4 (𝑤, 𝑤) + 𝑝𝑥 − 𝜕2𝑢𝜕𝑡2 = 0,
𝜕2𝛾𝑥𝜕𝑥2 − 8𝜆2 (𝜕𝑤𝜕𝑥 + 𝛾𝑥) − 𝜕2𝛾𝑥𝜕𝑡2 = 0,

(9)
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where the dimensionless parameters introduced in formulas
(4) have been already employed.

Equations (9) are supplemented with the following
boundary condition (fixed support):

𝑤 (0, 𝑡) = 𝑤 (1, 𝑡) = 0;
𝛾𝑥 (0, 𝑡) = 𝛾𝑥 (1, 𝑡) = 0; (10)

and initial conditions (6).
The linear PDEs governing the Timoshenko beam follow

13 (𝜕2𝑤𝜕𝑥2 + 𝜕2𝛾𝑥𝜕𝑥2 ) + 1𝜆2 (𝑞 − 𝑘1𝑤) − 𝜕2𝑤𝜕𝑡2 − 𝜀𝜕𝑤𝜕𝑡 = 0,
𝜕2𝛾𝑥𝜕𝑥2 − 8𝜆2 (𝜕𝑤𝜕𝑥 + 𝛾𝑥) − 𝜕2𝛾𝑥𝜕𝑡2 = 0.

(11)

ODEs (11) are supplemented with the boundary (9) and
initial (6) conditions. Note that linear Timoshenko PDEs are
of the second orderwith respect to𝑥, which sometimesmakes
proving the convergence of the employed numerical methods
difficult.

On the other hand, the Euler-Bernoulli hypothesis
assumes that the line perpendicular to the beam midline
before the deformation process remains perpendicular also
during deformation but rotates by the angle 𝑤󸀠. Using
formula (8) and replacing the shift function 𝛾𝑥 with the angle
of rotation−𝜕2𝑤/𝜕𝑥2, the following Euler-Bernoulli equation
is obtained:

𝜕2𝑢𝜕𝑥2 + 𝐿3 (𝑤, 𝑤) − 𝜕2𝑢𝜕𝑡2 = 0,
1𝜆2 {− 112 𝜕

4𝑤𝜕𝑥4 + 𝐿1 (𝑢, 𝑤) + 𝐿2 (𝑤, 𝑤) − 𝑘1𝑤 + 𝑞}
− 𝜕2𝑤𝜕𝑡2 − 𝜀𝜕𝑤𝜕𝑡 = 0.

(12)

Equation (11) is already in the dimensionless form, in
which a part of relations (4) is substituted with

𝑞 = 𝑞 𝑎4(2ℎ)4 𝐸,
𝑐 = √𝐸𝑔𝛾 .

(13)

For simplicity, bars over dimensionless parameters have
been already omitted in (11).

In the case of the fixed support, we supplement the
equations with the following:

(i) boundary conditions:

𝑤 (0, 𝑡) = 𝑤 (1, 𝑡) = 𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 𝑤󸀠𝑥 (0, 𝑡)
= 𝑤󸀠𝑥 (1, 𝑡) = 0; (14)

(ii) initial conditions:

𝑤 (𝑥, 0) = 𝑤̇ (𝑥, 0) = 𝑢 (𝑥, 0) = 𝑢̇ (𝑥, 0) = 0. (15)

The counterpart linear PDE takes the following form:

1𝜆2 {− 112 𝜕
4𝑤𝜕𝑥4 − 𝑘1𝑤 + 𝑞} − 𝜕2𝑤𝜕𝑡2 − 𝜀𝜕𝑤𝜕𝑡 = 0, (16)

and the boundary conditions (14) and the initial conditions
(15) are employed here.

3. Solution Methods

The same solving algorithm can be used for all the so-
far defined problems. It is clear that (3)–(16) cannot be
solved analytically, and hence they are solved numerically by
means of applying the finite-difference method (FDM) of the
second-order accuracy with respect to the spatial coordinate𝑥 [14]. In order to reduce PDEs to ODEs with respect to time,
we use the finite-difference approximations applying Taylor
expansion in the neighbourhood of a point 𝑥𝑖. Consider a
mesh

𝐺𝑁 = {0 ≤ 𝑥𝑖 ≤ 1, 𝑥𝑖 = 𝑖𝑁, 𝑖 = 0, . . . , 𝑁} . (17)

The following difference operators including the approx-
imation of 𝑂(𝑐2), where 𝑐 is the step of spatial coordinate
partition, are introduced:

Λ 𝑥 (⋅𝑖) = (⋅)𝑖+1 − (⋅)𝑖−12𝑐 ,
Λ 𝑥2 (⋅𝑖) = (⋅)𝑖+1 − 2 (⋅)𝑖 + (⋅)𝑖−1𝑐2 ,
Λ 𝑥3 (⋅𝑖) = (⋅)𝑖+2 − 2 (⋅)𝑖+1 + 2 (⋅)𝑖−1 + (⋅)𝑖−22𝑐3 ,
Λ 𝑥4 (⋅𝑖) = (⋅)𝑖+2 − 4 (⋅)𝑖+1 + 6 (⋅)𝑖 − 4 (⋅)𝑖−1 + (⋅)𝑖−2𝑐4 .

(18)

Hence, PDEs are reduced to the second-order ODEs
with respect to time with corresponding boundary and
initial conditions, based on the application of the finite-
difference approximation of the second-order accuracy.Then,
the second-order ODEs are reduced to a first-order system,
which is solved by the fourth-order Runge-Kutta method.
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For example, a system of nonlinear PDEs (3), (5), and (6)
is reduced to the following ODEs:

𝑤̈ + 𝜀1𝑤̇ = 1𝜆263 [45Λ 𝑥3 (𝛾𝑥)𝑖 − 14Λ 𝑥4 (𝑤)𝑖] + 𝑘2
⋅ 𝐺13𝐸1 [Λ 𝑥 (𝛾𝑥)𝑖 + Λ 𝑥2 (𝑤)𝑖]
+ 1𝜆2 [Λ 𝑥2 (𝑢)𝑖 Λ 𝑥 (𝑤)𝑖 + Λ 𝑥2 (𝑤)𝑖 Λ 𝑥 (𝑢)𝑖
+ 32Λ 𝑥2 (𝑤)𝑖 [Λ 𝑥 (𝑤)𝑖]2] + 1𝜆2 (𝑞 − 𝑘1𝑤𝑖) ;

𝑢̈ = Λ 𝑥2 (𝑢)𝑖 + Λ 𝑥2 (𝑤)𝑖 Λ 𝑥 (𝑤)𝑖 ;
𝛾̈𝑥 = 204315Λ 𝑥2 (𝛾𝑥)𝑖 − 48315Λ 𝑥3 (𝑤)𝑖 − 12𝜆2𝑘2

⋅ 𝐺13𝐸1 [(𝛾𝑥)𝑖 + Λ 𝑥 (𝑤)𝑖]

(19)

with the associated boundary conditions

𝑤0 = 𝑤𝑛 = 𝑢0 = 𝑢𝑛 = 𝛾𝑥0 = 𝛾𝑥𝑛 = 0;
Λ 𝑥 (𝑤)0 = Λ 𝑥 (𝑤)𝑛 = Λ 𝑥 (𝑢)0 = Λ 𝑥 (𝑢)𝑛 = 0;
165 Λ 𝑥2 (𝛾𝑥)0 − Λ 𝑥3 (𝑤)0 = 165 Λ 𝑥2 (𝛾𝑥)𝑛 − Λ 𝑥3 (𝑤)𝑛

= 0;
136315Λ 𝑥 (𝛾𝑥)0 − 0.038Λ 𝑥2 (𝑤)0

= 136315Λ 𝑥 (𝛾𝑥)𝑛 − 0.038Λ 𝑥2 (𝑤)𝑛 = 0.

(20)

Validity of the results for all considered problems is
illustrated and discussed in [7].

3.1.TheMethod of Principal Components. Theprincipal com-
ponent analysis is a procedure of variable reduction. It is par-
ticularly useful when one analyses data of a (possibly large)
number of variables and believes there is some redundancy
in those variables; that is, some of the variables are correlated
with one another, possibly as a result of measuring the same
feature. Since a part of the data is redundant, it is believed
that it should be possible to reduce the observed variables
into a smaller number of principal components (artificial
variables) that will account for the most of the variance in the
observed variables. In other words, the physical meaning of
this method is that the multidimensional data matrix can be
reduced so that a number of possibly correlated variables are
transformed into a smaller (or the same) number of linearly
uncorrelated, orthogonal variables. After applying the PCA,
the variance of the transformed data is maximised.

Themethod of principal component analysis cleanses the
signal fromnoise and localizes themain frequency signal.The
input data matrix is organised in such a way the variables are
placed in columns while samples are in rows. To separate the

given signal from noise, the linear matrix decomposition𝑊𝐴
= 𝑇𝐴𝑃𝑡𝐴+𝐸𝐴 is employed, where the initial𝑊𝐴= (𝑤𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1
data matrix is purified from the noise.𝐴 denotes the number
of principal components, 𝑇𝐴 = (𝑡𝐴𝑖𝑗)𝑛,𝑚=𝐴𝑖=1,𝑗=1 is called the score

matrix, 𝑃𝐴 = (𝑝𝐴𝑖𝑗)𝑛,𝑚=𝐴𝑖=1,𝑗=1 is called the loading matrix, and

𝐸𝐴 = (𝑒𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 stands for the residual matrix [15].
To conduct the decomposition, first of all, the matrix is

centred, which means that mean values of each column of
the matrix are subtracted from these columns, respectively.

Then, a covariance matrix 𝑊𝐴𝑊𝐴T is usually calculated,
and the eigenvalues and eigenvectors are found. After arrang-
ing the eigenvalues in the high-to-low manner, the eigenval-
ues should be projected onto a new space. The eigenvector
of the highest eigenvalue is said to be the first principal
component, the one of the second highest eigenvalue, as the
second principal component, and so forth.

To find the eigenvalues and eigenvectors, also the
singular-value decomposition (SVD) is often employed. Its
detailed description can be found in [16, 17], where also
the detailed descriptions of the mathematical and physical
meaning of spurious eigenvalues and fictitious frequencies in
a nontrivial boundary solution are studied based on a SVD
updating technique.

In SVD, a real matrix can be decomposed to the product
of the so-called left unitary matrix 𝑈, the diagonal matrix 𝑆
with positive elements called the singular values of 𝑊𝐴, and
the transpose of the right unitary matrix 𝑉𝑡. The SVD results
in the eigenvalues and eigenvectors needed for PCA (the
squared eigenvalues are equal to those found by covariance
matrix).

Also, a so-called truncated SVD method can be distin-
guished, in which only a chosen number (corresponding to
the largest singular values of 𝑆) of vectors of 𝑈 and 𝑉𝑡 are
studied. Hence, the number of computational operations can
be reduced.

3.2. Selection of the Number of Principal Components. In
what follows, a selection of the number of the principal
components is considered. First, the resulting matrix is
centred. From each column 𝑤𝑗

𝑚𝑗 = (𝑤1𝑗 + ⋅ ⋅ ⋅ + 𝑤𝑙𝑗)𝑙 (21)

is subtracted, where 𝑙 stands for a number of rows. Then, the
matrix is standardised, that is, each column 𝑤𝑗 is divided by
its standard deviation:

𝑠𝑗 = √∑𝑙𝑖=1 (𝑤𝑖𝑗 − 𝑚𝑗)2𝑙 . (22)

The combination of centring and normalisation by
columns is called autoscaling, which yields

𝑤̃𝑖𝑗 = (𝑤𝑖𝑗 − 𝑚𝑗)𝑠𝑗 . (23)
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Note that average values of many variables differ from
zero. In addition, also standard deviations are substantially
different. However, after the autoscaling procedure, the aver-
age of all variables becomes equal to zero and the deviation
becomes equal to one. Let us represent the matrix 𝑊̃ =(𝑤̃𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 employing a linear decomposition 𝑊̃ = 𝑇𝑃𝑡 + 𝐸.
To calculate the score matrix 𝑇 and loadings matrix 𝑃, the
singular-value decomposition (SVD) can be used. The SVD
of the matrix 𝑊̃ obtained after autoscaling yields 𝑊̃ = 𝑈𝑆𝑉𝑡,
where 𝑇 = 𝑈𝑆 (𝑆 = (𝑠𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1), 𝑃 = 𝑉𝑡. Note that matrices𝑈 = (𝑢𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 and 𝑉 = (V𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 are orthogonal and that
the main diagonal of the matrix 𝑆 contains the eigenvalues,
whereas its other elements are equal to zero.

The value of the principal component 𝐴 is chosen so that
the eigenvalues of the matrix 𝑆 are greater than one or that
the dependences of the total residual variance (TRV) and the
explained residual variance (ERV) on the number of principal
components 𝐴, that is, TRV(𝐴) and ERV(𝐴), dramatically
change their behaviour. Calculation of TRV(𝐴) and ERV(𝐴)
is described in the below sections.

Parameters (features) TRV and ERV indicate what per-
centage of noise remains after projection of the signal on the
multidimensional space PC1 − PCA. In other words, these
characteristics indicate what number of principal compo-
nents is necessary to cleanse the signal from noise.

Once the number of principal components is chosen, then
the residual matrix 𝐸𝐴 = (𝑒𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 is yielded by the for-

mula: 𝐸𝐴 = 𝑊̃ − 𝑇𝐴𝑃𝑡𝐴. The matrix has a variable dimension𝑇𝐴 = (𝑡𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 and 𝑃𝐴 = (𝑝𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1. The important
property of the principal component analysis (PCA) is
the orthogonality (independence) of principal components.
Therefore, the score matrix 𝑇𝐴 is not reconstructed by
increasing the number of components, but another column
corresponding to the new direction is just added. The same
holds with the matrix of loadings 𝑃𝐴.

To findTRVandERV, it is necessary to compute the resid-
ual matrix: 𝐸𝐴 = (𝑒𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 for each number of principal
components 𝐴 as well as to compute the required indicators.

The following computational steps are required:

(1) Find ]𝑖 = ∑𝑗=𝑛𝑗=1 𝑒𝐴𝐴𝑖𝑗, which determines the square of
the distance between the original vector 𝑤𝑖 and its
projection on the PC space. The smaller the value is,
the better the vector approaches the 𝑖th sample.

(2) Calculate (for all samples) the average square of the
distance as V0 = (1/𝑚)∑𝐼𝑖=1 V𝑖.

(3) Compute the total residual variance TRV = V0/𝑛
and the explained residual variance ERV = 1 − (𝑚 ⋅
V0)/∑𝑖𝑗 𝑛𝑤̃2𝑖𝑗.

In order to separate the signal from noise, the linear
matrix decomposition 𝑊𝐴 = 𝑇𝐴𝑃𝑡𝐴 + 𝐸𝐴 is used, where the
matrix 𝑊𝐴= (𝑤𝐴𝑖𝑗)𝑛,𝑚𝑖=1,𝑗=1 is separated from noise and where𝐴 stands for the number of principal components.

4. Numerical Results

Let us consider free vibrations of a fixed beam on the elastic
Winkler foundations with the subgrade modulus 𝑘1 = 1.
The beam is subjected to uniformly distributed transverse
load 𝑞 = 𝑞0 sin(𝜔𝑝𝑡) with the amplitude 𝑞0 = 100 and the
frequency 𝜔𝑝 = 5. The dissipation coefficient 𝜀 = 0. The ratio
of the beam length 𝑎 to its thickness 2ℎ is 𝜆 = 𝑎/2ℎ = 30.
Table 1 shows graphs of power spectra constructed with the
help of Fast Fourier Transform.

4.1.The Influence of Geometric Nonlinearity on the Amplitude-
Frequency Characteristics of the Signal. Let us investigate the
effect of geometric nonlinearity on the solution of the studied
PDEs. A signal of a small amplitude within the framework of
linear theory for thin beams (𝑤 ≤ 0.25(2ℎ)) and the influence
of geometric nonlinearity on the frequency spectrum of the
signal at small deflection of the beam have been studied.

Consider the solution of linear PDEs (16), (14), and
(15) using the Bernoulli-Euler hypothesis describing the
motion of a beam element located on Winkler foundations
and subjected to a transverse uniformly distributed load
(Table 1, the first column). The power spectrum exhibits four
frequencies: the excitation frequency 𝜔𝑝 = 5 and linearly
dependent frequencies 𝜔1 = (1/5)𝜔𝑝 = 2𝜔2/3 = 𝜔3/3.
After taking into account geometric nonlinearity of the
deformation of the beam midline governed by (12), (14),
and (15), the frequency characteristics of the signal change
(Table 1, the third column). As a result, the vibrating beam
exhibits six frequencies, four of which, that is, 𝜔𝑝 = 5, 𝜔1 =(1/5)𝜔𝑝 = 2𝜔2/3 = 𝜔3/3, were also obtained while solving
the linear problem. New linearly dependent frequencies are𝜔4 = 5𝜔2/6, 𝜔5 = 𝜔3 + 5𝜔2/6.

By solving linear PDEs (11), (10), and (6) taking into
account Timoshenko hypothesis, it has been detected that
quasi-periodic vibrations of the beam occur at four frequen-
cies, that is, the excitation frequency 𝜔𝑝 = 5 and linearly
dependent frequencies: 𝜔1 = (1/5)𝜔𝑝; 𝜔2 = 2𝜔1; 𝜔3 =𝜔𝑝 − 𝜔1. By taking into account the geometric nonlinearity
of the beam midline deformation (8), (9), and (5), one can
follow the qualitative changes of the beam vibrations:

(i) Power spectrum consists of a set of linearly depen-
dent frequencies, that is, the excitation frequency𝜔𝑝 = 5 and linearly dependent frequencies (e.g.,𝜔1 = (1/5)𝜔𝑝; 𝜔2 = 2𝜔1; 𝜔3 = 𝜔𝑝 − 𝜔1).

(ii) Four frequencies of harmonics with the largest ampli-
tude (𝜔𝑝 = 5, 𝜔1 = (1/5)𝜔𝑝; 𝜔1 = 2𝜔2/3 = 𝜔3/3)
coincide with those obtained for the Bernoulli-Euler
hypothesis.

In what follows, the amplitude-frequency characteristics
of the signal obtained by solving a system of linear PDEs are
considered (Table 1, the first column). The results show that
the beam vibrates at four frequencies: the frequency of the
excitation 𝜔𝑝 = 5 and linearly dependent frequencies 𝜔1 =(1/5)𝜔𝑝; 𝜔2 = 2𝜔1; 𝜔3 = 𝜔𝑝 − 𝜔1. In linear systems, solutions
to linear PDEs based on the Timoshenko and Sheremetev-
Pelekh-Levinson-Reddy hypotheses (7), (5), and (6) give the
same frequency characteristics for all the studied signals.
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The power spectrum obtained by solving a system of
nonlinear PDEs (3), (5), and (6) presents a novel feature
(Table 1, the third column); that is, the power spectrum
consists of five frequencies, four of which were present also
in the Fourier spectrum obtained while studying the linear
case (𝜔2 = 2𝜔1; 𝜔3 = 𝜔𝑝 − 𝜔1; 𝜔4 = 𝜔𝑝 − 𝜔1/2).
4.2. Purification of the Nonlinear Signal from Noise. After
obtaining the frequency characteristics of a signal, a question
arises about the importance of the frequencies detected while
studying PDEs including geometric nonlinearity. Namely, it is
not known at this point whether these frequencies come from
solving themathematicalmodel or fromnoise induced by the
nonlinear system. In order to answer this question, the signals
can be processed with the use of the principal component
method. As a result, the signal becomes purified from noise
components.

In addition, the signals of the counterpart linear PDEs
have been studied (Table 1, the first column). After process-
ing, the obtained signals have the same frequency character-
istics (Table 1, the second column). This observation proves
that the PC method does not affect the main component of
the signal.

Let us consider the frequency characteristics of signals
obtained by solving PDEs after employment of the PCA (see
Table 1, the fourth and fifth columns). In the fourth column
the power spectrum of the signal obtained for the optimal
number of principal components is reported, whereas the
fifth column of Table 1 shows power spectra of the signals
fully recovered after processing them with the method of the
principal components.

(1) Bernoulli-Euler Hypothesis. In this case, two steps are
necessary to purify the signal fromnoise components.
After processing, powers of signal harmonics with
the frequencies 𝜔4 and 𝜔5 become close to zero.
Thus, the influence of geometric nonlinearity on the
frequency characteristics is negligible and, to save
the computational time, one may employ the linear
theory only.

(2) Timoshenko Hypothesis. After processing the signal
with the method of principal components, the power
spectrum becomes significantly cleared. The low
power frequencies 𝜔4 and 𝜔5 are observed.

(3) Sheremetev-Pelekh Hypothesis. After applying the
principal componentmethod, the signal frequency𝜔4
becomes close to zero.

5. Concluding Remarks

Based on the carried-out numerical experiment, the follow-
ing conclusions can be drawn:

(1) The frequency characteristics of the signal substan-
tially depend on the choice of the beam hypothesis.
In the linear case, frequencies of the signal match for
signals resulting from solutions of a system of linear
differential equations in partial derivatives based on
the Timoshenko and Sheremetev-Pelekh hypotheses

and differ not only in the value, but also in the
amount of frequencies in the case of the Bernoulli-
Euler hypothesis.

(2) When comparing frequency characteristics of the
signal obtained by solving a system of nonlinear
differential equations in partial derivatives, it was
found that values of signal frequencies obtained based
on Bernoulli-Euler and Timoshenko hypotheses are
close to each other but differ from the correspond-
ing frequencies obtained for the Sheremetev-Pelekh
hypothesis.

(3) It was shown that introduction of the von Kármán
type geometric nonlinearity has a significant impact
on the amplitude-frequency characteristics of signal
at small deflections of the beam midline.

(4) Introduction of geometric nonlinearity in the defor-
mation of the beam middle surface results in noise
on amount of 4.2% of the signal obtained by solving
a system of nonlinear differential equations for the
Euler-Bernoulli hypothesis.

(5) For the Timoshenko or Sheremetev-Pelekh-Lev-
inson-Reddy hypothesis, introduction of geomet-
ric nonlinearity while constructing a mathematical
model of a beam on Winkler foundations clari-
fies solutions. However, the resulting signals include
noise components on amount of 5.2% and 2.8% for
the Timoshenko and Sheremetev-Pelekh-Levinson-
Reddy hypotheses, respectively. Thus, to obtain a
signal with small deflections, geometric nonlinearity
must be taken into consideration in the mathematical
model of a beam onWinkler foundations.
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