Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт Энергетический

Направление подготовки <u>Электроэнергетика и электротехника</u> Кафедра <u>Электроснабжение промышленных предприятий</u>

БАКАЛАВРСКАЯ РАБОТА

Distribution Child Indon
Тема работы
Проектирование системы электроснабжения производственной базы по
обслуживанию нефтяной промышленности

УДК 621.31.031:622.323

Стулент

	СТУДОПТ			
Группа		ФИО	Подпись Дат	
	5А3Д	Шадрин А.В.		

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Обухов С.Г.	д.т.н., доцент		

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст.преподаватель	Потехина Н.В.	ст.преподаватель		

По разделу «Социальная ответственность»

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Поноит Пон	Лашковский А.Г.	к.т.н.,		
Доцент	дашковский А.1.	доцент		

ДОПУСТИТЬ К ЗАЩИТЕ:

Зав. кафедрой	ФИО	Ученая степень, звание	Подпись	Дата
ЭПП	Сурков М.А.	к.т.н., доцент		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт <u>Энергетический</u> Направление подготовки <u>Электроэнергетика и электротехника</u> Кафедра <u>Электроснабжение промышленных предприятий</u>

,	УТВЕРЖДАЮ: Зав. кафедрой				
Зав. кафедрой					
(Подпись)	(Дата)	(Ф.И.О.)	-		

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

D	1
D	форме:

Бакалаврской работы

(бакалаврской работы, дипломного проекта/работы, магистерской диссертации)

Студенту:

Группа	ФИО
5А3Д	Шадрину Анатолию Владимировичу

Тема работы:

Проектирование системы электроснабжения базы по обслуживанию нефтегазодобывающего месторождения		
Утверждена приказом директора (дата, номер) Приказ №969/с от 15.02.2017		

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе

(наименование объекта исследования или проектирования; производительность или нагрузка; режим работы (непрерывный, периодический, циклический и т. д.); вид сырья или материал изделия; требования к продукту, изделию или процессу; особые требования к особенностям функционирования (эксплуатации) объекта или изделия в плане безопасности эксплуатации, влияния на окружающую среду, энергозатратам; экономический анализ и т. д.).

Объектом исследования является прокатно-ремонтный цех электрооборудования базы по обслуживанию нефтяной промышленности. В качестве исходных данных представлены:

- генеральный план предприятия;
- план ремонтно-механического иеха;
- сведения об электрических нагрузках всего предприятия;
- сведения об электрических нагрузках ремонтномеханического цеха.

Перечень подлежащих исследованию, проектированию и разработке вопросов

(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования; обсуждение результатов

- постановка задачи проектирования;
- проектирование системы электроснабжения рассматриваемой базы;
- рассмотрение особенностей трансформаторных подстанций в системах электроснабжения с последующим выбором цеховых трансформаторов;
- обсуждение результатов выполненной работы;
- разработка раздела «Финансовый менеджмент, ресурсоэффективность и ресурсосбережение»;
- разработка раздела «Социальная ответственность»;

выполненной работы; наименование		- заключение.	
дополнительных разделов, подлежащих			
разработке; заключение по работ	e).		
Перечень графического материала (с точным указанием обязательных чертежей)		- схема расположения ГПП и цеховых ТП с картограммой электрических нагрузок базы; - однолинейная схема внешнего электроснабжения базы; - однолинейная схема электроснабжения прокатноремонтного цеха электрооборудования - эпюры отклонений напряжения.	
Консультанты по разделам (с указанием разделов)	выпускной	квалификационной работы	
Раздел		Консультант	
«Финансовый менеджмент, ресурсоэффективность и потехина Нина ресурсосбережение»		ина Васильевна	
		Анатолий Григорьевич	
Названия разделов, которые должны быть написаны на русском и иностранном языках:			

Дата выдачи задания на выполнение выпускной	
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент	Обухов С.Г.	д.т.н.,		
Доцент	OOYXOD C.1.	доцент		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5А3Д	Шадрин А.В.		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
5А3Д	Шадрину Анатолию Владимировичу

Институт	Энергетический	Кафедра	ППС
Уровень образования	Бакалавр	Направление/специальность	Электроэнергетика и электротехника

Ис	Ісходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и					
peo	сурсосбережение»:					
1.	Стоимость ресурсов проекта): материально- технических, энергетических, финансовых, информационных и человеческих	1 1 1				
2.	Нормы и нормативы расходования ресурсов	Премиальный коэффициент 30%; Коэффициент доплат и надбавок 15%; Коэффициент дополнительной заработной платы 13%; Накладные расходы 16%; Районный коэффициент 30%.				
3.	Используемая система налогообложения, ставки налогов, отчислений, дисконтирования и кредитования	Коэффициент отчислений на уплату во внебюджетные фонды 27,1 %				
П	еречень вопросов, подлежащих исследованию,	проектированию и разработке:				
	Оценка коммерческого потенциала, перспективности и альтернатив проведения проекта с позиции ресурсоэффективности и ресурсосбережения	-				
2.	Планирование и формирование бюджета проекта	Формирование плана и графика проекта: - Определение структур работ; - Определение трудоемкости работ; - Разработка диаграммы Ганта. Формирование бюджета затрат проекта				
3.	Определение ресурсной (ресурсосберегающей), финансовой, бюджетной, социальной и экономической эффективности исследования	Расчет интегрального показателя				
	Перечень графического материала (с точным указанием обязательных чертежей):					

- 1. Оценочная карта магистральной сети для сравнения конкурентных технических решений
- 2. Оценочная карта радиальной сети для сравнения конкурентных технических решений
- 3. Матрица SWOT- анализ
- 4. Календарный план-график проведения исследований
- 5. Бюджет затрат технического проекта

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
старший преподаватель	Потехина Н.В.			

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5А3Д	Шадрин Анатолий Владимирович		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
5А3Д	Шадрину Анатолию Владимировичу

Институт	Энергетический (ЭНИН)	Кафедра	Электроснабжение
			промышленных предприятий
			(ППЕ)
Уровень	Бакалавр	Поправ домио/опомия за поста	Электроэнергетика и
образования		Направление/специальность	электротехника

Исходные данные к разделу «Социальная ответственность»:			
1. Описание рабочего места (рабочей зоны, технологического процесса, механического оборудования).	Прокатно-ремонтный цех электрооборудования базы по обслуживанию нефтяной промышленности.		
2. Ознакомление и отбор законодательных и нормативных документов по теме и отбор их.	ГОСТ 12.1.003-83, СНиП II-4-79, СН-245-71, СанПиН 2.2.2.542-96, СанПиН 2.2.1/2.1.1.1278-03 , СН 2.2.4/2.1.8.562–96 –шум, СН 2.2.4/2.1.8.556–96, НРБ-99, СанПиН 2.2.4.548-96		
Перечень вопросов, подлежащих иссле	дованию, проектированию и разработке:		
 Производственная санитария Анализ выявленных вредных факторов при разработке и эксплуатации проектируемого решения Производственная безопасность Анализ выявленных опасных факторов при разработке и эксплуатации проектируемого решения 	В качестве основных вредных факторов проектируемой производственной среды, рабочего места, рассмотрено воздействие шума освещения, электромагнитного излучения, несоответствие параметров микроклимата. Опасные факторы: опасность электропоражения.		
3. Экологическая безопасность - анализ воздействия объекта на литосферу (отходы); 4. Безопасность в чрезвычайных ситуациях - выбор наиболее типичной ЧС;	Описание проектируемой системы обращения с твердыми отходами прокатно-ремонтного цеха электрооборудования. Возможные ЧС: загорание (пожар). Средства тушения. План эвакуации.		
5. Правовые и организационные вопросы обеспечения безопасности	Право на условие труда, отвечающие требованиям безопасности и гигиены. Использовать оборудования и мебель согласно антропометрическим данным. Социальные гарантии компенсации ущерба работнику.		

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Suguinie Bbiquii Roneytib				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
Доцент	Дашковский А.Г.	К.Т.Н.,		
доцент	дашковский и.т.	доцент		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5А3Д	Шадрин А.В.		

РЕФЕРАТ

Выпускная квалификационная работа включает 138 страниц, 21 рисунок, 67 таблиц, 23 источника, 2 приложения.

Ключевые слова: предприятие, схема электроснабжения, цех, расчетная нагрузка, трансформаторная подстанция, компенсация, ток, короткое замыкание, потеря напряжения, селективность, ресурсоэффективность, финансовый менеджмент, безопасность, социальная ответственность.

Объектом исследования является прокатно-ремонтный цех производственной базы по обслуживанию нефтяной промышленности.

Цель работы: Разработка системы электроснабжения производственной базы по обслуживанию нефтяной промышленности и развитие способности решать технико-экономические вопросы при проектировании систем электроснабжения.

В процессе исследования проводились расчеты электрических нагрузок прокатно-ремонтного цеха и предприятия в целом, методами коэффициента расчетной активной мощности и коэффициента спроса соответственно. Произведен выбор низковольтного оборудования прокатно-ремонтного цеха и высоковольтного оборудования главной понизительной подстанции. Осуществлены соответствующие проверки оборудования.

В результате исследования разработана система электроснабжения производственной базы по обслуживанию нефтяной промышленности и экономически обоснована целесообразность разработки данного проекта.

Основные конструктивные, технологические И техникоэксплуатационные характеристики: предприятие нефтедобычи имеет в активе 18 цехов, в составе которых цеха с первой, второй и третьей категорией. Напряжение питающей предприятия сети 110 кВ. В своем предприятие (компрессорные, насосная) составе имеет цеха высоковольтным оборудованием питающимися сети 10 ĸВ. OT Низковольтные цеховые сети – 0,4 кВ. В качестве схемы электроснабжения прокатно-ремонтного цеха электрооборудования применена магистральная схема.

Область применения: предприятия нефтедобычи.

Экономическая эффективность, ресурсоэффективность и конкурентоспособность данного проекта обоснована в разделе финансовый менеджмент и находится на достаточно высоком уровне.

СОКРАЩЕНИЯ

РУ – распределительное устройство

КРУ – комплектное распределительное устройство

ЛЭП – линия электропередач

ТН – трансформатор напряжения

Р – разъединитель

ЭП – электроприемник

ИП – источник питания

ГПП – главная понизительная подстанция

ТП – трансформаторная подстанция

ЭУ – электроустановка

КЛ – кабельная линия

ТЭО – технико-экономическое обоснование

НН – низкое напряжение

ВН – высокое напряжение

ЭЭС – электроэнергетическая система

СЭС – система электроснабжения

КЗ – короткое замыкание

КТП – комплектная трансформаторная подстанция

ЦЭН – центр электрических нагрузок

ИРМ – источник реактивной мощности

ЭЭ – электрическая энергия

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	10
ОБЗОР ЛИТЕРАТУРЫ	12
ИСХОДНЫЕ ДАННЫЕ	13
1. Выбор схемы электроснабжения цеха. Расчет электрических нагрузок	
цеха	16
2. Определение расчетной нагрузки предприятия в целом	22
3. Картограмма нагрузок и определение центра электрических нагрузок	28
4. Выбор количества, мощности и расположения цеховых трансформаторы подстанций с учетом компенсации реактивной мощности	
5. Выбор числа и мощности трансформаторов ГПП	40
6. Построение суточного графика нагрузки предприятия	42
7. Выбор и проверка питающих линий ГПП	45
8. Выбор сечения проводников в сетях выше 1000 В	47
9. Расчет токов короткого замыкания в сетях выше 1000 В	50
10. Выбор и проверка высоковольтного оборудования	56
11. Электроснабжение прокатно-ремонтного цеха	70
12. Расчет электрической сети по потере напряжения	78
13. Расчет токов короткого замыкания до 1000 В	91
14. Карта селективности защитных аппаратов	99
15. Финансовый менеджмент, ресурсоэффективность и	
ресурсосбережение	102
16. Социальная ответственность	102
ЗАКЛЮЧЕНИЕ	119
ПИТЕРАТУРА	121

ВВЕДЕНИЕ

В выпускной работе рассматривается система электроснабжения производственной базы по обслуживанию нефтяной промышленности. В ходе проектирования описывается принятие различных решений и их технико-экономическое обоснование.

Под системой электроснабжения понимается совокупность источников и систем преобразования, передачи и распределения электрической энергии.

Основная цель работы — проектирование системы электроснабжения предприятия нефтедобычи и развитие способности решать технико-экономические вопросы при проектировании систем электроснабжения.

При проектировании системы электроснабжения предприятия учитывается следующий ряд основных требований, предъявляемых к системам электроснабжения:

- 1. Высокая надежность систем электроснабжения. Обеспечение бесперебойности электроснабжения в соответствии с категорией потребителей;
 - 2. Удобство, простота и безопасность в эксплуатации;
- 3. Высокая экономичность систем электроснабжения. Приведенные затраты на сооружение и эксплуатацию должны быть минимально возможными.

Процесс выполнения выпускной работы можно разделить на следующие этапы:

- 1. Определение схемы электроснабжения прокатно-ремонтного цеха и его нагрузки;
- 2. Нахождение расчетной электрической нагрузки предприятия в целом с учетом нагрузки от осветительных приборов каждого из цехов и территории предприятия, а также потерь мощности в цеховых трансформаторных подстанциях, главной понизительной подстанции и линиях электропередач;

- 3. Построение картограммы нагрузок и зоны рассеяния на основе полученных данных для определения места положения главной понизительной подстанции на предприятии.
- 4. Расчёт схемы внутризаводского электроснабжения, выбор числа и мощности цеховых КТП с учетом компенсации РМ, расчёт потерь в цеховых КТП и кабельных линиях.
- 5. Разработка схемы внешнего электроснабжения. Выбор номинального напряжения питающей сети предприятия, сечений проводов сети, определение схемы главной понизительной подстанции, выбор мощности силовых трансформаторов главной понизительной подстанции.
- 6. Расчёт токов короткого замыкания в сети выше 1 кВ для проверки защитных, коммутационных аппаратов и сечений проводников на термическую и динамическую стойкость
- 7. Разработка цеховой сети до 1 кВ, включающая в себя выбор проводников и распределение потребителей по пунктам питания. Расчет токов короткого замыкания в сети до 1 кВ и выбор аппаратов защиты. Построение эпюры отклонения напряжения до наиболее удаленного электроприемника и карты селективности действия защитных аппаратов.

ОБЗОР ЛИТЕРАТУРЫ

При проектировании систем электроснабжения необходим полный комплексный анализ вновь сооружаемой электрической сети, подбор оптимальных решений, направленных на обеспечение эффективной, надежной и безопасной работы сети.

Обязательные требования к системам электроснабжения прописаны в правилах устройства электроустановок [4]. Данные требования периодически пересматриваются в соответствии с современными тенденциями развития электроэнергетики.

Основные принципы алгоритма функционирования и выполнения систем электроснабжения предприятий изложены в трудах таких авторов как: Сумарокова Л.П. [1], Кабышев А.В., Обухов С.Г. [3], Обухов С.Г. [6].

Поскольку электрооборудование непрерывно совершенствуются, то вся необходимая документация о новых разработках публикуется производителями на официальных сайтах.

При выборе вакуумных выключателей BB/TEL для КРУН использовались каталоги и руководство по эксплуатации на официальном сайте Российской группы компаний «Таврида Электрик».

Раздел, посвященный финансовому менеджменту, был рассмотрен на основе работ Видяев И.Г., Серикова Г.Н., Гаврикова Н.А. [7]

Раздел «Социальная ответственность» был разработан с помощью нормативных документов, посвящённых теме безопасности жизнедеятельности [9-23].

ИСХОДНЫЕ ДАННЫЕ

Объект исследования – база по обслуживанию нефтяной промышленности. В качестве исходных данных представлена сводная ведомость электрических нагрузок нефтяного предприятия (таблица 1) и прокатно-ремонтного цеха (таблица 2), а так же генпланы предприятия и цеха, представленных на рисунках 1 и 2.

Таблица 1-Ведомость электрических нагрузок предприятия

	ца 1-ведомость электрических нагрузок предприятия	DD-
<u>No</u>	Наименование цеха	Руст, кВт
1	Ремонтно-механический цех фонтанной аппаратуры	1300
2	Компрессорная	
	10кВ	2500
	0,38кВ	400
3	Сборочный цех	500
4	Кузнечно-сварочный цех	800
5	Цех ремонта штанговых глубинных насосов	1500
6	Шламовая	400
	Компрессорная	
7	10кВ	5100
	0,38кВ	350
8	Склад	80
9	Склад	50
10	Административно-бытовой комплекс	90
11	Прокатно-ремонтный цех электрооборудования	-
12	Электролаборатория	450
13	Автомобильный бокс	120
14	Автомобильный бокс	100
15	Кузнечный цех	860
16	Штамповочный	760
	Насосная	
17	10кВ	1500
	0,38кВ	350
18	Столовая	500

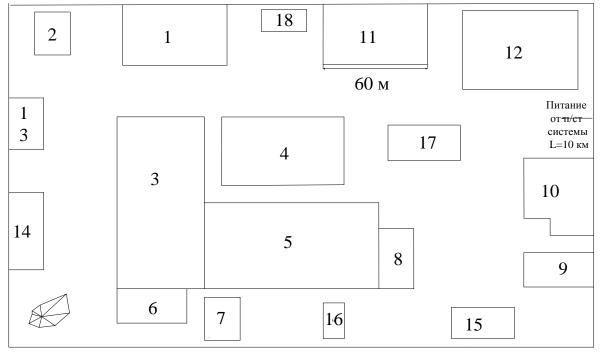


Рисунок 1- Генплан производственной базы по обслуживанию нефтяной промышленности

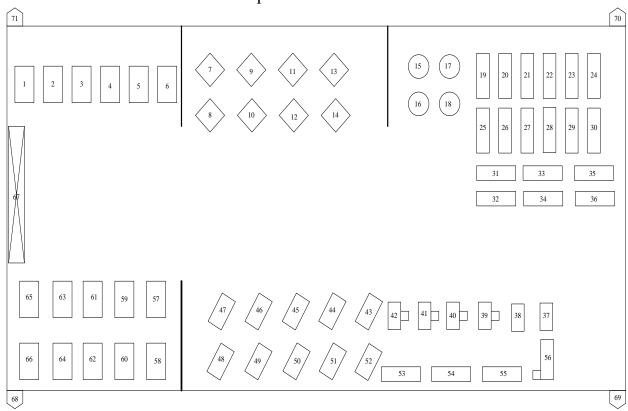


Рисунок 2 – План прокатно-ремонтного цеха электрооборудования

Таблица 2 – Ведомость электрических нагрузок цеха

No	Наименование	Мощность, кВт
1-6	Станок вертикально-сверлильный	1,3
7-14	Станок токарно-винторезный	8,7
15-18	Электропечь сопротивления	32
19-24	Станок фрезерный	7,7
25-30	Станок продольно-строгальный	4,6
31-36	Станок плоско-шлифовальный	17
37-38	Сварочный выпрямитель	3,8
39-42	Станок кругло-шлифовальный	19,5
43-47	Станок радиально-сверлильный	2,4
48-52	Станок вертикально-сверлильный	2,2
53-55	Станок трубонарезной	19,5
56	Заточный станок	4
57-60	Ножницы кривошипного типа	27,85
61-62	Молот Кузнечно-пневматический	7,5
63-66	Станок отрезной ножовочный	3,15
67	Кран-балка, ПВ=40 %	10
68-71	Вентиляторы	15

1. Выбор схемы электроснабжения цеха. Расчет электрических нагрузок цеха

Основным направлением деятельности производственной базы нефтяной промышленности является разработка, производство и ремонт изделий и оборудования для нефтяной промышленности, а так же частичное обслуживание и капитальный ремонт нефтяного оборудования.

Промышленное предприятие имеет в своем составе цеха с первой, второй и третьей категорией по степени надежности электроснабжения. Ниже в таблице 3 предоставлены данные о категориях надежности электроснабжения различных цехов предприятия.

Таблица 3 – Характеристика потребителей по категории надежности электроснабжения

30101111	Joenaokenna	
No	Наименование цеха	Категория ЭП по степени надежности
1	Ремонтно-механический цех фонтанной аппаратуры	II
2	Компрессорная	
	10κB	I
	0,38кВ	
3	Сборочный цех	II
4	Кузнечно-сварочный цех	II
5	Цех ремонта штанговых глубинных насосов	II
6	Шламовая	II
7	Компрессорная	
	10κB	I
	0,38кВ	
8	Склад	III
9	Склад	III
10	Административно-бытовой комплекс	II
11	Прокатно-ремонтный цех электрооборудования	II
12	Электролаборатория	II
13	Автомобильный бокс	III
14	Автомобильный бокс	III
15	Кузнечный цех	II
16	Штамповочный	II
17	Насосная	
	10ĸB	II
	0,38кВ	
18	Столовая	III

В качестве схемы электроснабжения прокатно-ремонтного цеха принимаем магистральную схему электроснабжения.

Выбор магистральной схемы электроснабжения цеха обусловлен следующими факторами:

- Нормальная среда. Отсутствует технологическая пыль, газы или пары, способные нарушать нормальную работу оборудования. Относительная влажность не превышает 60 % при 20 °C;
 - Электроприемники равномерно расположены по площади цеха;
- Электроприемники имеют небольшую мощность и сгруппированы по мощностям.

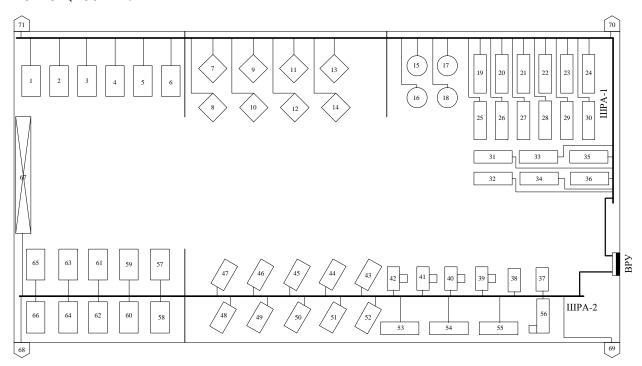


Рисунок 3 — Схема силовой сети прокатно-ремонтного цеха электрооборудования

Расчет электрических нагрузок прокатно-ремонтного цеха производим по методу коэффициента расчетной активной мощности.

Пример расчета для ШРА-1:

Графы 1–4 заполняются на основании полученного задания на проектирование, графы 5, 6 – по справочным материалам. Все

электроприемники группируются по характерным группам с одинаковыми коэффициентами использования $K_{\rm u}$ и реактивной мощности ${\rm tg} \phi$ (${\rm cos} \phi$).

Для каждой характерной группы электроприемников в графах 7 и 8 соответственно записываются величины $K_{\rm u}P_{\rm H}$ и $K_{\rm u}P_{\rm H}$ tg ϕ . В итоговой строке определяются суммы этих величин.

$$\sum K_{_{\mathrm{H}}} \cdot P_{_{\mathrm{H}}} = 0.12 \cdot (7.8 + 69.6 + 46.2 + 27.6) + 128 \cdot 0.8 + \\ + 102 \cdot 0.14 + 30 \cdot 0.8 = 158.82, \text{ kBt.}$$

$$\sum K_{_{\mathrm{H}}} \cdot P_{_{\mathrm{H}}} \cdot \mathsf{tg} \varphi = 0.12 \cdot 1.73 \cdot (7.8 + 69.6 + 46.2 + 27.6) + 128 \cdot 0.8 \cdot 0.33 + \\ + 102 \cdot 0.14 \cdot 1.73 + 30 \cdot 0.8 \cdot 0.62 = 104.77, \text{ kBap.}$$

Средневзвешенный коэффициент использования:

$$K_{\text{\tiny H.Tp}} = \frac{\sum K_{\text{\tiny H}} \cdot P_{\text{\tiny H}}}{\sum P_{\text{\tiny H}}} = \frac{158,82}{411,2} = 0,39.$$

Для графы 9 найдем расчетные величины $n \cdot p_{\rm H}^{2}$, а так же сумму этих величин:

$$\sum n \cdot p_{H}^{2} = 6 \cdot 1, 3^{2} + 8 \cdot 8, 7^{2} + 4 \cdot 32^{2} + 6 \cdot 7, 7^{2} + 6 \cdot 4, 6^{2} + 6 \cdot 17^{2} + 2 \cdot 15^{2} = 7378, 36, \text{ kBt}.$$

Вычисляем эффективное число электроприемников:

$$n_{9} = \frac{\left(\sum P_{\text{H}}\right)^{2}}{\sum n \cdot P_{\text{H}}^{2}} = \frac{411.2^{2}}{7378.36} = 22.92.$$

Находим коэффициент расчетной нагрузки $K_{\rm p}$.

Если $y = K_{p}$, $x = K_{u}$, то K_{p} будет вычисляться по формуле:

$$y = y_1 - \frac{y_1 - y_2}{x_2 - x_1} \cdot (x - x_1).$$

Для ШРА-1: $y_1 = 1$, $y_2 = 1$, $x_1 = 0.3$, $x_2 = 0.4$, $x_3 = 0.39$.

$$y=1-\frac{1-1}{0,4-0,3}\cdot(0,39-0,3)=1.$$

Вычислим расчетную активную мощность:

$$P_{\rm p} = K_{\rm p} \cdot \sum K_{\rm h} \cdot P_{\rm h} = 1.158,82 = 158,82, \, \text{кВт.}$$

Вычислим расчетную реактивную мощность при n₃>10:

$$Q_{p} = \sum K_{H} \cdot P_{H} \cdot tg\phi = 104,77$$
, KBap.

Находим значение полной расчетной мощности:

$$S_{\rm p} = \sqrt{P_{\rm p}^2 + Q_{\rm p}^2} = \sqrt{158,82^2 + 104,77^2} = 190,26, \text{ kBA}.$$

Расчетный ток:

$$I_{\rm p} = \frac{S_{\rm p}}{\sqrt{3} \cdot U_{\rm m}} = \frac{190,26}{\sqrt{3} \cdot 0,38} = 289,08, \text{ A}.$$

Расчет осветительной нагрузки цеха.

Расчетная максимальная нагрузка от электрического освещения:

$$P_{\text{p.o.}} = P_{\text{HO.}} \cdot K_{\text{co}} = 30,86 \cdot 0,95 = 29,31, \text{ kBt,}$$

где K_{co} принимаем равным 0.95 по таблице П 3.1 [1, с. 215].

Номинальная мощность осветительной нагрузки::

$$P_{\text{\tiny HO.}} = P_{\text{\tiny y.M.}} \cdot F = 15 \cdot 2057 = 30,86, \text{ kBt.}$$

Удельную плотность осветительной нагрузки принимаем равной 15 $Bт/m^2$ по таблице П 3.2 [1, с. 215], F = 2057 $m^2 - площадь цеха (определяется по генплану).$

Расчет силовой нагрузки ШРА-2 выполняется аналогично и сведен в таблицу 4.

Таблица 4 – Результаты расчета нагрузок прокатно-ремонтного цеха электрооборудования

Таолица 4 — Резу		одные дан	1 2 1	okaino	ремонтног		ектроооору іетные вели				Расче	етная нагр	ovska	
По зада	нию тех				равочным	1 40			-		1 40 1	1110/1101) y situ	
Наименование ЭП	Кол- во ЭП, <i>n</i>	Одного	ть, кВт Общая	$K_{\scriptscriptstyle \mathrm{H}}$	cosφ/tgφ	$K_{\scriptscriptstyle ext{ iny I}} P_{\scriptscriptstyle ext{ iny H}}$	K _u P _H tgφ	$n{p_{\scriptscriptstyle \mathrm{H}}}^2$	n ₃	K_{p}	Рр, кВт	$Q_{ m p}$, к ${ m Bap}$	<i>S</i> _p , кВА	$I_{\rm p},{ m A}$
1	2	Π, p_{H}	$P_{\rm H}$	_		7	0	0	10	1.1	10	1.2	1.4	1.5
IIIPA-1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Станок вертикально- сверлильный	6	1,3	7,8	0,12	0,5/1,73	0,94	1,62	10,14						
Станок токарно-винторезный	8	8,7	69,6	0,12	0,5/1,73	8,35	14,45	605,52						
Электропечь сопротивления	4	32	128	0,8	0,95/0,33	102,4	33,79	4096						
Станок фрезерный	6	7,7	46,2	0,12	0,5/1,73	5,54	9,59	355,74						
Станок продольно- строгальный	6	4,6	27,6	0,12	0,5/1,73	3,31	5,73	126,96						
Станок плоско-шлифовальный	6	17	102	0,14	0,5/1,73	14,28	24,7	1734						
Вентиляторы	2	15	30	0,8	0,85/0,62	24	14,88	450						
Итого по ШРА-1:	38		411,2	0,39		158,82	104,77	7378,36	22	1	158,82	104,77	190,26	289,08
IIIPA-2														
Сварочный выпрямитель	2	3,8	7,6	0,35	0,8/0,75	2,66	1,995	28,88						
Станок кругло-шлифовальный	4	19,5	78	0,14	0,5/1,73	10,92	18,89	1521						

Продолжение таблицы 4.

продолжение та	олицы -	•												
Станок	5	2,4	12	0,12	0,5/1,73	1,44	2,49	28,8						
радиально-														
сверлильный														
Станок	5	2,2	11	0,12	0,5/1,73	1,32	2,28	24,2						
вертикально-														
сверлильный														
Станок	3	19,5	58,5	0,14	0,5/1,73	8,19	14,17	1140,75						
трубонарезной														
Заточный станок	1	4	4	0,12	0,5/1,73	0,48	0,83	16						
Ножницы	4	27,85	111,4	0,45	0,65/1,17	50,13	58,65	3102,49						
кривошипного														
типа														
Молот	2	7,5	15	0,69	0,8/0,75	10,35	7,76	112,5						
Кузнечно-														
пневматический														
Станок отрезной	4	3,15	12,6	0,12	0,5/1,73	1,512	2,62	39,69						
йынровожон														
Кран балка,	1	10	10	0,1	0,5/1,73	1	1,73	100						
ПВ=40%														
Вентиляторы	2	15	30	0,8	0,85/0,62	24	14,88	450						
Итого по	33		350,1	0,32		112,0	126,3	6564,31	18	1	112,0	126,3	168,81	256,48
ШРА-2:														
РУ НН ТП														
ШРА-1	38		411,2			158,82	104,77	7378,36						
ШРА-2	33		350,1			112,0	126,3	6564,31						
Итого силовая	71		761,3	0,36		270,82	231,07	13942,67	41	0,75	203,12	231,07	307,65	467,43
нагрузка ТП:														
Осветительная			30,86	$K_{co}=$							29,31			
нагрузка				0,95										
Итог по ТП:			792,16								232,43	231,07	327,75	497,96

2. Определение расчетной нагрузки предприятия в целом

Расчет электрических нагрузок предприятия осуществляется методом коэффициента спроса.

Расчетная полная мощность предприятия определяется по расчетным активным и реактивным нагрузкам цехов (до и выше 1000 В) с учетом расчетной нагрузки освещения цехов и прилегающей территории предприятия, потерь мощности в цеховых трансформаторных подстанциях, главной понизительной подстанции и потерь в высоковольтных линиях.

Предприятие имеет цеха с высоковольтным оборудованием. Такими цехами являются компрессорные и насосная, в которых установлены синхронные машины, данные которых представлены в таблице 5.

Таблица 5. Высоковольтные синхронные машины

№	Нагрузка цеха, кВт	Тип	Мощность двигателя, кВт	Ток статора, А	Кол-во двигателей	cosφ	КПД, %
2	2500	СТД-1250- 2УХЛ4	1250	84	2	0,9	96,5
7	5100	СТД-2500- 2УХЛ4	2500	166	2	0,9	97
17	1500	СТД-800- 2УХЛ4	800	54	2	0,9	95,8

Расчет силовой и осветительной нагрузки произведем на примере сборочного цеха.

Расчетная активная силовая нагрузка сборочного цеха:

$$P_{_{\mathrm{p}}} = K_{_{\mathrm{c}}} \cdot P_{_{\mathrm{H}}} = 0, 3 \cdot 500 = 150, \text{ kBt.}$$

Расчетная реактивная силовая нагрузка сборочного цеха:

$$Q_p = P_p \cdot tg\phi = 150 \cdot 0,75 = 112,5, \text{ KBap.}$$

Вычисления для остальных цехов осуществляется аналогично и сведены в таблицу 6.

Расчетная активная осветительная нагрузка сборочного цеха:

$$P_{\text{p.o.}} = P_{\text{HO.}} \cdot K_{\text{co}} = 72,87 \cdot 0,95 = 69,23, \text{ kB}$$

где K_{co} принимаем равным 0.95 по таблице П 3.1 [1, с. 215].

Номинальная мощность осветительной нагрузки:

$$P_{\text{HO.}} = P_{\text{VII.}} \cdot F = 15.4858 = 72,87, \text{ KBT.}$$

Удельную плотность осветительной нагрузки принимаем 15 Вт/м 2 по таблице П 3.2 [1, с. 215], F=4858 м $^2-$ площадь цеха (определяется по генплану).

Суммарная расчетная активная нагрузка сборочного цеха:

$$P_{p} + P_{p.o.} = 150 + 69,23 = 219,23, \text{ KBT}.$$

Суммарная расчетная реактивная нагрузка сборочного цеха:

$$Q_p = 112,5$$
, кВар.

Определим полную расчетную нагрузку цеха:

$$S_{\rm p} = \sqrt{(P_{\rm p} + P_{\rm p.o.})^2 + Q_{\rm p}^2} = \sqrt{219, 23^2 + 112, 5^2} = 246, 41, \text{ kBA}.$$

Вычисления для остальных цехов осуществляется аналогично и сведены в таблицу 7.

Суммарная расчетная нагрузка предприятия на стороне НН:

$$S_{\rm p}^{\rm H} = \sqrt{\left(\sum P_{\rm p} + \sum P_{\rm p.o.}\right)^2 + \left(\sum Q_{\rm p}\right)^2} = \sqrt{4656,68^2 + 3856,65^2} = 6046,35, \text{ kBA}.$$

Потери активной и реактивной мощности в цеховых трансформаторах:

$$\Delta P_{\text{\tiny T}} = 0.02 \cdot S_{\text{\tiny p}}^{\text{\tiny H}} = 0.02 \cdot 6046,35 = 120,93, \text{ kBt};$$

 $\Delta Q_{\text{\tiny T}} = 0.1 \cdot S_{\text{\tiny p}}^{\text{\tiny H}} = 0.1 \cdot 6046,35 = 604,64, \text{ kBap}.$

Определим активные потери в высоковольтных сетях:

$$\Delta P_{_{\rm II}} = 0.03 \cdot S_{_{\rm P}}^{_{\rm H}} = 0.03 \cdot 6046,35 = 181,39, \text{ kBt.}$$

Таблица 6 – Результаты расчета силовой нагрузки предприятия

No	Наименование цеха			Силовая н	агрузка		
110	паименование цеха	$P_{\scriptscriptstyle m H}$, к ${ m B}{ m T}$	K_{c}	cosφ	tgφ	$P_{\rm p}$, к ${ m BT}$	$Q_{\rm p}$, к ${ m Bap}$
		Потребители з	лектроэнергии	0,38 кВ			
1	Ремонтно-механический цех фонтанной аппаратуры	1300	0,5	0,75	0,88	650	572
2	Компрессорная	400	0,5	0,8	1,02	200	204
3	Сборочный цех	500	0,3	0,8	0,75	150	112,5
4	Кузнечно-сварочный цех	800	0,45	0,75	0,88	360	316,8
5	Цех ремонта штанговых глубинных насосов	1500	0,5	0,75	0,88	750	660
6	Шламовая	400	0,5	0,75	0,88	200	176
7	Компрессорная	350	0,5	0,8	1,02	175	178,5
8	Склад	80	0,4	0,8	0,75	32	24
9	Склад	50	0,4	0,8	0,75	20	15
10	Административно-бытовой комплекс	90	0,5	0,8	0,75	45	33,75
11	Прокатно-ремонтный цех электрооборудования	761,3	-	-	-	203,12	231,07
12	Электролаборатория	450	0,5	0,8	0,75	225	168,5
13	Автомобильный бокс	120	0,3	0,7	1,02	36	36,72
14	Автомобильный бокс	100	0,3	0,7	1,02	30	30,6
15	Кузнечный цех	860	0,45	0,75	0,88	387	340,56
16	Штамповочный	760	0,5	0,6	1,33	380	505,4
17	Насосная	350	0,5	0,8	0,75	175	131,25
18	Столовая	500	0,5	0,9	0,48	250	120
	Итого по 0,38 кВ:	9371,3				4268,12	3856,65
			электроэнергии	10 кВ	_	_	
2	Компрессорная	2500	0,8	1	0	2000	0
7	Компрессорная	5000	0,8	1	0	4000	0
17	Насосная	1600	0,8	1	0	1280	0
	Итого по 10 кВ:	9100				7280	0
	Итого по предприятию:					11548,12	3856,65

Таблица 7- Результаты расчета осветительной и общей нагрузки предприятия

	Пода 7— гезультаты расчета осветительной и оо			ельная нагр	узка		Силовая и о	светительна	я нагрузка
$N_{\underline{0}}$	Наименование цеха	<i>F</i> , м ²	$P_{\rm уд.o},{\rm Br/m^2}$	$P_{\text{H.O}}$, к B т	$K_{\text{c.o.}}$	P_{po} , к B т	$P_{\rm p}$ + $P_{\rm po}$, к $B_{\rm T}$	$Q_{\rm p}$, к ${ m Bap}$	S_{p} , к Bap
		Потреби	тели электроэ		8 кВ				
1	Ремонтно-механический цех фонтанной	2057	15	30,86	0,95	29,31	679,31	572	888,06
	аппаратуры								
2	Компрессорная	505	14	7,07	0,95	6,72	206,72	204	290,43
3	Сборочный цех	4858	15	72,87	0,95	69,23	219,23	112,5	246,41
4	Кузнечно-сварочный цех	2645	14	37,03	0,95	35,18	395,18	316,8	506,49
5	Цех ремонта штанговых глубинных насосов	4858	15	72,87	0,95	69,23	819,23	660	1052,01
6	Шламовая	785	14	10,99	0,95	10,44	210,44	176	274,34
7	Компрессорная	505	14	7,07	0,95	6,72	181,72	178,5	254,72
8	Склад	661	13	8,59	0,6	5,16	37,16	24	44,23
9	Склад	744	13	9,67	0,6	5,80	25,80	15	29,85
10	Административно-бытовой комплекс	1575	16	25,2	0,9	22,68	67,68	33,75	75,63
11	Прокатно-ремонтный цех	2057	15	30,86	0,95	29,31	232,43	231,07	327,75
	электрооборудования								
12	Электролаборатория	2989	20	59,78	0,95	56,79	281,79	168,5	328,33
13	Автомобильный бокс	579	13	7,53	0,6	4,52	40,52	36,72	54,68
14	Автомобильный бокс	827	13	10,75	0,6	6,45	36,45	30,6	47,59
15	Кузнечный цех	625	14	8,75	0,95	8,31	395,31	340,56	521,78
16	Штамповочный	207	14	2,9	0,95	2,75	382,75	505,4	633,98
17	Насосная	785	14	10,99	0,95	10,44	185,44	131,25	227,19
18	Столовая	331	12	3,97	0,9	3,57	253,57	120	280,54
	Территория завода	37175	0,16	5,95	1	5,95	5,95	-	5,95
	Итого по 0,38 кВ:	64768		423,69		388,56	4656,68	3856,65	6046,35
	,	Потребі	ители электро	энергии 10	кВ		1		
2	Компрессорная						2000	0	2000
7	Компрессорная						4000	0	4000
17	Насосная						1280	0	1280
	Итого по 10 кВ:						7280	0	7280
	Итого по предприятию:						11936,68	3856,65	12544,24

Суммарная расчетная активная мощность, отнесенная к шинам 10 кВ ГПП:

$$\begin{split} P_{\rm p\Sigma} &= \left(\sum P_{\rm p}^{\rm h} + \sum P_{\rm p}^{\rm h}\right) \cdot K_{\rm p.m(a)} + P_{\rm p.o.} + \Delta P_{\rm t} + \Delta P_{\rm d} = \\ &= \left(4268,12 + 7280\right) \cdot 0,95 + 388,56 + 120,93 + 181,39 = 11661,59, \ \rm KBt. \end{split}$$

Суммарная расчетная реактивная мощность, отнесенная к шинам 10 кВ ГПП:

$$Q_{\rm p\Sigma} = \left(\sum Q_{\rm p}^{\rm H} + \sum Q_{\rm p}^{\rm B}\right) \cdot K_{\rm p.m(p)} + \Delta Q_{\rm r} = 3856, 65 \cdot 0, 9 + 604, 64 = 4075, 63, \text{ kBap.}$$

Полная мощность предприятия на шинах 10 кВ ГПП:

$$S_{p\Sigma} = \sqrt{P_{p\Sigma}^2 + Q_{p\Sigma}^2} = \sqrt{11661,59^2 + 4075,63^2} = 12353,28, \text{ kBA}.$$

Потери мощности в трансформаторах ГПП:

$$\Delta P_{\text{\tiny T,\Gamma\Pi\Pi\Pi}} = 0,02 \cdot S_{\text{\tiny p}\Sigma} = 0,02 \cdot 12353,28 = 247,07, \text{ kBT;}$$

 $\Delta Q_{\text{\tiny T,\Gamma\Pi\Pi\Pi}} = 0,1 \cdot S_{\text{\tiny p}\Sigma} = 0,1 \cdot 12353,28 = 1235,33, \text{ kBap.}$

Определим экономически целесообразное напряжение питающей линии ГПП по формуле Илларионова:

$$U_{\text{\tiny 9K}} = \frac{1000}{\sqrt{\frac{500}{l} + \frac{2500}{P}}} = \frac{1000}{\sqrt{\frac{500}{10} + \frac{2500}{11,91}}} = 62,03, \text{ kB}.$$

Выбор величины номинального напряжения питающей сети определяется рядом экономических факторов: с увеличением номинального напряжения возрастают затраты на капиталовложения в строительство объектов энергетики, но при этом осуществляется снижение потерь электроэнергии, что приводит к уменьшению эксплуатационных издержек. Напряжение сетей внешнего электроснабжения предприятия определяется мощностью предприятия, условиями энергосистемы, удаленностью предприятия от источника питания, дальнейших перспектив развития сетей энергосистемы и предприятий в данном районе.

Вследствие вышеперечисленных факторов принимаем напряжение питающей линии главной понизительной подстанции 110 кВ.

Реактивная мощность передаваемая из сети энергосистемы в режиме наибольших активных нагрузок для 110 кВ:

$$Q_c = \alpha \cdot P_{p\Sigma} = 0,29 \cdot 11661,59 = 3381,86, \text{ kBAp.}$$

Мощность компенсирующих устройств:

$$Q_{\kappa y} = Q_{p\Sigma} - Q_c = 4075,63 - 3381,86 = 693,77, \text{ kBAp.}$$

Полная расчетная мощность предприятия со стороны высшего напряжения трансформаторов ГПП:

$$\begin{split} S_{\text{p.ГПІП}} = & \sqrt{\left(P_{\text{p}\Sigma} + \Delta P_{\text{т.ГПІП}}\right)^2 + \left(Q_{\text{p}\Sigma} + \Delta Q_{\text{т.ГПІП}} - Q_{\text{ку}}\right)^2} = \\ = & \sqrt{\left(11661,59 + 247,07\right)^2 + \left(4075,63 + 1235,33 - 693,77\right)^2} = 12772,42, \text{ kBA}. \end{split}$$

3. Картограмма нагрузок и определение центра электрических нагрузок

Для определения центра электрических нагрузок на генплан предприятия наносят картограмму нагрузок, которая представляет собой размещенные на генеральном плане окружности.

В качестве примера расчет произведем для цеха №2 компрессорной.

Для определения радиусов окружностей зададим масштаб:

- для нагрузки до 1000 В m = 2 кВт/ мм²;
- для нагрузки свыше $1000 \text{ B } m = 6 \text{ кBт/ мм}^2$.

Радиусы окружностей:

$$r_{\rm HH} = \sqrt{\frac{P_{\rm pi}}{\pi \cdot m}} = \sqrt{\frac{206,72}{\pi \cdot 2}} = 5,74, \ {
m mm};$$
 $r_{
m BH} = \sqrt{\frac{P_{\rm pi}}{\pi \cdot m}} = \sqrt{\frac{2000}{\pi \cdot 6}} = 10,3, \ {
m mm}.$

Сектор осветительной нагрузки:

$$\alpha = \frac{360^{\circ} \cdot P_{\text{po}}}{P_{\text{pi}}} = \frac{360^{\circ} \cdot 6,72}{206,72} = 11,7^{\circ},$$
 град.

Расчет для остальных цехов аналогичен и представлен в таблице 8.

Координаты ЦЭН:

$$x_0 = \frac{\sum (P_{\text{pi}} \cdot x_i)}{\sum P_{\text{pi}}} = \frac{1599153,82}{11930,73} = 134,04, \text{ m};$$

$$y_0 = \frac{\sum (P_{\text{pi}} \cdot y_i)}{\sum P_{\text{pi}}} = \frac{1050983,06}{11930,73} = 88,09, \text{ m}.$$

$$m_x = x_0 = 134,04, \text{ m};$$

$$m_y = y_0 = 88,09, \text{ m}.$$

Определяем параметры нормального закона распределения.

Эмпирическая вероятность для второго цеха:

$$P(x_i) = P(y_i) = \frac{206,72}{11930,73} = 0,0173.$$

Дисперсия для второго цеха:

$$\sigma_x^2 = P(x_i) \cdot (x - m_x)^2 = 0.0173 \cdot (25 - 134.04)^2 = 206.01, \text{ M};$$

$$\sigma_y^2 = P(y_i) \cdot (x - m_y)^2 = 0.0173 \cdot (182 - 88.09)^2 = 152.8, \text{ M}.$$

Дисперсия:

$$\sigma_x^2 = \sum P(x_i) \cdot (x - m_x)^2 = 5635,91, \text{ M};$$

$$\sigma_y^2 = \sum P(y_i) \cdot (x - m_y)^2 = 5125,64, \text{ M}.$$

Точности случайных величин:

$$h_x = \frac{1}{\sigma_x \cdot \sqrt{2}} = \frac{1}{\sqrt{2 \cdot 5635,91}} = 0,00942;$$

$$h_y = \frac{1}{\sigma_y \cdot \sqrt{2}} = \frac{1}{\sqrt{2 \cdot 5125,64}} = 0,00988.$$

Размер полуосей эллипса рассеяния:

$$R_x = \frac{\sqrt{3}}{h_x} = \frac{\sqrt{3}}{0,00942} = 183,89, \text{ M};$$

$$R_y = \frac{\sqrt{3}}{h_y} = \frac{\sqrt{3}}{0,00988} = 175,37, \text{ M}.$$

Поскольку полученные размеры полуосей получились довольно большими, то на картограмме нагрузок отображаем зону рассеянья в масштабе 1:2.

По картограмме нагрузок можно сделать следующий вывод, что месторасположение главной понизительной подстанции не будет совпадать с центром электрических нагрузок. Месторасположение ГПП будет смещено в сторону питающей линии на свободную территорию.

Таблица 8 – Расчетные данные для построения картограммы нагрузки

№	$P_{\mathrm{p}.i}$, к $\mathrm{B}\mathrm{T}$	P_{po} , кВт	<i>r</i> , MM	α, град	xi, M	<i>yi</i> , м	$P_{\mathrm{p}.i} \cdot xi$, к $\mathrm{B}\mathrm{T}\cdot\mathrm{M}$	$P_{p.i}\cdot yi$, к $BT\cdotM$
1	2	3	4	5	6	7	8	9
			Потреби	тели электроэн	ергии 0,38 кВ		•	
1	679,31	29,31	10,4	15,53	95	182	64534,67	123634,84
2	206,72	6,72	5,74	11,7	25	182	5167,91	37622,40
3	219,23	69,23	5,91	113,68	87	84	19072,71	18415,03
4	395,18	35,18	7,93	32,05	157	113,5	62043,02	44852,76
5	819,23	69,23	11,42	30,42	162	59	132714,69	48334,36
6	210,44	10,44	5,79	17,86	82	24	17256,12	5050,57
7	181,72	6,72	5,38	13,31	122,25	16,5	22214,84	2998,32
8	37,16	5,16	2,43	49,95	222	51,25	8248,59	1904,23
9	25,80	5,80	2,03	80,96	315	45	8128,01	1161,14
10	67,68	22,68	3,28	120,64	315	87,2	21319,2	5901,70
11	232,43	29,31	6,08	45,4	210	182	48810,78	42302,68
12	281,79	56,79	6,7	72,55	293	175,25	82564,76	49383,87
13	40,52	4,52	2,54	40,13	10	129,5	405,16	5246,85
14	36,45	6,45	2,41	63,71	10	67,3	364,51	2453,13
15	395,31	8,31	7,93	7,57	271,5	14	107327,34	5534,4
16	382,75	2,75	7,80	2,59	186,2	15,4	71268,63	5894,4
17	185,44	10,44	5,43	20,27	238	117,5	44134,84	21789,26
18	253,57	3,57	6,35	5,08	157,5	189,7	39938,03	48103,14
			Потреб	ители электроэн	ергии 10 кВ			
2	2000		10,30		25	182	50000	364000
7	4000		14,57		122,25	16,5	489000	66000
17	1280		8,24		238	117,5	304640	150400
Итого:	11930,73						1599153,82	1050983,06

Таблица 9 – Расчетные данные для построения картограммы нагрузки

Тиолици	T de l'ellibre p	санные дзіл н	остросиим ка	іртограмімы нагр	у у ки					
No	$P_{\mathrm{p}.i}$, к B т	xi, M	yi, M	Р _{р.і} · хі , кВт∙м	$P_{ exttt{p}.i} \cdot yi \; ,$ к $ ext{B}_{ ext{T}} \cdot ext{M}$	$P_{\rm xi}, P_{\rm yi}$	$(x_i-m_x)^2$	$(y_i-m_y)^2$	$P_{xi}\cdot(x_i-m_x)^2$	$P_{\rm yi}\cdot(y_{\rm i}-m_{\rm y})^2$
1	2	3	4	5	6	7	8	9	10	11
				Потребител	и электроэнерги	и 0,38 кВ				
1	679,31	95	182	64534,67	123634,84	0,0569	1524,12	8819,09	86,78	502,14
2	206,72	25	182	5167,91	37622,40	0,0173	11889,72	8819,09	206,01	152,80
3	219,23	87	84	19072,71	18415,03	0,0184	2212,76	16,73	40,66	0,307
4	395,18	157	113,5	62043,02	44852,76	0,0331	527,16	645,67	17,46	21,39
5	819,23	162	59	132714,69	48334,36	0,0687	781,76	846,23	53,68	58,11
6	210,44	82	24	17256,12	5050,57	0,0176	2708,16	4107,53	47,77	72,45
7	181,72	122,25	16,5	22214,84	2998,32	0,0152	139,00	5125,13	2,12	78,06
8	37,16	222	51,25	8248,59	1904,23	0,0031	7736,96	1357,19	24,1	4,23
9	25,80	315	45	8128,01	1161,14	0,0022	32746,52	1856,75	70,82	4,02
10	67,68	315	87,2	21319,2	5901,70	0,0057	32746,52	0,7921	185,76	0,0045
11	232,43	210	182	48810,78	42302,68	0,0195	5769,92	8819,09	112,41	171,81
12	281,79	293	175,25	82564,76	49383,87	0,0236	25268,28	7596,87	596,81	179,43
13	40,52	10	129,5	405,16	5246,85	0,0034	15385,92	1714,79	52,25	5,82
14	36,45	10	67,3	364,51	2453,13	0,0031	15385,92	432,22	47,01	1,32
15	395,31	271,5	14	107327,34	5534,4	0,0331	18895,25	5489,33	626,07	181,88
16	382,75	186,2	15,4	71268,63	5894,4	0,0321	2720,67	5283,84	87,28	169,51
17	185,44	238	117,5	44134,84	21789,26	0,0155	10807,68	864,95	167,98	13,44
18	253,57	157,5	189,7	39938,03	48103,14	0,0213	550,37	10324,59	11,70	219,44
				Потребите.	ли электроэнерг	тии 10 кВ				
2	2000	25	182	50000	364000	0,1676	11889,72	8819,09	1993,13	1478,38
7	4000	122,25	16,5	489000	66000	0,3353	139,00	5125,13	46,60	1718,30
17	1280	238	117,5	304640	150400	0,1073	10807,68	864,95	1159,51	92,80
Итого:	11930,73								5635,91	5125,64

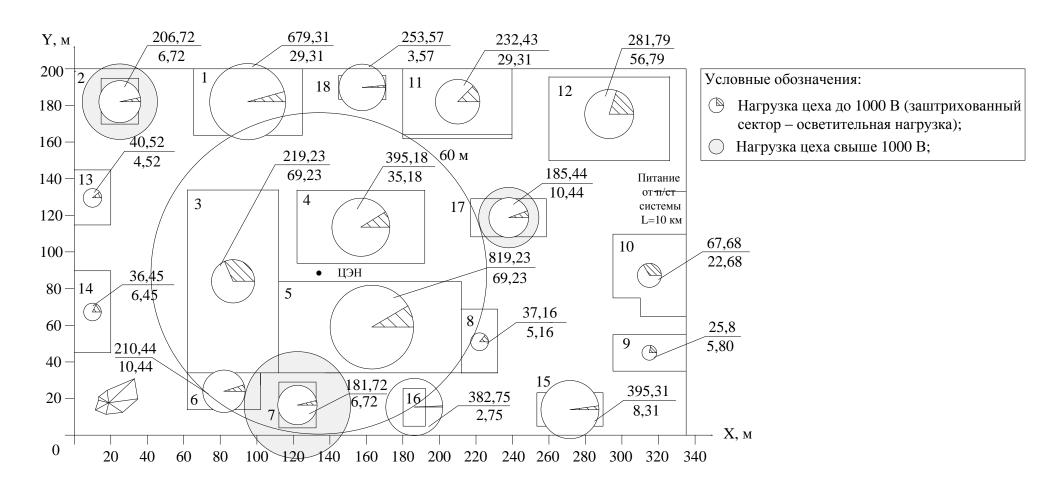


Рисунок 4 – Картограмма нагрузок

4. Выбор количества, мощности и расположения цеховых трансформаторных подстанций с учетом компенсации реактивной мошности

4.1 Выбор мощности и количества цеховых трансформаторов

Номинальные мощности трансформаторов устанавливаемых на промышленных предприятиях определяются плотностью нагрузки цехов и как правило выбираются одинаковыми для всей группы цехов.

Удельная плотность нагрузки:

$$\sigma = \frac{S_{\rm p}^{\rm \tiny HH}}{F_{\rm \tiny II}} = \frac{6046,35}{27593} = 0,219 \text{ kBA/m}^2,$$

где $S_{\rm p}-$ полная расчетная нагрузка предприятия на стороне HH;

 $F_{\text{\tiny II}}$ – площадь всех цехов, м².

Для плотности нагрузки $\sigma = 0.219~{\rm кBA/m^2}$ предварительно намечаем трансформаторы с номинальной мощностью 1600 кВА, но число трансформаторов данной мощности будет малым и вследствие чего возникает большая удаленность некоторых цехов от ТП, поэтому в целях уменьшения числа низковольтных линий принимаем трансформаторы мощностью 1000 кВА.

Минимальное число трансформаторов:

$$N_{\text{min}} = \frac{P_{\text{pac-u.H.}}}{\beta_{\text{T}} S_{\text{Tp}}} = \frac{4656,68}{0,7 \cdot 1000} = 6,65 \approx 7,$$

где $P_{\text{расч.н.}}$ — суммарная расчетная нагрузка с учетом освещения, подведенная к трансформаторам, МВт;

 β = 0,7 — коэффициент загрузки для потребителей II-категории;

 $S_{_{\mathrm{TP}}}$ — номинальная мощность одного трансформатора, МВА.

Поскольку для потребителей второй категории желательна установка двухтрасформаторных подстанций и в целях сокращения количества низковольтных линий принимаем количество трансформаторов: $N_{\min} = 8$.

Выбираем трансформатор ТМ-1000/10 по таблице П. 4.8. [1, с. 236]. Ниже в таблице 10 представлены параметры трансформатора.

Таблица 10 – Технические данные трансформатора

Тип	S _{ном} , кВА	U _{ном} обмоток, кВ		Схема и группа	Потери, кВт		II 0/	I 0/
		ВН	НН	соединения обмоток	XX	КЗ	U _{к3} %	I _{xx} %
TM- 1000/10	1000	10	0,4	Δ/Υ ₀ - 11	2,45	12,2	5,5	1,25

4.2 Компенсация реактивной мощности

Наибольшее значение реактивной мощности, которую можно передать из сети энергосистемы в сеть предприятия в режиме наибольших активных нагрузок энергосистемы:

$$Q_c = \alpha \cdot P_{p\Sigma} = 0,29 \cdot 11661,59 = 3381,86$$
, kBap.

где $\alpha = 0.29$ – для высшего напряжения ГПП 110 кВ.

Анализ баланса реактивной мощности на шинах ГПП:

$$Q_p^{\text{HH}} = 3856,65$$
, $\kappa \text{BAp} > Q_c = 3381,86$, κBap .

Из баланса видно, что для существующей реактивной нагрузки, передаваемой из сети энергосистемы реактивной мощности не достаточно.

Наибольшая реактивная мощность, которая может быть передана из сети 10 кВ в сеть 0,4 кВ без увеличения числа трансформаторов:

$$\begin{aligned} Q_{\rm l} &= \sqrt{(N_{\rm min} \cdot \beta_{\rm \tiny Tp} \cdot S_{\rm \tiny HOM.Tp.})^2 - P_{\rm pact, HH}^2} = \sqrt{(8 \cdot 0, 7 \cdot 1000)^2 - 4656, 68^2} = \\ &= 3110, 52, \ \ \kappa {\rm Bap}, \end{aligned}$$

Для компенсации реактивной мощности можно использовать, имеющиеся на предприятии в цехах №2,7 и 17 синхронные двигатели.

Реактивная мощность, получаемая с СД в режиме их номинальной загрузки:

$$Q_{\text{CJI2}} = \frac{\alpha_{_{\text{M}}} \cdot P_{_{\text{HOM}}} \cdot tg \, \varphi_{_{\text{HOM}}}}{\eta_{_{\text{HOM}}}} = \frac{1,34 \cdot 1250 \cdot 0,48}{0,965} = 833,16, \text{ kBap;}$$

$$\begin{aligned} Q_{\text{СД17}} &= \frac{\alpha_{_{\text{M}}} \cdot P_{_{\text{НОМ}}} \cdot tg\, \varphi_{_{\text{НОМ}}}}{\eta_{_{\text{НОМ}}}} = \frac{1,34 \cdot 2500 \cdot 0,48}{0,97} = 1657,73, \text{ кВар;} \\ Q_{\text{СД17}} &= \frac{\alpha_{_{\text{M}}} \cdot P_{_{\text{НОМ}}} \cdot tg\, \varphi_{_{\text{НОМ}}}}{\eta_{_{\text{НОМ}}}} = \frac{1,34 \cdot 800 \cdot 0,48}{0,958} = 537,12, \text{ кВар.} \end{aligned}$$

Полная располагаемая мощность генерации СД:

$$\begin{aligned} Q_{\text{СД}} &= N_2 \cdot Q_{\text{СД2}} + N_7 \cdot Q_{\text{СД7}} + N_{17} \cdot Q_{\text{СД17}} = \\ &= 2 \cdot 833,16 + 2 \cdot 1657,73 + 2 \cdot 537,12 = 6056,02, \text{ кВар.} \end{aligned}$$

Составляем баланс реактивной мощности в узле А:

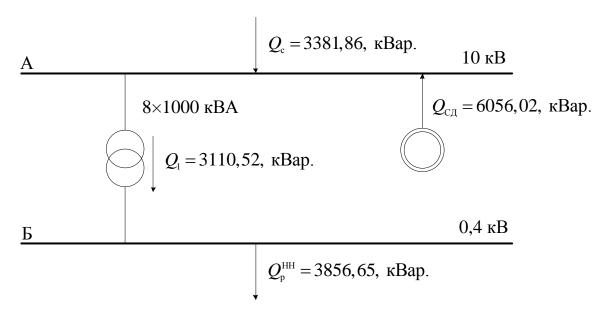


Рисунок 5 – Баланс реактивной мощности без использования БК

Имеется два различных варианта установки БК на стороне ВН и НН.

Из анализа баланса мощностей в узле А очевидно, что использование батарей конденсаторов на высокой стороне не рационально.

Для решения поставленной задачи, осуществим сравнение затрат двух вариантов: затрат для варианта с минимальным числом трансформаторов и с увеличенным на один или два числом трансформаторов.

Вариант №1.

Устанавливаем БК на напряжение 0,4 кВ.

Определяем необходимую мощность БК на напряжение 0,4 кВ:

$$Q_{K}^{HH} = Q_{P}^{HH} - Q_{I} = 3856,65 - 3110,52 = 746,13, \text{ KBap.}$$

Принимаем к установке четыре конденсаторные установки типа УКБН-0,38-200-50У3 по таблице Π .6.2. [2, c.167].

В таблице 11 представлены параметры конденсаторных установок.

Таблица 11 – Технические данные комплектных конденсаторных установок

Тип	Мощность, кВар	Кол-во ступеней	Удельные потери, кВт/кВар	Удельная стоимость у.е/кВар	Приведенные затраты у.е/кВар, в год
УКБН- 0,38-200- 50У3	200	4	0,0045	9,3	2,05

Определяем затраты для УКБН-0,38-200-50У3.

Затраты на компенсацию реактивной мощности стороне низкого напряжения:

$$3_{\text{БK_HH}} = 3_0 + 3_1 \cdot Q + 3_2 \cdot Q^2$$
, y.e.,

где 3_0 — постоянная составляющая затрат, не зависящая от генерируемой мощности, у.е./кВар;

 3_1 – удельные затраты на 1 кВар генерируемой мощности, у.е./кВар;

 3_2 – удельные затраты на 1 кBар² генерируемой мощности, у.е./кВар²;

Q – генерируемая БК реактивная мощность.

Определяем удельные затраты на 1 кВар генерируемой мощности:

$$3_{\text{BK}}^{\text{HH}} = E \cdot K_{\text{y}} \cdot \left(\frac{\overline{U}_{\text{BK}}}{\overline{U}}\right) + C_0 \cdot \Delta P_{\text{BK}} = 0,223 \cdot 9,3 \cdot \left(\frac{1}{1}\right)^2 + 85 \cdot 4,5 \cdot 10^{-3} = 2,456, \text{ y.e./kBap,}$$

где $C_0 = 85$, у.е./кВар — удельная стоимость потерь на активную мощность в Сибири по таблице 5.2 [1, с.113].

 K_{y} – удельная стоимость КБ;

 $\Delta P_{\text{БК}}$ – удельные потери активной мощности в КБ;

E = 0,223 — суммарные ежегодные отчисления от капитальных вложений;

 $ar{U}_{\it EK}$ — отношение номинального напряжения конденсаторов к номинальному напряжению сети, для БК напряжением до 1000В равно 1.

 \overline{U} — относительная величина напряжения сети в месте присоединения БК; Суммарные приведенные затраты на БК HH:

$$3_{\text{BK HH}} = 3_0 + 3_1 \cdot Q + 3_2 \cdot Q^2 = 0 + 2,456 \cdot 800 + 0 = 1964,8, \text{ y.e.}$$

Общие затраты по варианту №1:

$$3_{\text{Bap1}} = 3_{\text{BK HH}} = 1964, 8, \text{ y.e.}$$

Вариант №2.

Увеличиваем число установленных трансформаторов на 2.

Затраты на установку двух трансформаторной подстанции мощностью 1000 кВА:

$$3_{\text{TP}} = E \cdot K_{\text{TP}} = 0,223 \cdot 2 \cdot 17000 = 7582 \text{ y.e.}$$

где $K_{\rm TP} = 17000$ у.е. – стоимость однотрансформаторной КТП.

Затраты на установку двух трансформаторной подстанции значительно превышают затраты варианта №1. Смысла в дальнейших расчетах нет.

4.3 Определение места расположения цеховых трансформаторов

Таблица 12 – Распределение электрических нагрузок по пунктам питания

Наименование пункта питания	Потребители электроэнергии	Место расположения пункта питания на генплане	Кол-во и мощность тр- ров
ТП-1	Цех 1,2,3,13,14	Цех 1	2х1000 кВА
ТП-4	Цех 4,11,12,17,18	Цех 4	2x1000 кВА
ТП-5	Цех 5,6,7	Цех 5	2x1000 κBA
ТП-15	Цех 9,10,15	Цех 15	1x1000 κBA
ТП-16	Цех 8,16	Цех 16	1х1000 кВА

Определим фактическую загруженность каждой ТП.

Пересчитаем коэффициент загрузки трансформаторов с учетом компенсации реактивной мощности:

$$\beta_{\text{\tiny T.факт.}} = \frac{\sqrt{P_p^2 + \left(Q_p - Q_{\text{БК ТППфакт.}}^{\text{\tiny HH}}\right)^2}}{n \cdot S_{\text{\tiny HOM.mp}}} = \frac{\sqrt{1182,22^2 + \left(955,82 - 200\right)^2}}{2 \cdot 1000} = 0,7.$$

Расчет для остальных ТП аналогичен. Все результаты сводим в таблицу 13.

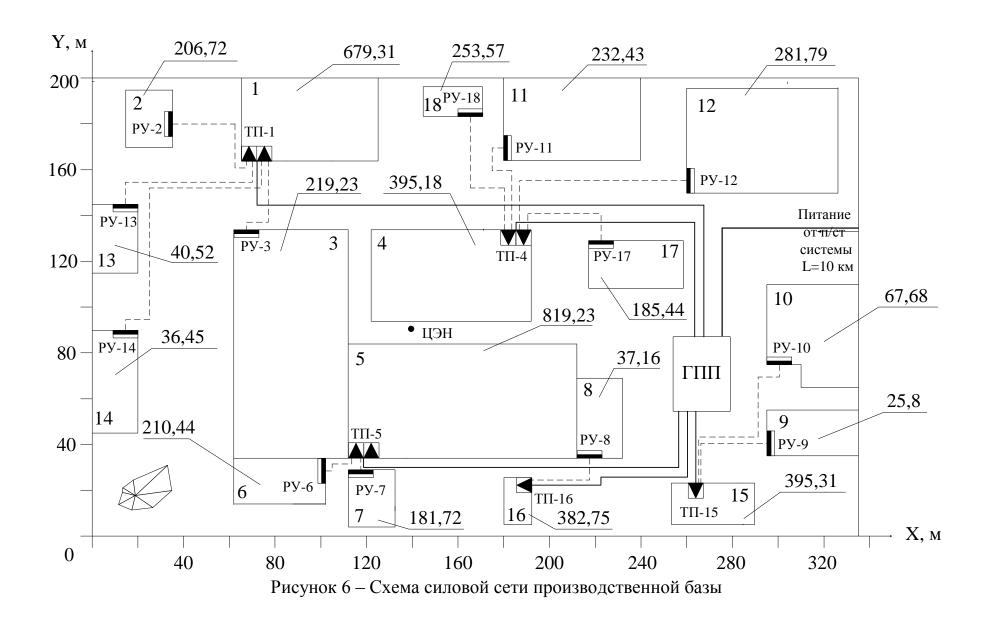
Таблица 13 – Коэффициенты загрузки трансформаторных подстанций с учетом компенсации

№ $T\Pi$ n_{T}		$P_{\mathfrak{p}}$,	$Q_{\mathfrak{p}}$,	$Q_{ t t t t t t t t t t t t t $	Кол-во марка КБ	$eta_{\scriptscriptstyle \mathrm{T}}$ факт.
J\2 111	n_{rp}	кВт	кВар	кВАр	кол-во марка кр	Рт факт.
ТП1	2	1182,22	955,82	200	1×УКБН-0,38-200-50У3	0,7
ТП4	2	1348,42	967,62	400	2×УКБН-0,38-200-50У3	0,73
ТП5	2	1211,38	1014,5	200	1×УКБН-0,38-200-50У3	0,73
ТП15	1	488,8	389,31	-	-	0,63
ТП16	1	419,91	529,4	-	-	0,68

4.4 Расчет потерь мощности в цеховых трансформаторах

Потери активной мощности ТП1:

$$\Delta P_{\text{TP}} = \Delta P_{\text{xx}} \cdot \mathbf{n} + \Delta P_{\text{xx}} \cdot \boldsymbol{\beta}^2 \cdot \mathbf{n} = 2,45 \cdot 2 + 12,2 \cdot 0,7^2 \cdot 2 = 16,86, \text{ kBt.}$$


Потери реактивной мощности ТП1:

$$\Delta Q_{\rm TP} = S_{\rm HOM,TP} \cdot \left(\frac{I_{\rm XX}}{100} + \frac{U_{\rm K3}}{100}\right) \cdot \beta^2 \cdot n = 1000 \cdot \left(\frac{1,25}{100} + \frac{5,5}{100}\right) \cdot 0, 7^2 \cdot 2 = 66,15, \text{ } \kappa \text{Bap}.$$

Для остальных ТП расчет ведется аналогично. Сводим результаты в таблицу 14.

<u>Таблица 14 –</u> Потери в цеховых ТП

	ΔP , κ B τ	ΔQ , к Bap
ТП1	16,86	66,15
ТП4	17,71	71,94
ТП5	17,71	71,94
ТП15	7,29	26,79
ТП16	8,09	31,2
Итого:	67,66	268,02

5. Выбор числа и мощности трансформаторов ГПП

Мощность трансформаторов на ГПП определяем по выражению:

$$S_{\text{\tiny H.TP.}} = \frac{S_{\text{p.}\Gamma\Pi\Pi}}{N_{\text{\tiny TP}} \cdot \beta_{\text{\tiny T}}},$$

где $S_{\rm p, \Gamma IIII}$ — полная расчётная мощность предприятия со стороны высшего напряжения трансформаторов $\Gamma \Pi \Pi$;

 $\beta_{\rm T} = 0.7$ — коэффициент загрузки трансформаторов ГПП.

$$S_{\text{H.Tp.}} = \frac{S_{\text{p.}\Gamma\Pi\Pi\Pi}}{N_{\text{TD}} \cdot \beta_{\text{T}}} = \frac{12772,42}{2 \cdot 0,7} = 9123,16, \text{ kBA}.$$

Выбираем трансформатор ТДН-10000/110 по таблице 7.3. [3, с. 160].

Паспортные данные трансформатора представлены в таблице 15.

Таблица 15 – Паспортные данные трансформатора ТДН-10000/110

таолица то	1100110	P III DI G	411111D1 0 1	anewopmaropa	7 7 7 7	. 0 0 0 07 .	110	
	S _{HOM} ,	U _{ном} об	моток, В	Схема и группа	Поте кЕ			
Тип		K	D	1.0	KL	U_{κ_3} %		$I_{xx}\%$
	MBA	ВН	НН	соединения обмоток	XX	КЗ		
ТДН- 10000/110	10	115	11	Y_0/Δ - 11	14	58	10,5	0,9

С учетом того, что в нормальном режиме коэффициент загрузки трансформаторов ГПП принимается равным 0,7, в послеаварийном режиме любой из трансформаторов с учетом допустимой перегрузки (до 40 %) обеспечит полностью необходимую мощность завода, так как

$$S_{\text{p.}\Gamma\Pi\Pi\Pi} = 12772,42, \text{ } \kappa \text{BA} < 1,4 \cdot S_{\text{h.tp}} = 1,4 \cdot 10000 = 14000, \text{ } \kappa \text{BA}.$$

Принципиальная схема электроснабжения предприятия приведена на рисунке 7.

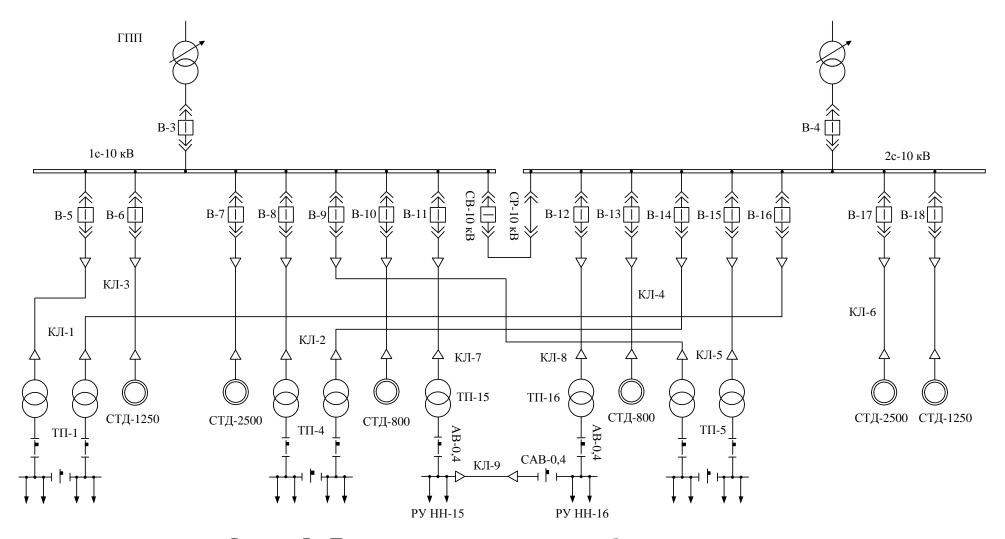


Рисунок 7 – Принципиальная схема электроснабжения предприятия

6. Построение суточного графика нагрузки предприятия

Для построения суточного графика нагрузки используем характерный суточный график для нефтеперерабатывающей отрасли, показанный на рисунке 8 [4, c. 23].

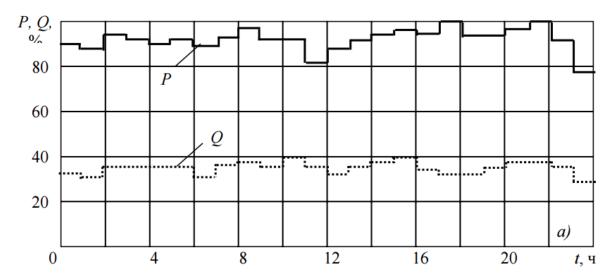


Рисунок 8 – характерный суточный график электрических нагрузок нефтеперабатывающего предприятия

Определим активную мощность для первого часа:

$$P_1 = P_{\text{o.e.}} \cdot P_{\text{p.}\Gamma\Pi\Pi} = 0,9 \cdot 11908,66 = 10717,79, \text{ kBt,}$$

где $P_{\rm p, \Gamma IIII}$ – расчетная активная мощность со стороны высшего напряжения трансформатора $\Gamma \Pi \Pi$.

Определим реактивную мощность для первого часа:

$$Q_1 = Q_{\text{o.e.}} \cdot Q_{\text{p.ITIII}} = 0,33 \cdot 4617,19 = 1523,67, \text{ kBt,}$$

где $Q_{\rm p, \Gamma IIII}$ – расчетная реактивная мощность со стороны высшего напряжения трансформатора ГПП.

Полная мощность:

$$S_1 = \sqrt{P_1^2 + Q_1^2} = \sqrt{10717,79^2 + 1523,67^2} = 10825,56$$
, kBA.

Расчет для остальных временных моментов аналогичен и сведен в таблицу 16.

Таблица 16 – Суточная нагрузка

Часы	P, o.e.	Q, o.e.	<i>P</i> , кВт	<i>Q</i> , кВар	S, MBT
1	0,9	0,33	10717,79	1523,673	10825,5571
2	0,88	0,31	10479,62	1431,329	10576,9161
3	0,95	0,36	11313,23	1662,188	11434,683
4	0,93	0,36	11075,05	1662,188	11199,0931
5	0,91	0,36	10836,88	1662,188	10963,6149
6	0,93	0,36	11075,05	1662,188	11199,0931
7	0,89	0,31	10598,71	1431,329	10694,9194
8	0,93	0,37	11075,05	1708,36	11206,0391
9	0,97	0,38	11551,4	1754,532	11683,8876
10	0,94	0,36	11194,14	1662,188	11316,8745
11	0,94	0,4	11194,14	1846,876	11345,4718
12	0,81	0,36	9646,015	1662,188	9788,18001
13	0,88	0,32	10479,62	1477,501	10583,2632
14	0,92	0,36	10955,97	1662,188	11081,3396
15	0,95	0,38	11313,23	1754,532	11448,471
16	0,96	0,4	11432,31	1846,876	11580,533
17	0,95	0,34	11313,23	1569,845	11421,625
18	1	0,33	11908,66	1523,673	12005,7387
19	0,95	0,33	11313,23	1523,673	11415,3705
20	0,95	0,36	11313,23	1662,188	11434,683
21	0,97	0,38	11551,4	1754,532	11683,8876
22	1	0,38	11908,66	1754,532	12037,2159
23	0,92	0,36	10955,97	1662,188	11081,3396
24	0,77	0,29	9169,668	1338,985	9266,91405

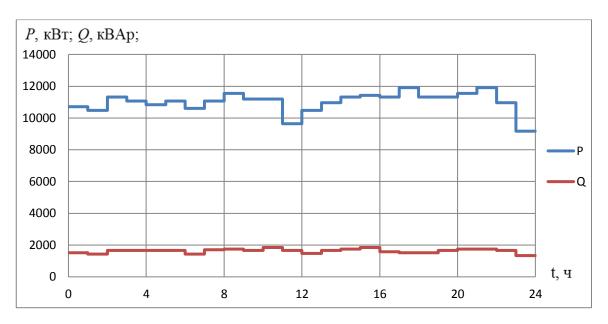


Рисунок 9 – Суточный график электрических нагрузок предприятия

Вычислим активную энергию потребляемую на 1 ступени за 1 час:

$$W_1 = P_1 \cdot T_1 = 10717,79 \cdot 1 = 10717,79, кВт \cdot ч.$$

Определяем суточное потребление электрической активной энергии предприятием:

$$W_{\text{сут}} = \sum (P_i \cdot T_i) = 264372,252, \text{ кВт} \cdot \text{ч}.$$

Принимаем, что предприятие работает в две смены без выходных и праздничных дней.

Определяем годовое потребление электрической активной энергии предприятием:

$$W_{\text{год}} = W_{\text{сут}} \cdot 365 = 264372, 252 \cdot 365 = 96495872, \ \kappa \text{Bt} \cdot \text{ч}.$$

Число часов использования максимума нагрузки за год:

$$T_{\text{max}} = \frac{W_{\text{год}}}{P_{\text{max}}} = \frac{96495872}{11908,66} = 8103, \ \text{ч}.$$

7. Выбор и проверка питающих линий ГПП

Линии, питающие трансформаторы ГПП, выполняются воздушными проводом марки АС. Выбор сечения провода производим по экономической плотности тока.

Определяем расчетный ток линии:

$$I_{\rm p} = \frac{S_{\rm H.Tp}}{\sqrt{3} \cdot U_{\rm H}} = \frac{10000}{\sqrt{3} \cdot 110} = 52,49, \text{ A}.$$

Экономически целесообразное сечение проводов равно:

$$F_{\text{9K}} = \frac{I_{\text{p}}}{j_{\text{2K}}} = \frac{52,49}{1} = 52,49, \text{ MM}^2.$$

При $T_{\rm M} > 5000$ часов для алюминиевых неизолированных проводов принимаем экономическую плотность тока равной $j_{3\rm K}$ =1 A/мм² [1, табл. 6.1].

Принимаем ближайшее стандартное $F=70 \text{ мм}^2$.

Для ВЛ АС 70/11 $I_{доп}$ =265 А по табл.1.3.29 [4].

Выбранное сечение необходимо проверить по следующим условиям:

• По допустимой токовой нагрузке и по перегрузочной способности (в послеаварийном и ремонтном режиме при отключении одной из питающих линий).

$$I_{p} = 52,49, A \le I_{non} = 265, A;$$

 $1,3 \cdot I_{non} = 344,5, A \ge I_{n.a.} = 2 \cdot I_{p} = 104,98, A.$

Условия выполнены.

• По условиям механической прочности.

Согласно условию механической плотности на воздушных линиях выше $1000~\rm B$ могут применяться сталеалюминевые провода сечением не менее $25~\rm mm^2$.

$$F_{pacu} = 70$$
, $\text{MM}^2 \ge F_{\text{min}} = 25$, MM^2 .

Условие выполнено.

• По допустимой потере напряжения.

Нормальный режим.

Коэффициент загрузки:

$$k_{_{3}} = \frac{I_{_{\text{доп}}}}{I_{_{\text{D}}}} = \frac{265}{52,49} = 5,05.$$

Допустимая длина линии:

$$L_{\text{gon}} = l_{\Delta U1\%} \cdot \Delta U_{\text{gon}\%} \cdot k_{\text{3}} = 5,1 \cdot 5 \cdot 5,05 = 128,75, \text{ km} \ge L = 10, \text{ km},$$

где $l_{\Delta U1\%}$ — длина линии при полной нагрузке на 1 % потери напряжения, км по таблице П.5.1. [1, с. 238];

 $\Delta U_{\text{доп%}} = 5 \%$ — допустимая потеря напряжения, %;

L – фактическая длина линии, км.

Послеаварийный режим.

Коэффициент загрузки:

$$k_{3} = \frac{I_{\text{доп}}}{2 \cdot I_{\text{p}}} = \frac{265}{2 \cdot 52,49} = 2,52.$$

Допустимая длина линии:

$$L_{\text{\tiny 2001}} = l_{\text{\tiny 2011\%}} \cdot \Delta U_{\text{\tiny 2001\%}} \cdot k_{\text{\tiny 3}} = 5, 1 \cdot 10 \cdot 2, 52 = 128, 75, \ \text{km} \geq L = 10, \ \text{km},$$

где $\Delta U_{_{\text{доп}\%}}$ = 10 % — допустимая потеря напряжения, %.

Условия выполнены.

• Проверка по условиям коронирования проводов ВЛЭП

Для напряжения 110 кВ минимальное сечение - АС 70/11.

Провод AC 70/11 удовлетворяет требованиям по условию коронирования.

8. Выбор сечения проводников в сетях выше 1000 В

Сечения проводов ВЛ и жил кабелей в сетях выше 1000 В выбираются по экономической плотности тока.

Пример выбор сечения кабеля приведем для кабельной линии КЛ1, питающей трансформаторную подстанцию №1 от ГПП.

Расчетный ток линии в нормальном режиме определяется из выражения:

$$I_{\rm p} = \frac{n_{\rm Tp} \cdot S_{\rm H.Tp}}{n_{\rm TMH} \cdot \sqrt{3} \cdot U_{\rm H}} = \frac{2 \cdot 1000}{2 \cdot \sqrt{3} \cdot 10} = 57,74, \text{ A}.$$

где $S_{\text{\tiny H.TP}}$ – номинальная мощность трансформатора, кВА;

 $n_{_{\mathrm{TP}}}$ - число трансформаторов;

 $n_{\text{\tiny лин}}$ – число питающих линий.

Экономически целесообразное сечение проводов равно:

$$F_{_{9K}} = \frac{I_{p}}{i_{_{2K}}} = \frac{57,74}{1,2} = 48,12, \text{ MM}^2.$$

При $T_{\rm M} > 5000$ часов для алюминиевых кабелей с бумажной пропитанной изоляцией принимаем экономическую плотность тока равной $j_{3\kappa}=1,2$ А/мм² [1, табл. 6.1].

Принимаем ближайшее стандартное F=50 мм 2 .

Предварительно выбираем кабель AAШв -3×50 с $I_{\text{доп}}=140$ A, по таблице 1.3.16. [4].

Выполняем проверку по тепловому нагреву с учетом поправочных коэффициентов на условия прокладки:

$$I_{\scriptscriptstyle ext{ iny don}} \geq rac{I_{\scriptscriptstyle ext{ iny p}}}{K_{\scriptscriptstyle 1} \cdot K_{\scriptscriptstyle 2}}.$$

Определяем по таблице 1.3.12. [4] допустимую температуру жил кабеля для напряжения 10 кВ, t= +60°C.

Температура окружающей среды нормальная (при прокладке в траншее +15°C), соответственно K_1 =1 по таблице 1.3.3. [4].

По условиям прокладки КЛ1 в траншее проложено 6 кабелей.

По таблице 1.3.26. [4] находим поправочный коэффициент K_2 =0,85.

$$I_{\text{доп}} = 140, \ A \ge \frac{I_{\text{p}}}{K_1 \cdot K_2} = \frac{57,74}{1 \cdot 0,85} = 67,93, \ A.$$

Условие выполнено.

Линия КЛ1 может работать с перегрузкой, соответственно выполняем проверку по длительному нагреву в послеаварийном режиме:

$$K_{\text{nep}} \cdot I_{\text{доп}} \ge \frac{I_{\text{п.ав}}}{K_1 \cdot K_2}.$$

где $K_{\text{пер}}$ – кратность перегрузки, $K_{\text{пер}}$ = 1,2 по таблице 1.3.2. [4].

Расчетный ток линии в послеаварийном режиме:

$$I_{\text{п.а.}} = 2 \cdot I_{\text{p}} = 2 \cdot 57,74 = 115,48, \text{ A.}$$

$$K_{\text{пер}} \cdot I_{\text{доп}} = 1,2 \cdot 140 = 168, \text{ A} \ge \frac{I_{\text{п.а.B}}}{K_{1} \cdot K_{2}} = \frac{115,48}{1 \cdot 0,85} = 135,86, \text{ A.}$$

Условие выполнено.

Предварительно выбираем кабель $AAШв - 3 \times 50$, прокладка кабеля в траншее.

Результаты предварительного выбора КЛ сведем в таблицу 17.

Таблица 17 – Марки выбранных кабельных линий

нии	линии	линий	нагр	етная узка кабель	линии	стадки		нагрузк	стимая а на один бель	Проверка	по нагреву		D	V
Номер линии	Назначение	Количество	Норм. режим І _р , А	П.ав. режим І _{п.ав} , А	длина лил <i>I</i> , км	Способ прокладки	$F_{ m 3K}, \ MM^2$	Норм. режим Ідоп, А	П.ав. режим 1,2I _{доп} , А	$\frac{\text{Норм.}}{\text{режим}}$ $\frac{I_p}{K_1 \cdot K_2}$, A	Π .авр. режим $\frac{I_{\scriptscriptstyle n.as}}{K_1\cdot K_2},\; { m A}$	Марка кабеля	R ₀ , Ом/км	X ₀ , Ом/км
КЛ-1	ГПП - ТП1	2	57,74	115,48	0,301	траншея	48,12	140	168	67,93	135,86	ААШв –3×50	0,625	0,0625
КЛ-2	ГПП - ТП4	2	57,74	115,48	0,173	траншея	48,12	140	168	67,93	135,86	ААШв –3×50	0,625	0,0625
КЛ-3	ГПП - СТД -1250	1	74,79	-	0,342	траншея	62,32	165	-	87,98	-	ААШв –3×70	0,447	0,0612
КЛ-4	ГПП - СТД - 800	1	48,21	-	0,05	траншея	40,18	140	-	51,84	-	ААШв –3×50	0,625	0,0625
КЛ-5	ГПП - ТП5	2	57,74	115,48	0,178	траншея	48,12	140	168	67,93	135,86	ААШв –3×50	0,625	0,0625
КЛ-6	ГПП – СТД - 2500	1	148,8	-	0,158	траншея	124	240	-	175,06	-	ААШв –3×120	0,261	0,0602
КЛ-7	ГПП-ТП15	1	57,74	115,48	0,036	траншея	48,12	140	168	67,93	135,86	ААШв –3×50	0,625	0,0625
КЛ-8	ГПП-ТП16	1	57,74	115,48	0,102	траншея	48,12	140	168	67,93	135,86	ААШв –3×50	0,625	0,0625

9. Расчет токов короткого замыкания в сетях выше 1000 В

Расчет токов КЗ проводится в целях проверки элементов электроустановок и выбора аппаратуры на электродинамическую и термическую стойкость, а также уставок срабатывания защит и проверки их на чувствительность.

Составляем расчетную схему.

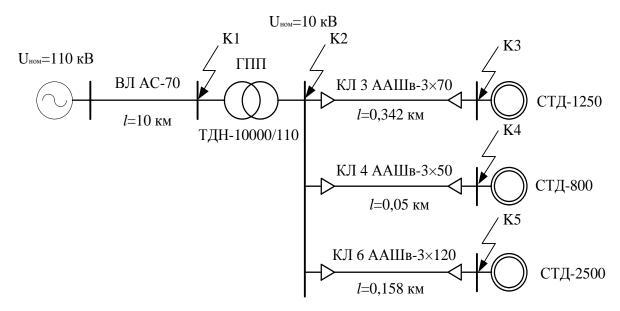


Рисунок 10 – Расчетная схема

Расчет ведем в относительных единицах.

Принимаем $U_{\text{ср.ном}} = 115$ и 10.5 кВ. За базисную мощность принимаем $S_6 = 100$ МВА. Считаем, что система бесконечной мощности $S_c = \infty$ и соответственно индуктивное сопротивление $x_c = 0$.

Определение параметров схемы замещения.

Активное сопротивление воздушной линии 110 кВ:

$$r_{\text{BJI}} = \frac{r_0 \cdot l \cdot S_{\delta}}{U_{\text{convey}}^2} = \frac{0.46 \cdot 10 \cdot 1000}{115^2} = 0.348$$
, o.e.,

где r_0 =0,46 Ом/км – удельное активное сопротивление провода AC-70/11;

l=10 км — длина воздушной линии от системы к ГПП.

Реактивное сопротивление воздушной линии 110 кВ:

$$x_{\text{вл}} = \frac{x_0 \cdot l \cdot S_{\delta}}{U_{\text{cn HOM}}^2} = \frac{0.417 \cdot 10 \cdot 1000}{115^2} = 0.315$$
, o.e.,

где x_0 =0,417 Ом/км — удельное реактивное сопротивление провода AC-70/11.

Реактивное сопротивление силового трансформатора ТДН-10000/110:

$$x_{\text{Tp}} = \frac{u_{\text{K3}\%}}{100} \cdot \frac{S_{\delta}}{S_{\text{H,TD}}} = \frac{10.5}{100} \cdot \frac{1000}{10} = 10.5, \text{ o.e.},$$

где $S_{\text{н.тр.}}$ - номинальная мощность трансформатора;

 $u_{_{\!\scriptscriptstyle{\mathrm{K}}\!3\%}}$ — напряжение короткого замыкания трансформатора.

Активным сопротивлением пренебрегаем, т.к. трансформатор большой мощности.

Активное сопротивление кабельной линии КЛЗ:

$$r_{\text{KJI3}} = \frac{r_0 \cdot l \cdot S_{\delta}}{U_{\text{cd hom}}^2} = \frac{0.447 \cdot 0.342 \cdot 1000}{10.5^2} = 1.387, \text{ o.e.,}$$

где r_0 =0,447 Ом/км — удельное активное сопротивление кабеля ААШв -3×70 ; l=0,342 км — длина кабельной линии от ГПП до СТД -1250.

Реактивное сопротивление кабельной линии КЛЗ:

$$x_{\text{KJIS}} = \frac{x_0 \cdot l \cdot S_{\delta}}{U_{\text{Chapper}}^2} = \frac{0.0612 \cdot 0.342 \cdot 1000}{10.5^2} = 0.190, \text{ o.e.,}$$

где x_0 =0,0612 Ом/км — удельное реактивное сопротивление кабеля ААШв — 3×70 .

Активное сопротивление кабельной линии КЛ4:

$$r_{\text{KJI4}} = \frac{r_0 \cdot l \cdot S_{\delta}}{U_{\text{cp.hom.}}^2} = \frac{0.625 \cdot 0.05 \cdot 1000}{10.5^2} = 0.283, \text{ o.e.}$$

Реактивное сопротивление кабельной линии КЛ4:

$$x_{\text{KJI4}} = \frac{x_0 \cdot l \cdot S_{\delta}}{U_{\text{minuted}}^2} = \frac{0.0625 \cdot 0.05 \cdot 1000}{10.5^2} = 0.028$$
, o.e.

Активное сопротивление кабельной линии КЛ6:

$$r_{\text{KJI6}} = \frac{r_0 \cdot l \cdot S_{\delta}}{U_{\text{cn how}}^2} = \frac{0.261 \cdot 0.158 \cdot 1000}{10.5^2} = 0.374, \text{ o.e.}$$

Реактивное сопротивление кабельной линии КЛ6:

$$x_{\text{KJI6}} = \frac{x_0 \cdot l \cdot S_6}{U_{\text{cd HOM}}^2} = \frac{0.0602 \cdot 0.158 \cdot 1000}{10.5^2} = 0.086, \text{ o.e.}$$

Схема замещения представлена на рисунке 11.

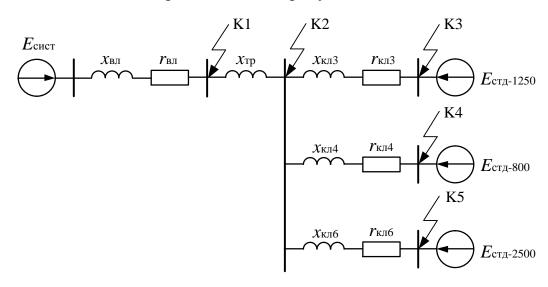


Рисунок 11 – Схема замещения

Точка К1.

Базовый ток:

$$I_{6} = \frac{S_{6}}{\sqrt{3} \cdot U_{\text{cp.Hom.}}} = \frac{1000}{\sqrt{3} \cdot 115} = 5,02, \text{ KA};$$

Результирующее сопротивление до точки КЗ:

$$Z_{\text{pes}} = \sqrt{r_{\text{вл}}^2 + x_{\text{вл}}^2} = \sqrt{0.348^2 + 0.315^2} = 0.469$$
, o.e.

Начальное значение периодической составляющей тока трехфазного К3:

$$I_{\text{\tiny KS}}^{(3)} = \frac{I_6}{Z_{\text{\tiny Deg}}} = \frac{5,02}{0,469} = 10,7, \text{ KA}.$$

Ударный ток КЗ:

$$i_{yx} = \sqrt{2} \cdot k_{yx} \cdot I_{x3}^{(3)} = \sqrt{2} \cdot 1,05 \cdot 10,7 = 15,89, \text{ KA},$$

где $k_{yд} = 1,06$ — ударный коэффициент, определяемый по рисунку 7.1 [1]

Точка К2.

Подпитку токов КЗ от СТД-1250 в точке К2 не учитываем, так как длина КЛЗ больше трехсот метров.

Базовый ток:

$$I_{6} = \frac{S_{6}}{\sqrt{3} \cdot U_{\text{cd.HOM.}}} = \frac{1000}{\sqrt{3} \cdot 10.5} = 54,986, \text{ KA};$$

Результирующее сопротивление до точки КЗ:

$$Z_{\text{pes}} = \sqrt{r_{\text{вл}}^2 + (x_{\text{вл}} + x_{\text{тр}})^2} = \sqrt{0.348^2 + (0.315 + 10.5)^2} = 10.82$$
, o.e.

Начальное значение периодической составляющей тока трехфазного КЗ:

$$I_{\text{\tiny KS}}^{(3)} = \frac{I_6}{Z_{\text{\tiny DOS}}} = \frac{54,986}{10,82} = 5,08, \text{ KA}.$$

Ударный ток КЗ:

$$i_{\text{v,t}} = \sqrt{2} \cdot k_{\text{v,t}} \cdot I_{\text{k3}}^{(3)} = \sqrt{2} \cdot 1,92 \cdot 5,08 = 13,79, \text{ KA}.$$

Учитываем подпитку места КЗ от синхронного двигателя СТД-800.

Принимаем для синхронного двигателя сверхпереходное ЭДС E'' = 1,1 и сверхпереходное сопротивление $x_d''=0,2$.

Номинальный ток СТД-800:

$$I_{\text{\tiny H.CJI}} = \frac{P_{\text{\tiny H}}}{\sqrt{3} \cdot U_{\text{\tiny H}} \cdot \cos \varphi_{\text{\tiny H}} \cdot \eta_{\text{\tiny H}}} = \frac{800}{\sqrt{3} \cdot 10 \cdot 1 \cdot 0,958} = 48,21, \text{ A}.$$

Начальное действующее значение периодической составляющей тока КЗ синхронного двигателя СТД-800:

$$I_{\text{\tiny K3.CД}}^{(3)} = \frac{E^{"} \cdot I_{\text{\tiny H.CД}}}{\sqrt{r_{\text{\tiny BH}}^{2} + \left(x_{\text{\tiny d}}^{"} + x_{\text{\tiny BH}}\right)^{2}}} = \frac{1,1 \cdot 48,21}{\sqrt{0,283^{2} + \left(0,2+0,028\right)^{2}}} = 0,146, \text{ KA}.$$

Ударный ток КЗ двигателя СТД-800:

$$i_{y_{\text{J}.\text{CJ}}} = \sqrt{2} \cdot k_{y_{\text{J}.\text{CJ}}} \cdot I_{\kappa_{3.\text{CJ}}}^{(3)} = \sqrt{2} \cdot 1,02 \cdot 0,146 = 0,211, \text{ KA}.$$

Рассчитываем ток КЗ от синхронного двигателя СТД-2500.

Принимаем для синхронного двигателя сверхпереходное ЭДС E'' = 1,1 и сверхпереходное сопротивление $x_d''=0,2$.

Номинальный ток СТД-2500:

$$I_{\text{H.CJI}} = \frac{P_{\text{H}}}{\sqrt{3} \cdot U_{\text{H}} \cdot \cos \varphi_{\text{H}} \cdot \eta_{\text{H}}} = \frac{2500}{\sqrt{3} \cdot 10 \cdot 1 \cdot 0.97} = 148.8, \text{ A.}$$

Начальное действующее значение периодической составляющей тока КЗ синхронного двигателя СТД-2500:

$$I_{\text{\tiny K3.CД}}^{(3)} = \frac{E^{"} \cdot I_{\text{\tiny H.CД}}}{\sqrt{r_{\text{\tiny BH}}^2 + \left(x_{\text{\tiny d}}^{"} + x_{\text{\tiny BH}}\right)^2}} = \frac{1,1 \cdot 148,8}{\sqrt{0,374^2 + \left(0,2+0,086\right)^2}} = 0,348, \text{ KA}.$$

Ударный ток КЗ двигателя СТД-2500:

$$i_{\text{VJ.CJ}} = \sqrt{2} \cdot k_{\text{VJ.CJ}} \cdot I_{\text{R3.CJ}}^{(3)} = \sqrt{2} \cdot 1,02 \cdot 0,348 = 0,5, \text{ KA}.$$

Суммарный ток КЗ в точке К2:

$$I_{\text{k3}\Sigma}^{(3)} = I_{\text{k3}}^{(3)} + I_{\text{k3}.\text{CT}\text{Д-800}}^{(3)} + I_{\text{k3}.\text{CT}\text{Д-2500}}^{(3)} = 5,08 + 0,146 + 0,348 = 5,574, \text{ kA}.$$

$$i_{\text{ya}\Sigma} = i_{\text{ya}} + i_{\text{ya}.\text{CT}\text{Д-800}} + i_{\text{ya}.\text{CT}\text{Д-2500}} = 13,79 + 0,211 + 0,5 = 14,501, \text{ kA}.$$

Расчётное значение тока КЗ в точке К2 больше, чем в точках КЗ, К4 и К5, следовательно проверку линии КЛЗ, КЛ4 и КЛ6 на устойчивость к токам КЗ будем производить именно по этому току.

Сводная ведомость токов КЗ представлена в таблице 18.

Таблица 18 – Сводная ведомость токов КЗ

Расчет	ные точки	K1	К2
Town I/D and	$I_{\scriptscriptstyle \mathrm{K3}}^{(3)}$	10,7	5,574
Токи КЗ, кА	$i_{_{ m y_{ m J}}}$	15,89	14,501

Проверка сечений на термическую стойкость к токам КЗ.

Проверяя сечение КЛ1, одновременно проверяем сечение линий КЛ2, КЛ3, КЛ4, КЛ5,КЛ6 и КЛ7 так как они имеют такое же или большее сечение.

Постоянная затухания апериодической составляющей тока K3 определяется как:

$$T_{\rm a} = \frac{x_{\Sigma}}{\omega \cdot r_{\Sigma}} = \frac{x_{\rm BJ} + x_{\rm Tp}}{\omega \cdot r_{\rm BJ}} = \frac{10.5 + 0.315}{314 \cdot 0.348} = 0.1, \ c,$$

Приведенное время отключения тока КЗ определяется по выражению:

$$t_{np} = t_{p.3.} + t_{otkil} = 0.1 + 0.025 = 0.125, c,$$

где $t_{\rm p.3.}$ – время действия релейной защиты, с;

 $t_{\text{откл}}$ – полное время отключения вакуумного выключателя.

Полное время действия релейной защиты $t_{\rm p.3.}$ определяется по выражению:

$$t_{p,3} = t_{p,3,min} + \Delta t_c = 0, 1 + 0 = 0, 1, c,$$

где $t_{\rm p.3.min}$ - минимальное время срабатывания первой ступени защиты, принимаемое равным $t_{\rm p.3.min}=0.1~{\rm c}$;

 $\Delta t_{\rm c}$ - ступень селективности, принимается в проекте в зависимости от числа ступеней распределения энергии по территории предприятия.

Тепловой импульс тока короткого замыкания B_{κ} определяется по формуле:

$$B_{k} = I_{n0}^{2}(t_{np} + T_{a}) = 5.574^{2} \cdot (0.125 + 0.1) = 6.99 \cdot 10^{6}, A^{2} \cdot c.$$

Определяем минимальное допустимое сечение КЛ1:

$$F_{\min} \ge \frac{\sqrt{B_{k}}}{C_{\mathrm{T}}} = \frac{\sqrt{6,99 \cdot 10^{6}}}{90} = 29,38, \text{ MM}^{2},$$

где $C_{\rm T}$ =90 ${\rm A\cdot c^{1/2}/mm^2}$ – коэффициент, зависящий от допустимой температуры при КЗ и материала проводника, определяемый по таблице 6.2 [1, с. 139].

Полученное значение минимального сечения показывает, что выбранный для данного участка распределительной сети кабель марки $AAIIIB - (3\times50)$ проходит по термической стойкости к току КЗ. Поэтому принимаем сечение 50 мм^2 .

Марки и сечения кабелей принятые по условию термической стойкости к токам КЗ сведены в таблицу 19.

Таблица 19 – Принятые марки и сечения кабелей

Номер линии	Назначение участка питающей линии	Термически стойкое сечение кабеля F_{\min} , мм ²	Принятое сечение кабеля F , мм ²	Длительно допустимый ток $I_{\text{доп}}$, А
КЛ-1	ГПП - ТП1	29,38	AAШв −3×50	140
КЛ-2	ГПП - ТП4	29,38	ААШв −3×50	140
КЛ-3	ГПП - СТД -1250	29,38	AAШв −3×70	165
КЛ-4	ГПП - СТД - 800	29,38	ААШв –3×50	140
КЛ-5	ГПП - ТП5	29,38	ААШв –3×50	140
КЛ-6	ГПП – СТД - 2500	29,38	ААШв –3×120	240
КЛ-7	ГПП-ТП15	29,38	ААШв –3×50	140
КЛ-8	ГПП-ТП16	29,38	AAIIIB –3×50	140

10. Выбор и проверка высоковольтного оборудования

К схемам подстанций предъявляются требования простоты, наглядности и экономичности. Эти требования достигаются за счет унификации конструктивных решений подстанции, которая наилучшим образом реализуется в случае применения типовых схем электрических соединений распределительных устройств.

Принимаем схему 4H-Два блока с выключателями и неавтоматической перемычкой со стороны линий, которая применяется для тупиковых или ответвительных двух-трансформаторных ПС питаемые по 2-м ВЛ.

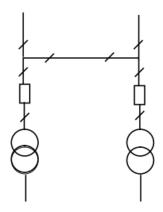


Рисунок 12 – Условное отображение схемы 4Н

Схема электроснабжения предприятия представлена в приложении 1. Номинальный ток трансформатора:

$$I_{\text{\tiny HOM.BH}} = \frac{S_{\text{\tiny TD.HOM}}}{\sqrt{3} \cdot U_{\text{\tiny HOM.BH}}} = \frac{10000}{\sqrt{3} \cdot 110} = 52,49, \text{ A.}$$

$$I_{\text{\tiny HOM.HH}} = \frac{S_{\text{\tiny TD.HOM}}}{\sqrt{3} \cdot U_{\text{\tiny HOM.HH}}} = \frac{10000}{\sqrt{3} \cdot 10.5} = 549,86, \text{ A.}$$

Определяем ток в питающих линиях:

Нормальный режим:

$$I_{\text{pacy}} = \frac{S_{\text{тр.ном}}}{\sqrt{3} \cdot U_{\text{TOW, PIL}}} = \frac{10000}{\sqrt{3} \cdot 110} = 52,49, \text{ A.}$$

Аварийный режим (отключена одна линия):

$$I_{\text{\tiny II.AB.}} = 2 \cdot I_{\text{\tiny pacq}} = 2 \cdot 52,49 = 104,98, A.$$

10.1 Выбор трансформаторов собственных нужд

Номинальную мощность трансформаторов выбирают по расчетной мощности потребителей собственных нужд, составляющей около 5% от расчетной мощности подстанции:

$$S_{\text{\tiny C.H.}} = 0.05 \cdot S_{\text{\tiny TD.HOM}} = 0.05 \cdot 10000 = 500, \text{ kBA}.$$

Выбираем два трансформатора ТМ - 630/10 по табл. П. 4.8. [1, с. 236].

10.2 Выбор контрольно-измерительных приборов на подстанции

Перечень приборов представлен в таблице 20.

Таблица 20 – Перечень контрольно-измерительных приборов

Цепь установки приборов	Место установки приборов	Перечень приборов
Двухобмоточный трансформатор	ВН (110 кВ) НН (10 кВ)	Амперметр, вольтметр Амперметр, вольтметр, ваттметр, счетчики активной и реактивной энергии
Сборные шины 10кВ	На каждой секции шин	Вольтметр для измерения междуфазного напряжения и вольтметр для измерения трехфазных напряжений, амперметр, ваттметр

10.3 Выбор трансформаторов напряжения

Производим выбор трансформаторов напряжения на 110 кВ.

Принимаем к установке трансформатор напряжения типа НКФ-110-57-У1 по таблице 7.17 [3, c. 188].

Таблица 21 – Каталожные данные трансформатора НКФ-110-57-У1

		11111 1100,0			
Тип	Номинал	ьные напря кВ	Номинальная мощность в	Максималь	
ТИП	Обмотка ВН	Обмотки НН		классе точности, ВА	ная мощность, ВА
	ВΠ	основная	дополнительная	0,5	DA
НКФ-110- 57	110/√3	$0,1/\sqrt{3}$	0,1	400	2000

Выбор трансформаторов напряжения на 10 кВ.

Принимаем трансформатор типа НТМИ-10-УЗ по табл. 7.17 [3, с. 188].

Таблица 22 – Каталожные данные трансформатора НТМИ-10-У3

	Номинал	ьные напря	Номинальная		
		кВ		мощность в	Предельная
Тип				классе	мощность,
	Обмотка	Об	мотки НН	точности,	ВА
	BH			BA	DA
		основная	дополнительная	0,5	
НТМИ-10	10	0,1	0,1/3	120	960

В качестве подключаемых измерительных приборов выбираем вольтметр, ваттметр, счетчики активной и реактивной энергии, установленные в РУ 10 кВ.

Таблица 23 – Измерительные приборы вторичной цепи ТН

Прибор	Тип	Число обмоток	Кол-во	$P_{ ext{порт}},$ Вт	$Q_{ ext{потр}}, \ ext{Вар}$	$P_{\scriptscriptstyle \Sigma},$ BT	$Q_{\scriptscriptstyle \Sigma}$, Bap
Вольтметр	Э-350	1	4	2	-	8	-
Ваттметр	Д-304	3	1	2	1,5	6	4,5
Счетчик активной энергии	CA3- 681	2	1	3	2,25	6	4,5
Счетчик реактивной энергии	CP3- 682	2	1	3	2,25	6	4,5
Итого						26	13,5

Вычисляем расчетную нагрузку трансформатора напряжения:

$$S_{2\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2} = \sqrt{26^2 + 13.5^2} = 29.3$$
, BA.

Номинальная мощность выбранных трансформаторов напряжения в классе точности 0,5 равна 120 ВА, что больше мощности нагрузки вторичной цепи. Таким образом, трансформаторы удовлетворяют условиям проверки и будут работать в выбранном классе точности.

10.4 Выбор трансформаторов тока

Марку трансформатора тока на 110 кВ следует выбирать по номинальному току первичной обмотки трансформатора ТДН 10000/110:

$$I_{\text{HOM.TT}} \ge I_{\text{HOM.BH}} = 52,49, \text{ A}.$$

Принимаем по табл. 7.24 [3, с. 194] к установке трансформатор типа ТВТ-110-I-100/5 О4 с номинальным током первичной обмотки $I_{1\text{ном}} = 100 \text{ A}$.

Трансформатор тока на 10 кВ выбираем по номинальному току вторичной обмотки трансформатора:

$$I_{\text{HOM TT}} \ge I_{\text{HOM HH}} = 549,86, A.$$

Принимаем к установке с номинальным током первичной обмотки $I_{\rm 1_{HOM}} = 600\,{\rm A}.$

Таблица 24 – Паспортные данные ТЛМ-10-1-0,5/10Р-10/15-600/5-У3

Тип	ТЛМ-10-1-0,5/10Р-10/15-600/5-У3
Номинальное напряжение, кВ	10
Номинальный первичный ток, А	600
Номинальный вторичный ток, А	5
Номинальный коэффициент	120
трансформации	120
Номинальная вторичная нагрузка, ВА	15
Класс точности	0,5
Ток термической стойкости, кА	33
Ток электродинамической стойкости, кА	125
Время термической стойкости, с	3

Таблица 25 – Измерительные приборы вторичной нагрузки ТТ

Прибор	Тип	Число обмоток	Кол-во	$P_{ ext{nopt}},$ BT	$Q_{ ext{norp}}, \ ext{Bap}$	$P_{\scriptscriptstyle \Sigma},$ Bt	$Q_{\scriptscriptstyle \Sigma},$ Bap
Амперметр	Э-350	1	1	0,5	-	0,5	-
Ваттметр	Д-304	1	1	0,5	0,4	0,5	0,4
Счетчик активной энергии	CA3- 681	2	1	2,5	2,25	5	4,5
Счетчик реактивной энергии	CP3- 682	2	1	2,5	2,25	5	4,5
Итого						11	9,4

Рассчитаем мощность, которую потребляет приборы:

$$S_{\text{приб}} = \sqrt{P_{\text{приб}}^2 + Q_{\text{приб}}^2} = \sqrt{11^2 + 9, 4^2} = 14,47, \text{ BA}.$$

Суммарное сопротивление приборов вычисляем по формулам:

$$r_{\text{приб}} = \frac{S_{\text{приб}}}{I_{2_{\text{HOM}}}^2} = \frac{14,47}{5^2} = 0,58, \text{ Om.}$$

По условию механической прочности принимаем контрольный кабель АКРВГ, сечением 4 мm^2 , расчетная длина l=6 м.

Сопротивление приборов:

$$r_{\text{np}} = \frac{\rho \cdot l}{F} = \frac{0,0283 \cdot 6}{4} = 0,04,\text{Om}.$$

Рассчитаем вторичную нагрузку ТТ:

$$r_2 = r_{\text{приб}} + r_{\text{пр}} + r_{\text{конт}} = 0,58 + 0,04 + 0,1 = 0,72, \text{ OM},$$

где $r_{\text{конт}}$ — сопротивление контактов принимается равным 0,1 Ом.

Определяем номинальную нагрузку ТТ:

$$Z_{2\text{HOM}} = \frac{S_{2\text{HOM}}}{I_{2\text{HOM}}^2} = \frac{15}{5^2} = 0,6, \text{ OM}.$$

Вторичная нагрузка больше номинальной, соответственно, принимаем к установке по 2 TT на фазу.

Выполним проверку выбранных ТТ:

По напряжению:

$$U_{\text{hom}} = 10, \text{ kB} \ge U_{\text{nct}} = 10, \text{ kB}.$$

По току:

$$I_{\text{HOM}} = 600, A \ge I_{\text{pa6.max}} = 549,86, A.$$

На электродинамическую устойчивость:

$$i_{\text{\tiny ДИН}} = 125, \text{ } \text{KA} \ge i_{\text{\tiny УД}} = 14,5, \text{ } \text{KA}.$$

По термической стойкости:

$$I_{\text{Tenm}}^2 \cdot t_{\text{Tenm}} = 33^2 \cdot 3 = 3267,68, \text{ } \kappa \text{A}^2 \cdot \text{c} \ge B_k = 6,99, \text{ } \kappa \text{A}^2 \cdot \text{c}.$$

Выбранный трансформатор тока проходит проверку.

10.5 Выбор высоковольтных разъединителей

Выбор разъединителей ЛР1 и ЛР2 производим по току линии в послеаварийном режиме:

$$I_{\text{HOM}} \ge I_{\text{II.AB.}} = 104,98, \text{ A.}$$

Выбираем по таблице 7.10 [3, с. 179] разъединитель горизонтально-поворотного типа для наружной установки РНДЗ-2-110/1000-У1

Таблица 26 – Паспортные данные разъединителя РНДЗ-2-110/1000-У1

Тип	РНДЗ-2-110/1000-У1
Номинальное напряжение, кВ	110
Наибольшее рабочее напряжение, кВ	126
Номинальный ток, А	1000
Амплитуда предельного сквозного	80
тока, кА	00
Предельный ток термической	31,5
стойкости, кА	51,5
Время протекания наибольшего тока	2
термической стойкости, с	3

Время действия релейной защиты не известно, поэтому производим проверку по максимуму, принимая $t_{\text{пр}} = t_{\text{терм}}$.

Таблица 27 – Результаты проверки разъединителя РНДЗ-2-110/1000-У1

	<u> </u>	r 1
Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
110 кВ	110 кВ	$U_{_{ m ycr}}\!\leq\!U_{_{ m HOM}}$
104,98 А для ЛР-1, ЛР-2 52,49 А для СР-3, СР-4	1000 A	$I_{\mathrm{pac4}} \leq I_{\mathrm{HOM}}, \ I_{\mathrm{H.AB}} \leq I_{\mathrm{HOM}}$
4,04 кА	80 кА	$i_{_{ ext{ inp.ckb}}} \leq i_{_{ ext{ inp.ckb}}}$
$10,7^2 \cdot 3 = 343,5, \ \kappa A^2 \cdot c$	$31,5^2 \cdot 3 = 2976,75, \ \kappa A^2 \cdot c.$	$B_{\mathrm{k}} = I_{\scriptscriptstyle{\mathrm{II}0}}^2 \cdot t_{\scriptscriptstyle{\mathrm{IIP}}} \leq I_{\scriptscriptstyle{\mathrm{TEPM}}}^2 \cdot t_{\scriptscriptstyle{\mathit{MEPM}}}$

Выбор разъединителей ЛР5 – ЛР8 производим по току линии в нормальном режиме:

$$I_{\text{HOM}} \ge I_{\text{HODM}} = 52,49, \text{ A}.$$

Выбираем разъединитель по таблице 7.10 [3, с. 179] горизонтальноповоротного типа для наружной установки РНДЗ-1-110/1000-У1. Проверка аналогичная. Выбор разъединителей ЛР9 и ЛР10 для трансформатора напряжения ТН 110 кВ производится по отключающей способности, так как номинальный ток в первичной обмотке небольшой.

$$I_{\text{\tiny HOM.TH}} = \frac{S_{\text{\tiny max}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}}} = \frac{2000}{\sqrt{3} \cdot 110 \cdot 10^3} = 0,011, \text{ A.}$$

Для установки принимаем по таблице 7.10 [3, с. 179] разъединитель наружной установки типа РНДЗ-1-110/1000-У1.

Для трансформаторов собственных нужд TM-630/10 выбираем разъединители ЛР11, ЛР12:

$$I_{\text{\tiny HOM.TH}} = \frac{S_{\text{\tiny max}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}}} = \frac{630}{\sqrt{3} \cdot 10} = 36,37, \text{ A.}$$

Для установки принимаем разъединитель наружной установки типа РЛНД-10/400-У1.

Таблица 28 – Паспортные данные разъединителя РЛНД-10/400-У1

Tuosinga 20 Tiaonopinible gambie pasbegiminiesia 131112 107 100 3 1		
Тип	РЛНД-10/400-У1	
Номинальное напряжение, кВ	10	
Наибольшее рабочее напряжение, кВ	12	
Номинальный ток, А	400	
Амплитуда предельного сквозного тока, кА	25	
Предельный ток термической стойкости, кА	12,5	
Время протекания наибольшего тока термической стойкости, с	4	

Таблица 29 – Результаты проверки разъединителя РЛНД-10/400-У1

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
10 кВ	10 кВ	$U_{_{ m yCT}}\!\leq\!U_{_{ m HOM}}$
36,37 А для ЛР-11, ЛР-12	400 A	$I_{\text{pacy}} \leq I_{\text{hom}}, \ I_{\text{п.ав}} \leq I_{\text{hom}}$
4,69 кА	25 кА	$i_{_{ m YJ}} \leq i_{_{ m \PiP.CKB}}$
$5,574^2 \cdot 4 = 124,3, \kappa \text{A}^2 \cdot \text{c}.$	$12,5^2 \cdot 4 = 625, \ \kappa A^2 \cdot c.$	$B_{\scriptscriptstyle m k} = I_{\scriptscriptstyle m n0}^2 \cdot t_{\scriptscriptstyle m mp} \leq I_{\scriptscriptstyle m Tepm}^2 \cdot t_{\scriptscriptstyle mepm}$

Выбранные разъединители удовлетворяют всем условиям проверки.

10.6 Выбор высоковольтных выключателей

Предварительно выбираем элегазовый (трехполюсный) выключатель типа ВГТ-110-40/3150У1, предназначенный коммутации электрических цепей 110 кВ при нормальных и аварийных режимах в сетях трехфазного переменного тока частотой 50 Гц.

Таблица 30 – Паспортные данные выключателя ВГТ-110-40/3150У1

Тип	ВГТ-110-40/3150У1
Номинальное напряжение, кВ	110
Наибольшее рабочее напряжение, кВ	126
Номинальный ток, А	3150
Номинальный ток отключения, кА	40
Предельный сквозной ток, кА	102
Предельный ток термической стойкости, кА	40
Время протекания наибольшего тока термической стойкости, с	3
Полное время отключения, с	0,055
Собственное время включения, с	0,035

Выполняем проверку выбора выключателя по следующим параметрам:

По напряжению установки:

$$U_{\text{ном}} = 110, \text{ кB} \ge U_{\text{уст}} = 110, \text{ кB};$$

По длительному току:

$$I_{\text{\tiny HOM}} = 3150, \ A \ge I_{\text{\tiny pacq}} = 52,49, \ A;$$

По отключающей способности:

$$I_{\text{otkilhom}} = 40, \text{ kA} \ge I_{\text{ii0}} = 10, 7, \text{ kA};$$

На электродинамическую стойкость:

$$i_{\text{\tiny ДИН}} = 102, \text{ } \text{кA} \ge i_{\text{\tiny УД}} = 15,89, \text{ } \text{кA}.$$

Тепловой импульс тока КЗ:

$$B_k = I_{n0}^2(t_{np} + T_a) = 10,7^2 \cdot (0,155 + 0,003) = 18,09, \text{ KA}^2 \cdot \text{c.}$$

Постоянная времени затухания апериодической составляющей тока КЗ:

$$T_{\rm a} = \frac{x_{\rm BJ}}{\omega \cdot r_{\rm BJ}} = \frac{0.315}{314.15 \cdot 0.348} = 0.003, \text{ c.}$$

Приведенное время отключения тока КЗ:

$$t_{\text{пр}} = t_{\text{р.3.}} + t_{\text{откл}} = 0.1 + 0.055 = 0.155, \text{ c},$$

где $t_{\rm p.s.} = 0.1~{\rm c.}$ – время действия релейной защиты тупиковой подстанции;

 $t_{\text{откл}} = 0,055, \text{ c.} - \text{полное время отключения выключателя.}$

Проверяем термическую стойкость выключателя по тепловому импульсу тока K3:

$$B_{k} = 18,09 \text{ } \text{KA}^{2} \cdot \text{C} \leq B_{k} = I_{\text{терм}}^{2} \cdot \text{t}_{\text{терм}} = 40^{2} \cdot 3 = 4800, \text{ } \text{KA}^{2} \cdot \text{C}.$$

Выбранный выключатель проходит проверку.

Таблица 31 – Результаты проверки ВГТ-110-40/3150У1

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
110 кВ	110 кВ	$U_{\scriptscriptstyle ext{yct}} \! \leq \! U_{\scriptscriptstyle ext{Hom}}$
52,49	3150 A	$I_{ ext{pa6. max}} \leq I_{ ext{hom}}$
10,7 кА	40 кА	$I_{_{\Pi 0}} \leq I_{_{\mathrm{OTKJ.HOM}}}$
15,89 кА	102 кА	$i_{_{ m YJ}} \leq i_{_{ m ДИН}}$
18,09 кA ² ⋅ c.	4800 κ $A^2 \cdot c$.	$B_{ m k} = I_{ m n0}^2 \cdot t_{ m np} \leq I_{ m терм}^2 \cdot t_{ m mepm}$

Выбор высоковольтных выключателей на 10 кВ.

Расчетный ток для СВ $I_{\text{расч}} = 549,86$, А.

Расчетный ток для выключателей B3, B4 $I_{\text{pact}} = 2.549, 86 = 1099, 72, A.$

Предварительно выбираем по таблице 7.5 [3, с. 170] вакуумные выключатели В3, В4 – ВВ/ТЕL-10-20/1600-У2, СВ – ВВ/ТЕL-10-8/800.

Таблица 32 – Паспортные данные выключателя

· • • • • • • • • • • • • • • • • • • •		
Тип	BB/TEL-10-	BB/TEL-10-
1 MH	8/800	20/1600-У2
Номинальное напряжение, кВ	10	10
Номинальный ток, А	800	1600
Номинальный ток отключения, кА	8	20
Предельный сквозной ток, кА	20	52
Предельный ток термической стойкости, кА	8	20
Время протекания наибольшего тока	2	2
термической стойкости, с	3	3
Полное время отключения, с	0,025	0,025

Выполняем проверку выбора выключателя BB/TEL-10-8/800 по следующим параметрам:

По напряжению установки:

$$U_{_{\mathrm{HOM}}} = 10, \ \mathrm{\kappa B} \ge U_{_{\mathrm{VCT}}} = 10, \ \mathrm{\kappa B};$$

По длительному току:

$$I_{\text{\tiny HOM}} = 800, A \ge I_{\text{\tiny pacq}} = 549, 86, A;$$

По отключающей способности:

$$I_{\text{otkilhom}} = 8, \text{ kA} \ge I_{\text{II}0} = 5,574, \text{ kA};$$

На электродинамическую стойкость:

$$i_{\text{дин}} = 20, \text{ } \kappa \text{A} \ge i_{\text{уд}} = 14, 5, \text{ } \kappa \text{A}.$$

Тепловой импульс тока КЗ:

$$B_{k} = I_{n0}^{2}(t_{m} + T_{a}) = 5,574^{2} \cdot (0,125 + 0,1) = 6,99, \text{ } \kappa\text{A}^{2} \cdot \text{c},$$

Постоянная времени затухания апериодической составляющей тока КЗ:

$$T_{\rm a} = \frac{X_{\rm BJ} + X_{\rm Tp}}{\omega \cdot r_{\rm BJ}} = \frac{10,5 + 0,315}{314 \cdot 0,348} = 0,1, c,$$

Приведенное время отключения тока КЗ:

$$t_{\text{пр}} = t_{\text{р.з.}} + t_{\text{откл}} = 0.1 + 0.025 = 0.125, \text{ c},$$

где $t_{\text{p.з.}} = 0,1$ с. – время действия релейной защиты тупиковой подстанции;

 $t_{\text{откл}} = 0,025, \text{ с.} - \text{полное время отключения выключателя.}$

Проверяем термическую стойкость выключателя по тепловому импульсу тока K3:

$$B_{k} = 6,99, \ \kappa A^{2} \cdot c \le B_{k} = I_{\text{\tiny TEDM}}^{2} \cdot t_{\text{\tiny TEDM}} = 8^{2} \cdot 3 = 192, \ \kappa A^{2} \cdot c.$$

Выбранный выключатель проходит проверку.

Таблица 33 – Результаты проверки BB/TEL-10-8/800

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
10 кВ	10 кВ	$U_{_{ m ycr}}\!\leq\!U_{_{ m HOM}}$
549,86	800 A	$I_{ ext{pa6. max}} \leq I_{ ext{hom}}$
5,574 кА	8 кА	$I_{_{\Pi 0}} \leq I_{_{_{\mathrm{OTKJ.HOM}}}}$
14,5 кА	20 кА	$i_{_{ m yJ}} \leq i_{_{ m ДИН}}$
6,99 KA ² ⋅ c.	192 кА ² · с.	$B_{ ext{k}} = I_{ ext{n0}}^2 \cdot t_{ ext{np}} \leq I_{ ext{терм}}^2 \cdot t_{ ext{mepm}}$

Таблица 34 – Результаты проверки ВВ/ТЕL-10-20/1600

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
10 кВ	10 кВ	$U_{_{ m ycr}}\!\leq\!U_{_{ m HOM}}$
1099,72	1600 A	$I_{ ext{pa6.max}} \leq I_{ ext{hom}}$
5,574 кА	20 кА	$I_{_{\Pi 0}} \leq I_{_{_{\mathrm{OTKJ.HOM}}}}$
14,5 кА	52 кА	$i_{_{ m yJ}} \leq i_{_{ m JUH}}$
6,99 кА ² · с.	$1200 \mathrm{\kappa A}^2 \cdot \mathrm{c}$.	$B_{ ext{k}} = I_{ ext{n0}}^2 \cdot t_{ ext{np}} \leq I_{ ext{терм}}^2 \cdot t_{ ext{mepm}}$

Производим выбор выключателей В5 – В18.

Для данных выключателей будем использовать выключатели типа BB/TEL-10-8/800. Паспортные данные выключателя BB/TEL-10-8/800 были приведены выше.

Таблица 35 – Выбор выключателя по расчетному току

Номер выключателя	$I_{ m pac q}$, A	Марка выключателя
5, 8, 9, 11, 12, 14, 15	57,7	BB/TEL-10-8/800
6, 18	74,79	BB/TEL-10-8/800
7, 17	148,8	BB/TEL-10-8/800
10, 13	48,21	BB/TEL-10-8/800

Для проверки данных марок выключателей достаточно проверить на соответствие необходимым условиям выключатели В7, В17.

Результаты проверки выключателя BB/TEL-10-8/800 сводим в таблицу №36.

Таблица 36 – Результаты проверки BB/TEL-10-8/800

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
10 кВ	10 кВ	$U_{_{ m ycr}}\!\leq\!U_{_{ m HOM}}$
148,8	800 A	$I_{ m pa6.max} \leq I_{ m HOM}$
5,574 кА	8 кА	$I_{_{\Pi 0}} \leq I_{_{\mathrm{OTKJ.HOM}}}$
14,5 кА	20 кА	$i_{_{ m YJ}} \leq i_{_{ m JUH}}$
6,99 кA² ⋅ c.	192 к $A^2 \cdot c$.	$B_{\scriptscriptstyle m k} = I_{\scriptscriptstyle m m0}^2 \cdot t_{\scriptscriptstyle m mp} \leq I_{\scriptscriptstyle m TEPM}^2 \cdot t_{\scriptscriptstyle \it mep.m}$

10.7 Выбор предохранителей

Выбор предохранителей производим для защиты трансформаторов собственных нужд ТМ-630-10/0,4.

Номинальный ток первичной обмотки:

$$I_{\text{\tiny TP.HOM}} = \frac{S_{\text{\tiny HOM}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}}} = \frac{630}{\sqrt{3} \cdot 10} = 36,37, \text{ A}.$$

Для установки выбираем предохранители типа ПКТ-102-10-40-31,5-У3.

Результаты проверки предохранителей сводим в таблицу 37.

Таблица 37 – Результаты проверки предохранителей

Расчетный параметр	Паспортные данные	Условия выбора и
защищаемой цепи	аппаратов	проверки
10 кВ	10 кВ	$U_{_{ m ycr}}\!\leq\!U_{_{ m HOM}}$
36,37 A	40 A	$I_{ ext{pacy}} \leq I_{ ext{hom}}$
5,574 кА	31,5 кА	$I_{n0} \leq I_{{\scriptscriptstyle HOM.OMKJ}}$

Для защиты трансформаторов напряжения 10 кВ HTMИ-10-У3 используем предохранители марки ПКН 001-10–У3.

Для защиты трансформаторов напряжения 110 кВ НКФ-110-57-У1 используем предохранители марки ПВТ-110-50-2,5 У1.

10.8 Выбор ограничителей перенапряжения.

Выбираем ОПН (1 - 4) типа ОПН-П1-110/77/10/2 УХЛ1, для защиты силовых трансформаторов со стороны 110 кВ. Для защиты трансформаторов

собственных нужд и силовых трансформаторов со стороны 10 кВ выбираем ОПН (5 - 6) типа ОПН-П1-10/10,5/10/2 УХЛ1.

Таблица 38 – Основные технические характеристики ОПН

таолица 36 — Основные технические характеристики Оттт									
	ОПН-П1-	ОПН-П1-							
Параметр ограничителя	110/77/10/2	10/10,5/10/2							
	УХЛ1	УХЛ1							
Класс напряжения сети, кВ	110	10							
Наибольшее длительно допустимое рабочее напряжение, кВ	77	10,5							
Номинальный разрядный ток. кА	10	10							
Остающееся напряжение при импульсе тока 8/20 мкс с амплитудой тока, кВ, не более: 500 A 5000 A 10000 A 20000 A	190 228 245 266	26,25 31 33,5 36,9							
Остающееся напряжение при коммутационном импульсе тока на волне 30/60 мкс с амплитудой тока, кВ, не более: 125 А 250 А 500 А 1000 А	187 189 197	25 26							
Остающееся напряжение при коммутационном импульсе тока 1/10 мкс с амплитудой 10000 A, кВ, не более	289	38,9							
Токовая пропускная способность при импульсе тока большой длительности 2000 мкс (20 воздействий), А	550	550							
Максимальная амплитуда импульса тока 4/10 мкс (2 воздействия) кА	100	100							
Удельная энергоемкость, кДж/кВ*Uн.р. (2 импульса)	5,5	5,6							

Таблица 39 – Перечень оборудования главной схемы подстанции

Таолица 39 — Перечень ооорудования главной схемы подстанции								
Обозначение	Наименование	Тип						
B1, B2	Выключатели элегазовые	ВГТ-110-40/3150У1						
B3, B4	Выключатели вакуумные	ВВ/ТЕС-10-20/1600-У2						
СВ	Выключатели вакуумные	BB/TEL-10-8/800						
B5 – B18	Выключатели вакуумные	BB/TEL-10-8/800						
ЛР1, ЛР2	Разъединители	РНД3-2-110/1000-У1						
CP3, CP4	Разъединители	РНД3-2-110/1000-У1						
ЛР5 — ЛР8	Разъединители	РНД3-1-110/1000-У1						
ЛР9, ЛР10	Разъединители	РНД3-1-110/1000-У1						
ЛР11, ЛР12	Разъединители	РЛНД-10/400-У1						
TH1, TH2	Трансформаторы напряжения	НКФ-110-57-У1						
TH3, TH4	Трансформаторы напряжения	НТМИ-10-У3						
П1, П2	Предохранители	ПВТ-110-50-2,5 У1						
П3, П4	Предохранители	ПКТ-102-10-40-31,5-У3						
П5, П6	Предохранители	ПКН 001-10-У3						
ОПН1 – ОПН4	Ограничители перенапряжений	ОПН-П1-110/77/10/2 УХЛ1						
ОПН5, ОПН6	Ограничители перенапряжений	ОПН-П1-10/10,5/10/2 УХЛ1						
TT1, TT2	Трансформаторы тока	TBT-110-I-100/5 O4						
TT3, TT4	Трансформаторы тока	ТЛМ-10-1-0,5/10P-10/15- 600/5-У3						
T1, T2	Силовые трансформаторы	ТДН-10000/110						
TCH1, TCH2	Трансформаторы собственных нужд	TM - 630/10						

11. Электроснабжение прокатно-ремонтного цеха

11.1 Выбор распределительных шинопроводов

Все электроприемники цеха запитаны от двух радиальных шинопроводов напрямую через ответвительные коробки, где устанавливаются автоматические выключатели.

Выбор ШРА-1 произведем по номинальному расчетному току:

$$I_{\text{\tiny HOM}} \ge I_{\text{\tiny p}} = 289,09, \text{ A}.$$

Выбор ШРА-2:

$$I_{\text{\tiny HOM}} \ge I_{\text{\tiny p}} = 256,48, \text{ A}.$$

Предварительно выбираем ШРА-73-400 по таблице Π 1.3. [1, c. 210].

Таблица 40 – Технические данные шинопровода ШР-73

таолица чо техни теские данные шиг	топровода на 75			
Показатели	Тип шинопровода			
Показатели	ШРА-73			
Номинальный ток, А	400			
Номинальное напряжение, В	380/220			
Электродинамическая стойкость	25			
ударному току КЗ, кА	23			
Сопротивление на фазу, Ом/км				
активное	0,13			
реактивное	0,10			
Линейная потеря напряжения, В, на	11.5			
длине 100м при соѕφ=0,8	11,5			
Размеры шин на фазу, мм	50×5			

Определим потери напряжения в ШРА-1:

$$\Delta U_{\text{IIIPA1}} = \frac{\Delta U_{\text{лин.IIIPA}} \cdot L_{\text{pact}}}{U_{\text{now}}} = \frac{11, 5 \cdot 75, 4}{380} = 2,28, \%,$$

где $\Delta U_{\text{лин.ШРА}}$ – линейная потеря напряжения шинопровода на длине 100 м;

 $L_{
m pac-}$ – длина шинопровода до точки подключения нагрузки, м.

Определим потери напряжения в ШРА-2:

$$\Delta U_{\text{IIIPA2}} = \frac{\Delta U_{\text{лин.IIIPA}} \cdot L_{\text{pac4}}}{U_{\text{....}}} = \frac{11,5.58,9}{380} = 1,78, \%.$$

11.2 Выбор автоматических выключателей

При выборе автоматических выключателей для электроприемников принимаем некоторые усредненные значения $\cos \phi_{\scriptscriptstyle H}$ и η :

- для электроприемников мощностью до 10 кВт принимаем $\cos \phi_{\rm H} = 0.8$, $\eta = 80\%$;
- для электроприемников мощностью от 10 до 30 кВт принимаем $\cos \phi_{\scriptscriptstyle H} = 0.9, \, \eta = 90\%$.

Ниже приведен пример расчета выбора автоматического выключателя для токарно-винторезного станка запитанного от ШРА-1.

Номинальный ток токарно-винторезного станка:

$$I_{\text{\tiny HOM}} = \frac{P_{\text{\tiny HOM}}}{\sqrt{3} \cdot U_{\text{\tiny HOM}} \cdot \cos \varphi \cdot \eta} = \frac{8.7}{\sqrt{3} \cdot 0.38 \cdot 0.8 \cdot 0.8} = 20.65, \text{ A}.$$

Пусковой ток:

$$I_{\text{HOM}} = K_{\text{II}} \cdot I_{\text{HOM}} = 5 \cdot 20,65 = 103,25, \text{ A},$$

где $K_{\Pi} = 5$ – кратность пускового тока.

Номинальный ток АВ:

$$I_{\text{HOM,AB}} \ge K_{\text{SaII}} \cdot I_{\text{JUJUT}} = 1,15 \cdot 20,65 = 23,75, \text{ A},$$

где для одиночных ЭП $K_{3ап}$ =1,15 табл. 8.6 [3, с.204]; $I_{длит}$ — длительный максимальный рабочий ток линии (для отдельного ЭП равен I_{HOM}).

Номинальный ток теплового расцепителя АВ:

$$I_{\text{hom.telij}} \ge K_{\text{3all}} \cdot I_{\text{дітит}} = 1,15 \cdot 20,65 = 23,75, \text{ A}.$$

Проверка по току срабатывания расцепителя:

$$I_{\text{hom}.3.0} \ge 1, 5 \cdot I_{\text{пуск}} = 1, 5 \cdot 103, 25 = 154, 88, A.$$

K установке выбираем автоматический выключатель типа BA13-29 с $I_{\text{ном.AB}} = 63$ A, $I_{\text{ном.тепл}} = 25$ A, $K_{\text{кз}} = 12$, тогда:

$$I_{\text{hom.3.0}} = I_{\text{hom.teiij}} \cdot K_{\text{k3}} = 25 \cdot 12 = 300, A \ge 154,88, A.$$

Для остальных ЭП расчеты представлены в таблице 41.

Таблица 41 – Выбор защитных аппаратов для ЭП ремонтно-механического цеха

№	Наименование	<i>P</i> _{ном} , кВт	η	cosφ	$I_{\text{HOM}},$ A	$K_{ ext{3aп}} \cdot I_{ ext{длит}}, \ ext{A}$	Іпуск, А	1,5 · <i>I</i> _{пуск} , А	Марка АВ	$I_{\text{HOMAB}},$ A	$I_{\scriptscriptstyle{ ext{HOM.TEПЛ}}}, \ \mathbf{A}$	<i>I</i> _{ном.э.о} , А
1-6	Станок вертикально-сверлильный	1,3	0,8	0,8	3,09	3,55	15,43	23,15	BA13-29	63	5	30
7-14	Станок токарно-винторезный	8,7	0,8	0,8	20,65	23,75	103,27	154,9	BA13-29	63	25	300
15-18	Электропечь сопротивления	32	0,9	0,9	60,02	69,03	60,02	90,04	BA57-35	250	80	200
19-24	Станок фрезерный	7,7	0,8	0,8	18,28	21,02	91,4	137,1	BA13-29	63	25	150
25-30	Станок продольно-строгальный	4,6	0,8	0,8	10,92	12,56	54,6	81,9	BA13-29	63	16	96
31-36	Станок плоско-шлифовальный	17	0,9	0,9	31,89	36,67	159,44	239,16	BA13-29	63	40	240
37-38	Сварочный выпрямитель	3,8	0,8	0,8	9,02	10,37	27,06	40,6	BA13-29	63	12,5	75
39-42	Станок кругло-шлифовальный	19,5	0,9	0,9	36,58	42,06	182,88	274,33	BA13-29	63	50	300
43-47	Станок радиально-сверлильный	2,4	0,8	0,8	5,7	6,55	28,49	42,73	BA13-29	63	8	48
48-52	Станок вертикально-сверлильный	2,2	0,8	0,8	5,22	6,01	26,11	39,17	BA13-29	63	8	48
53-55	Станок трубонарезной	19,5	0,9	0,9	36,58	42,06	182,88	274,33	BA13-29	63	50	300
56	Заточный станок	4	0,8	0,8	9,5	10,92	47,48	71,22	BA13-29	63	12,5	75
57-60	Ножницы кривошипного типа	27,85	0,9	0,9	52,24	60,08	261,2	391,79	BA57-35	250	80	400
61-62	Молот Кузнечно-пневматический	7,5	0,8	0,8	17,8	20,48	89,02	133,54	BA13-29	63	25	150
63-66	Станок отрезной ножовочный	3,15	0,8	0,8	7,48	8,6	37,39	56,09	BA13-29	63	10	60
67	Кран-балка, ПВ=40 %	10	0,8	0,8	15,01	17,27	75,07	112,61	BA13-29	63	20	120
68-71	Вентиляторы	15	0,9	0,9	28,14	32,36	140,68	211,02	BA13-29	63	40	240

Пример расчета выбора автоматического выключателя для защиты ШРА-1.

Длительный ток ШР1:

$$I_{\text{pacu}} = \frac{S_{\text{pacu}}}{\sqrt{3} \cdot U_{\text{HOM}}} = \frac{190,26}{\sqrt{3} \cdot 0,38} = 289,08, \text{ A}.$$

Определяем пиковый ток группы:

$$I_{\text{пик}} = I_{\text{пуск.max}} + (I_{\text{расч}} - K_{\text{и}} \cdot I_{\text{ном.max}}) = 159,44 + (289,08 - 0,14 \cdot 31,89) = 444,06, \text{ A},$$

где $I_{\text{пуск.мах}}$ - наибольший из пусковых токов двигателей в группе по паспортным данным;

 $I_{\text{ном.мах}}$ - номинальный (приведенный к ПВ = 100%) ток двигателя с наибольшим пусковым током;

 $K_{\rm u}$ - коэффициент использования, характерный для двигателя, имеющего наибольший пусковой ток;

 $I_{\text{расч}}$ - расчетный ток нагрузки всей группы электроприемников.

Номинальный ток АВ:

$$I_{\text{HOM,AB}} \ge K_{\text{3all}} \cdot I_{\text{JULIT}} = 1, 1 \cdot 289, 08 = 317, 99, A,$$

где K_{3an} = 1,1 для группы ЭП по табл. 8.6 [3, c.204];

 $I_{\mbox{\scriptsize длит}}$ — длительный максимальный рабочий ток линии (для группы ЭП равен $I_{\mbox{\tiny pacy}}$).

Номинальный ток теплового расцепителя АВ:

$$I_{\text{hom.tenji}} \ge K_{\text{зап}} \cdot I_{\text{длит}} = 1,1 \cdot 289,08 = 317,99, \text{ A}.$$

Проверка по току срабатывания расцепителя:

$$I_{\text{\tiny HOM.3.O}} \ge 1,25 \cdot I_{\text{\tiny MUK}} = 1,25 \cdot 444,06 = 555,07, \text{ A}.$$

K установке выбираем автоматический выключатель типа BA74-40 с $I_{\text{ном.AB}} = 800$ A, $I_{\text{ном.тепл}} = 500$ A, $K_{\text{к3}} = 2$, тогда:

$$I_{\text{hom.3.0}} = I_{\text{hom.teiij}} \cdot K_{\text{k3}} = 500 \cdot 2 = 1000, A \ge 555,07, A.$$

Все расчеты сводим в таблицу 42.

Таблица 42 – Выбор автоматических выключателей

No	$1,1 \cdot I_{ extsf{длит}}, A$	$1,25 \cdot I_{\text{пик}}, A$	Марка АВ	$I_{ ext{HOMAB}}, ext{A}$	$I_{\text{ном.тепл}},$ А	$K_{\scriptscriptstyle{\mathrm{K}3}}$	<i>I</i> _{ном.э.о} , А
ШРА1	317,99	555,07	BA74-40	800	500	2	1000
ШРА2	282,13	617,72	BA74-40	800	500	2	1000

Выбор вводного выключателя прокатно-ремонтного цеха.

Расчетный ток:

$$I_{\text{pacy}} = \frac{S_{\text{pacy}}}{\sqrt{3} \cdot U_{\text{pow}}} = \frac{327,75}{\sqrt{3} \cdot 0,38} = 497,96, \text{ A}.$$

Определяем пиковый ток группы:

$$I_{\text{пик}} = I_{\text{пуск.max}} + (I_{\text{pacy}} - K_{\text{и}} \cdot I_{\text{ном.max}}) = 261, 2 + (497, 96 - 0, 45 \cdot 52, 24) = 735, 65 \text{ A}.$$

Номинальный ток АВ:

$$I_{\text{HOM AB}} \ge K_{\text{3aII}} \cdot I_{\text{JUIUT}} = 1, 1.497, 96 = 547, 76, \text{ A}.$$

Номинальный ток теплового расцепителя АВ:

$$I_{\text{HOM.TEIJI}} \ge K_{\text{3aII}} \cdot I_{\text{IJIJIT}} = 1, 1.497, 96 = 547, 76, \text{ A}.$$

Проверка по току срабатывания расцепителя:

$$I_{\text{HOM.}3.0} \ge 1,25 \cdot I_{\text{HUK}} = 1,25 \cdot 735,65 = 919,56, \text{ A}.$$

К установке выбираем автоматический выключатель типа BA74-40 с $I_{\text{ном.AB}} = 800 \text{ A}, I_{\text{ном.тепл}} = 625 \text{ A}, K_{\text{кз}} = 2$, тогда:

$$I_{\text{HOM 2-O}} = I_{\text{HOM TEILI}} \cdot K_{\text{K3}} = 625 \cdot 2 = 1250, A \ge 919, 56, A.$$

В качестве секционного выключателя ВРУ выбираем автоматический выключатель типа ВА74-40 с $I_{\text{ном.AB}}=800$ A, $I_{\text{ном.тепл}}=500$ A, $K_{\text{к3}}=2$, $I_{\text{ном.Э.О}}=1000$, A.

Выбор вводного автоматического выключателя ТП-4:

Длительный ток:

$$I_{\text{длит}} = I_{\text{расч}} = \frac{S_{\text{ном.тр}}}{\sqrt{3} \cdot U_{\text{пом.}}} = \frac{1000}{\sqrt{3} \cdot 0.38} = 1519,34, \text{ A}.$$

Ток в послеаварийном режиме:

$$I_{\text{\tiny ILAB}} = 1, 4 \cdot I_{\text{\tiny JUIUT}} = 1, 4 \cdot 1519, 34 = 2127, 08, \text{ A}.$$

Определяем пиковый ток:

$$I_{\text{\tiny HJMK}} = I_{\text{\tiny HJMK,max}} + (I_{\text{\tiny HJM,max}}) = 261, 2 + (2127, 08 - 0, 45 \cdot 52, 24) = 2364, 77, \text{ A}.$$

Номинальный ток АВ:

$$I_{\text{HOM AB}} \ge K_{\text{Part}} \cdot I_{\text{Targ}} = 1,1 \cdot 2127,08 = 2339,79, \text{ A}.$$

Номинальный ток теплового расцепителя АВ:

$$I_{\text{hom.tenji}} \ge K_{\text{safi}} \cdot I_{\text{fi.ab}} = 1, 1 \cdot 2127, 08 = 2339, 79, A.$$

Проверка по току срабатывания расцепителя:

$$I_{\text{HOM } 2.0} \ge 1,25 \cdot I_{\text{muk}} = 1,25 \cdot 2364,77 = 2955,97, \text{ A}.$$

K установке выбираем автоматический выключатель типа BA75-45 с $I_{\text{ном.AB}} = 2500$ A, $I_{\text{ном.тепл}} = 2500$ A, $K_{\text{к3}} = 3$, тогда:

$$I_{\text{hom.3.0}} = I_{\text{hom.tenji}} \cdot K_{\text{k3}} = 2500 \cdot 3 = 7500, A \ge 2955, 97, A.$$

Выбор секционного автоматического выключателя ТП-4:

Длительный ток:

$$I_{\text{длит}} = I_{\text{расч}} = \frac{S_{\text{ном.тр}}}{\sqrt{3} \cdot U_{\text{пом.}}} = \frac{1000}{\sqrt{3} \cdot 0.38} = 1519,34, \text{ A}.$$

Определяем пиковый ток:

$$I_{\text{\tiny HMK}} = I_{\text{\tiny HYK,Max}} + (I_{\text{\tiny pacq}} - K_{_{\text{\tiny H}}} \cdot I_{_{\text{\tiny HOM,Max}}}) = 261, 2 + (1519, 34 - 0, 45 \cdot 52, 24) = 1757, 03, \text{ A.}$$

Номинальный ток АВ:

$$I_{\text{hom.AB}} \ge K_{\text{зап}} \cdot I_{\text{pacq}} = 1, 1.1519, 34 = 1671, 27, A.$$

Номинальный ток теплового расцепителя АВ:

$$I_{\text{hom.telul}} \ge K_{\text{3all}} \cdot I_{\text{pact}} = 1, 1 \cdot 1519, 34 = 1671, 27, A.$$

Проверка по току срабатывания расцепителя:

$$I_{\text{hom}.3.0} \ge 1,25 \cdot I_{\text{пик}} = 1,25 \cdot 1757,03 = 2196,29, \text{ A}.$$

K установке выбираем автоматический выключатель типа BA75-45 с $I_{\text{ном.AB}} = 2500$ A, $I_{\text{ном.тепл}} = 2000$ A, $K_{\text{к3}} = 2$, тогда:

$$I_{\text{hom.3.0}} = I_{\text{hom.teiii}} \cdot K_{\text{k3}} = 2000 \cdot 2 = 4000, A \ge 2196, 29, A.$$

11.3 Выбор сечений линий питающей сети цеха

Выбор сечений проводников питающей сети цеха производится из условий допустимого нагрева длительно протекающим максимальным током нагрузки, допустимой потери напряжения, по условию соответствия выбранному аппарату защиты.

Среда цеха нормальная, воздействия среды помещения не влияют на работу оборудования. Для электроприемников, которые получают питание от распределительного шинопровода ШРА-73, будем использовать провод марки АПВ проложенный в гофрированных трубах.

Ниже представлен пример выбора сечения питающей линии для вертикально-сверлильного станка.

Выбираем кабель по условию нагрева длительным током:

$$I_{\text{доп}} \ge \frac{I_{\text{расч}}}{K_1 \cdot K_2} = \frac{3,09}{1 \cdot 1} = 3,09, \text{ A},$$

где K_1 , K_2 — коэффициенты, учитывающие влияние температуры окружающей среды и влияние рядом проложенных кабельных линий соответственно.

Для определения K_1 используется табл. 1.3.3 [4].

Для определения K_2 используется табл. 1.3.12, 1.3.26 [4].

По условию соответствия выбранному аппарату максимальной токовой защиты:

$$I_{\text{доп}} \ge \frac{K_{\text{защ}} \cdot I_{\text{защ}}}{K_1 \cdot K_2} = \frac{1 \cdot 5}{1 \cdot 1} = 5, A,$$

где $K_{\text{защ}}$ — кратность длительно допустимого тока для провода или кабеля по отношению к току срабатывания защитного аппарата.

Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.5. [4], как для трехжильных кабелей, но с коэффициентом 0,92.

Принимаем кабель марки АПВ-(4х2) с $I_{доп} = 14.0,92 = 12,88$ А.

Таблица 43 – Выбор марок и сечений кабелей и проводов

№	Наименование	I_{HOM} , A	Кзащ	<i>I</i> _{защ} , А	$I_{3 \mathrm{aut}} \cdot K_{3 \mathrm{aut}}, \ \mathrm{A}$	K_1	K_2	$\frac{I_{\text{\tiny HOM}}}{K_1 \cdot K_2}$, A	$\frac{K_{\text{защ}} \cdot I_{\text{защ}}}{K_1 \cdot K_2}, \text{ A}$	$I_{ m ДОП},{ m A}$	Марка кабеля
1-6	Станок вертикально-сверлильный	3,09	1	5	5	1	1	3,09	5	12,88	АПВ-(4х2)
7-14	Станок токарно-винторезный	20,65	1	25	25	1	1	20,65	25	29,44	АПВ-(4х8)
15-18	Электропечь сопротивления	60,02	1	80	80	1	1	60,02	80	96,66	AΠB-(4x50)
19-24	Станок фрезерный	18,28	1	25	25	1	1	18,28	25	29,44	АПВ-(4х8)
25-30	Станок продольно-строгальный	10,92	1	16	16	1	1	10,92	16	16,56	АПВ-(4х3)
31-36	Станок плоско-шлифовальный	31,89	1	40	40	1	1	31,89	40	50,6	AΠB-(4x16)
37-38	Сварочный выпрямитель	9,02	1	12,5	12,5	1	1	9,02	12,5	14,72	АПВ-(4х2,5)
39-42	Станок кругло-шлифовальный	36,58	1	50	50	1	1	36,58	50	50,6	AΠB-(4x16)
43-47	Станок радиально-сверлильный	5,7	1	8	8	1	1	5,7	8	12,88	AΠB-(4x2)
48-52	Станок вертикально-сверлильный	5,22	1	8	8	1	1	5,22	8	12,88	AΠB-(4x2)
53-55	Станок трубонарезной	36,58	1	50	50	1	1	36,58	50	50,6	AΠB-(4x16)
56	Заточный станок	9,5	1	12,5	12,5	1	1	9,5	12,5	14,72	АПВ-(4х2,5)
57-60	Ножницы кривошипного типа	52,24	1	80	80	1	1	52,24	80	96,66	AΠB-(4x50)
61-62	Молот Кузнечно-пневматический	17,8	1	25	25	1	1	17,8	25	29,44	АПВ-(4х8)
63-66	Станок отрезной ножовочный	7,48	1	10	10	1	1	7,48	10	12,88	AΠB-(4x2)
67	Кран-балка, ПВ=40 %	15,01	1	20	20	1	1	15,01	20	22,08	AΠB-(4x5)
68-71	Вентиляторы	28,14	1	40	40	1	1	28,14	40	50,6	AΠB-(4x16)
	КТП4 – ВРУ11	497,96	1	625	625	1	0,93	535,44	672	708,4	ААБГ-2(4×185)

12. Расчет электрической сети по потере напряжения

Согласно ПУЭ для силовых сетей отклонение напряжения от номинального должно составлять не более $\pm 5\%$ U_н. Для осветительных сетей промышленных предприятий и общественных зданий допускается отклонение напряжения от +5 до -2,5 % U_н.

Наиболее удаленным и мощным ЭП ремонтно-механического цеха является вентилятор (ЭП71). Расчет цеховой сети по условиям допустимой потери напряжения и построение эпюры отклонения напряжения выполняется для цепочки РУ НН ГПП (10кВ) – КТП4 – ВРУ – ШРА1 – ЭП71. Подстанция КТП4 — двухтрансформаторная, следовательно, необходимо рассмотреть максимальный, минимальный и послеаварийный режим работы сети.

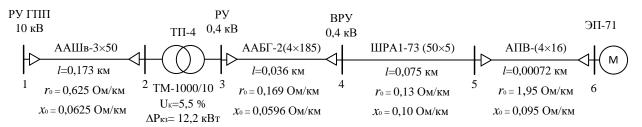


Рисунок 13 – Радиальная схема для расчета отклонений напряжения

12.1 Нагрузки максимального режима

Расчетная активная и реактивная нагрузки на участке 5-6:

$$P_{5-6} = P_{\text{\tiny HOM.} \ni \Pi71} = 15, \text{ kBt.}$$

$$Q_{5-6} = Q_{\text{HOM.} 9\Pi71} = 9,3, \text{ } \kappa \text{Bap.}$$

Расчетная активная и реактивная нагрузки на участке 4–5:

$$P_{4-5} = P_{\text{IIIPA1}} = 158,82, \text{ KBT}.$$

$$Q_{4-5} = Q_{\text{IIIPA1}} = 104,77, \text{ } \kappa\text{Bap}.$$

Расчетная активная и реактивная нагрузки на участке 3–4:

$$P_{3-4} = P_{\text{BPY11}} = 232,43, \text{ KBT}.$$

$$Q_{3-4} = Q_{\text{BPV11}} = 231,07$$
, kBap.

Суммарная нагрузка КТП-4 в узле 3:

$$P_{\text{KTII-4}} = 1348,42, \text{ KBT}.$$

$$Q_{\text{ктп-4}} = 967,62, \text{ кВар.}$$

Расчетная нагрузка на один трансформатор:

$$P_{\text{p.tp}} = \frac{P_{\text{KTII-4}}}{2} = 674,21, \text{ kBt.}$$

$$Q_{\text{p.tp}} = \frac{Q_{\text{KTII-4}}}{2} = 483,81, \text{ KBap.}$$

На шинах РУ НН КТП-4 установлена БСК емкостью Q=200 кВар.

Следовательно через трансформатор будет передаваться мощность:

$$P_3 = P_{\text{p.tp}} = 674,21, \text{ KBT}.$$

$$Q_3 = Q_{\text{p.тp}} = 283,81$$
, кВар.

Определим потери в трансформаторе ТМ-1000/10.

Каталожные данные трансформатора представлены в таблице 44.

Таблица 44 – Каталожные данные трансформатора ТМ-1000/10

,		U	ном	Схема и	Потор	н кДж			
Тип	S _{ном} , кВА	обмоток, кВ		группа	Потери, кВт		U _{к3} %	I _{xx} %	
ТИП		ВН	НН	соединения обмоток	XX	КЗ	O k3 70	1XX / 0	
TM- 1000/10	1000	10	0,4	Δ/Υ ₀ - 11	2,45	12,2	5,5	1,25	

Потери активной мощности:

$$\Delta P_{\text{Tp}} = \Delta P_{\text{xx}} + \Delta P_{\text{K3}} \cdot \beta^2 = \Delta P_{\text{xx}} + \Delta P_{\text{K3}} \cdot \left(\frac{S_{\text{p.Tp}}}{S_{\text{HOM.Tp}}}\right)^2 =$$

$$= 2,45 + 12, 2 \cdot \left(\frac{\sqrt{674,21^2 + 283,81^2}}{1000}\right)^2 = 11,37, \text{ KBT}.$$

Потери реактивной мощности:

$$\Delta Q_{\text{тр}} = \Delta Q_{\text{xx}} + \Delta Q_{\text{K3}} \cdot \beta^2 = S_{\text{ном.тр}} \cdot \frac{I_{\text{xx}}}{100} + S_{\text{ном.тр}} \cdot \frac{U_{\text{K3}}}{100} \cdot \left(\frac{S_{\text{р.тр}}}{S_{\text{ном.тр}}}\right)^2 =$$

$$= 1000 \cdot \frac{1,25}{100} + 1000 \cdot \frac{5,5}{100} \cdot \left(\frac{\sqrt{674,21^2 + 283,81^2}}{1000}\right)^2 = 41,93, \text{ KBap.}$$

Находим расчетную нагрузку в узле 2:

$$P_2 = P_{\text{p.тp}} + \Delta P_{\text{тp}} = 674,21 + 11,37 = 685,58, \text{ кВт.}$$
 $Q_2 = Q_{\text{p.тp}} + \Delta Q_{\text{тp}} = 283,81 + 41,93 = 325,74, \text{ кВар.}$

12.2 Нагрузки минимального режима

Для минимального режима необходим годовой график активной и реактивной нагрузок.

По типовому графику определяем нагрузки в минимальном режиме:

$$\begin{split} P_{\min 12} &= 0,77 \cdot P_{\max 12} = 0,77 \cdot 685,58 = 527,9, \text{ кВт.} \\ Q_{\min 12} &= \frac{0,29}{0,4} \cdot Q_{\max 12} = \frac{0,29}{0,4} \cdot 325,74 = 236,16, \text{ кВар.} \\ P_{\min 23} &= 0,77 \cdot P_{\max 23} = 0,77 \cdot 674,21 = 519,14, \text{ кВт.} \\ Q_{\min 23} &= \frac{0,29}{0,4} \cdot Q_{\max 23} = \frac{0,29}{0,4} \cdot 283,81 = 205,76, \text{ кВар.} \\ P_{\min 34} &= 0,77 \cdot P_{\max 34} = 0,77 \cdot 232,43 = 178,97, \text{ кВт.} \\ Q_{\min 34} &= \frac{0,29}{0,4} \cdot Q_{\max 34} = \frac{0,29}{0,4} \cdot 231,07 = 167,53, \text{ кВар.} \\ P_{\min 45} &= 0,77 \cdot P_{\max 45} = 0,77 \cdot 158,82 = 122,29, \text{ кВт.} \\ Q_{\min 45} &= \frac{0,29}{0,4} \cdot Q_{\max 45} = \frac{0,29}{0,4} \cdot 104,77 = 75,96, \text{ кВар.} \\ P_{\min 56} &= 15, \text{ кВт.} \\ Q_{\min 45} &= 9,3, \text{ кВар.} \end{split}$$

12.3. Нагрузки послеаварийного режима

Нагрузка в узлах 2 и 3 увеличится в два раза, а в остальных останется без изменения.

Результаты расчета нагрузок в различных режимах сети представлены в таблице 45.

Таблица 45 – Результаты расчета нагрузок в различных режимах сети

Обозначение	Нагрузка в режимах, кВА								
участка	Максимальный	Минимальный	Послеаварийный						
1-2	685,58+j325,74	527,9+j236,16	1371,16+j651,48						
2-3	674,21+j283,81	519,14+j205,76	1348,42+j567,62						
3-4	232,43+j231,07	178,97+j167,53	232,43+j231,07						
4-5	158,82+j104,77	122,29+j75,96	158,82+j104,77						
5-6	15+j9,3	15+j9,3	15+j9,3						

12.4 Расчет максимального режима

Участок 1-2:

Величину напряжения в начале участка принимаем $U_1 = 10,5$ кВ.

Рассчитаем сопротивления участка:

$$R_{12} = r_{012} \cdot l_{12} = 0,625 \cdot 0,173 = 0,108, \text{ Om.}$$

 $X_{12} = x_{012} \cdot l_{12} = 0,0625 \cdot 0,173 = 0,011, \text{ Om.}$

Потери напряжения на участке 1-2:

$$\Delta U_{\scriptscriptstyle{12\%}} = \frac{P_{\scriptscriptstyle{12}} \cdot R_{\scriptscriptstyle{12}} + Q_{\scriptscriptstyle{12}} \cdot X_{\scriptscriptstyle{12}}}{10 \cdot U_{\scriptscriptstyle{1}}^2} = \frac{685,58 \cdot 0,108 + 325,74 \cdot 0,011}{10 \cdot 10,5^2} = 0,07, \%.$$

В вольтах:

$$\Delta U_{12} = \Delta U_{12\%} \cdot \frac{U_1}{100} = 0,07 \cdot \frac{10500}{100} = 7,35, \text{ B}.$$

Тогда напряжение в узле 2:

$$U_2 = U_1 - \Delta U_{12} = 10500 - 7,35 = 10492,65, B.$$

Участок 2-3:

Определим составляющие напряжения короткого замыкания трансформатора:

$$U_{a\%} = \frac{\Delta P_{\text{\tiny K3}}}{S_{\text{\tiny HOM.TD}}} \cdot 100 = \frac{12,2}{1000} \cdot 100 = 1,22, \%.$$

$$U_{n\%} = \sqrt{U_{\kappa3}^2 - U_{a\%}^2} = \sqrt{5.5^2 - 1.2^2} = 5.36$$
, %.

Фактический коэффициент загрузки цехового трансформатора:

$$\beta = \frac{S_{\text{p.tp}}}{S_{\text{HOM,TD}}} = \frac{\sqrt{685,58^2 + 325,74^2}}{1000} = 0,76.$$

Потери мощности, передаваемые через вторичную обмотку цехового трансформатора:

$$P_{2} = P_{12} - \Delta P_{Tp} = 685,58 - 11,37 = 674,21, \text{ кВт.}$$

$$Q_{2} = Q_{12} - \Delta Q_{Tp} = 325,74 - 41,93 = 283,81, \text{ кВар.}$$

$$S_{2} = \sqrt{P_{2}^{2} + Q_{2}^{2}} = \sqrt{674,21^{2} + 283,81^{2}} = 731,51, \text{ кВА.}$$

$$\cos \varphi_{2} = \frac{P_{2}}{S_{2}} = \frac{674,21}{731,51} = 0,92.$$

$$\sin \varphi_{2} = \frac{Q_{2}}{S_{2}} = \frac{283,81}{731,51} = 0,39.$$

Потери напряжения на участке 2-3:

$$\Delta U_{23} = \beta \cdot \left(U_a \cdot \cos \varphi_2 + U_p \cdot \sin \varphi_2 \right) + \frac{\beta^2}{200} \cdot \left(U_a \cdot \cos \varphi_2 - U_p \cdot \sin \varphi_2 \right) =$$

$$= 0.76 \cdot \left(1.22 \cdot 0.92 + 5.36 \cdot 0.39 \right) + \frac{0.76^2}{200} \cdot \left(1.22 \cdot 0.92 - 5.36 \cdot 0.39 \right) = 2.44, \%.$$

С учетом потерь в обмотке ВН напряжения ВН равно:

$$U_{\rm BH} = U_2 - \Delta U_{23\%} \cdot \frac{U_2}{100} = 10492,65 - 2,44 \cdot \frac{10492,65}{100} = 10236,63, \text{ B}.$$

Потеря напряжения на участке:

$$\Delta U_{23} = U_2 - U_{BH} = 10492,65 - 10236,63 = 256,02, B.$$

Перерасчет напряжения НН:

$$U_3 = U_{\text{\tiny CP.HOM}} \cdot \frac{U_{\text{\tiny BH}}}{U_1} = 400 \cdot \frac{10236,63}{10500} = 389,97, \text{ B}.$$

Участок 3-4:

Рассчитаем сопротивления участка:

$$R_{34} = \frac{r_{034} \cdot l_{34}}{n} = \frac{0,169 \cdot 0,036}{2} = 0,003$$
, Ом. $X_{34} = \frac{x_{034} \cdot l_{34}}{n} = \frac{0,0596 \cdot 0,036}{2} = 0,001$, Ом.

Потери напряжения на участке 3-4:

$$\Delta U_{34\%} = \frac{P_{34} \cdot R_{34} + Q_{34} \cdot X_{34}}{10 \cdot U_3^2} = \frac{232,43 \cdot 0,003 + 231,07 \cdot 0,001}{10 \cdot \left(389,97 \cdot 10^{-3}\right)^2} = 0,61, \%.$$

В вольтах:

$$\Delta U_{34} = \Delta U_{34\%} \cdot \frac{U_3}{100} = 0.61 \cdot \frac{389.97}{100} = 2.38$$
, B.

Тогда напряжение в узле 4:

$$U_4 = U_3 - \Delta U_{34} = 389,97 - 2,38 = 387,59$$
, B.

Участок 4-5:

Рассчитаем сопротивления участка:

$$R_{45} = r_{045} \cdot l_{45} = 0,13 \cdot 0,075 = 0,0098, \text{ Om.}$$

 $X_{45} = x_{045} \cdot l_{45} = 0,10 \cdot 0,075 = 0,0075, \text{ Om.}$

Потери напряжения на участке 4-5:

$$\Delta U_{_{45\%}} = \frac{P_{_{45}} \cdot R_{_{45}} + Q_{_{45}} \cdot X_{_{45}}}{10 \cdot U_{_{4}}^{2}} = \frac{158,82 \cdot 0,0098 + 104,77 \cdot 0,0075}{10 \cdot \left(387,59 \cdot 10^{-3}\right)^{2}} = 1,56, \%.$$

В вольтах:

$$\Delta U_{45} = \Delta U_{45\%} \cdot \frac{U_4}{100} = 1,56 \cdot \frac{387,59}{100} = 6,05, \text{ B.}$$

Тогда напряжение в узле 5:

$$U_5 = U_4 - \Delta U_{45} = 387,59 - 6,05 = 381,54, B.$$

Участок 5-6:

Рассчитаем сопротивления участка:

$$R_{56} = r_{056} \cdot l_{56} = 1,95 \cdot 0,00072 = 0,0014, \text{ Om.}$$

 $X_{56} = x_{056} \cdot l_{56} = 0,095 \cdot 0,00072 = 0,00007, \text{ Om.}$

Потери напряжения на участке 5-6:

$$\Delta U_{56\%} = \frac{P_{56} \cdot R_{56} + Q_{56} \cdot X_{56}}{10 \cdot U_5^2} = \frac{15 \cdot 0,0014 + 9,3 \cdot 0,00007}{10 \cdot (381,54 \cdot 10^{-3})^2} = 0,015, \%.$$

В вольтах:

$$\Delta U_{56} = \Delta U_{56\%} \cdot \frac{U_5}{100} = 0,015 \cdot \frac{381,54}{100} = 0,06, \text{ B}.$$

Тогда напряжение в узле 6:

$$U_6 = U_5 - \Delta U_{56} = 381,54 - 0,06 = 381,48, \text{ B}.$$

12.5 Расчет минимального режима

Участок 1-2:

Величину напряжения в начале участка принимаем $U_1 = 10 \text{ кB}$.

Потери напряжения на участке 1-2:

$$\Delta U_{12\%} = \frac{P_{12} \cdot R_{12} + Q_{12} \cdot X_{12}}{10 \cdot U_{1}^{2}} = \frac{527, 9 \cdot 0, 108 + 236, 16 \cdot 0, 011}{10 \cdot 10^{2}} = 0,059, \%.$$

В вольтах:

$$\Delta U_{12} = \Delta U_{12\%} \cdot \frac{U_1}{100} = 0,059 \cdot \frac{10000}{100} = 5,96, B.$$

Тогда напряжение в узле 2:

$$U_2 = U_1 - \Delta U_{12} = 10000 - 5,96 = 9994,04$$
, B.

Участок 2-3:

Определим составляющие напряжения короткого замыкания трансформатора:

$$U_{a\%} = \frac{\Delta P_{K3}}{S_{HOM.Tp}} \cdot 100 = \frac{12,2}{1000} \cdot 100 = 1,22, \%.$$

$$U_{p\%} = \sqrt{U_{\kappa_3}^2 - U_{a\%}^2} = \sqrt{5,5^2 - 1,2^2} = 5,36, \%.$$

Фактический коэффициент загрузки цехового трансформатора:

$$\beta = \frac{S_{\text{p.tp}}}{S_{\text{power}}} = \frac{\sqrt{527,9^2 + 236,16^2}}{1000} = 0,58.$$

Нагрузка вторичной обмотки трансформатора определена при расчете режимов:

$$P_2 = 519,14, \text{ кВт.}$$

$$Q_2 = 205,76, \text{ кВар.}$$

$$S_2 = \sqrt{P_2^2 + Q_2^2} = \sqrt{519,14^2 + 205,76^2} = 558,43, \text{ кВА.}$$

$$\cos \varphi_2 = \frac{P_2}{S_2} = \frac{519,14}{558,43} = 0,93.$$

$$\sin \varphi_2 = \frac{Q_2}{S_2} = \frac{205,76}{558,43} = 0,37.$$

Потери напряжения на участке 2-3:

$$\Delta U_{23} = \beta \cdot \left(U_a \cdot \cos \varphi_2 + U_p \cdot \sin \varphi_2 \right) + \frac{\beta^2}{200} \cdot \left(U_a \cdot \cos \varphi_2 - U_p \cdot \sin \varphi_2 \right) =$$

$$= 0.58 \cdot \left(1.22 \cdot 0.93 + 5.36 \cdot 0.37 \right) + \frac{0.58^2}{200} \cdot \left(1.22 \cdot 0.93 - 5.36 \cdot 0.37 \right) = 1.807, \%.$$

С учетом потерь в обмотке ВН напряжения ВН равно:

$$U_{\rm BH} = U_2 - \Delta U_{23\%} \cdot \frac{U_2}{100} = 9994,04 - 1,807 \cdot \frac{9994,04}{100} = 9813,45, \text{ B}.$$

Потеря напряжения на участке:

$$\Delta U_{23} = U_2 - U_{BH} = 9994,04 - 9813,45 = 180,59, B.$$

Перерасчет напряжения НН:

$$U_3 = U_{\text{\tiny HOM}} \cdot \frac{U_{\text{\tiny BH}}}{U_1} = 380 \cdot \frac{9813,45}{10000} = 372,91, \text{ B.}$$

Участок 3-4:

Потери напряжения на участке 3-4:

$$\Delta U_{34\%} = \frac{P_{34} \cdot R_{34} + Q_{34} \cdot X_{34}}{10 \cdot U_3^2} = \frac{178,97 \cdot 0,003 + 167,53 \cdot 0,001}{10 \cdot \left(372,91 \cdot 10^{-3}\right)^2} = 0,507, \%.$$

В вольтах:

$$\Delta U_{34} = \Delta U_{34\%} \cdot \frac{U_3}{100} = 0,507 \cdot \frac{372,91}{100} = 1,89, B.$$

Тогда напряжение в узле 4:

$$U_4 = U_3 - \Delta U_{34} = 372,91 - 1,89 = 371,02, B.$$

Участок 4-5:

Потери напряжения на участке 4-5:

$$\Delta U_{45\%} = \frac{P_{45} \cdot R_{45} + Q_{45} \cdot X_{45}}{10 \cdot U_4^2} = \frac{122,29 \cdot 0,0098 + 75,96 \cdot 0,0075}{10 \cdot (371,02 \cdot 10^{-3})^2} = 1,28, \%.$$

В вольтах:

$$\Delta U_{45} = \Delta U_{45\%} \cdot \frac{U_4}{100} = 1,28 \cdot \frac{371,02}{100} = 4,77, \text{ B.}$$

Тогда напряжение в узле 5:

$$U_5 = U_4 - \Delta U_{45} = 371,02 - 4,77 = 366,25, B.$$

Участок 5-6:

Потери напряжения на участке 5-6:

$$\Delta U_{56\%} = \frac{P_{56} \cdot R_{56} + Q_{56} \cdot X_{56}}{10 \cdot U_5^2} = \frac{15 \cdot 0,0014 + 9,3 \cdot 0,00007}{10 \cdot \left(366,25 \cdot 10^{-3}\right)^2} = 0,016, \%.$$

В вольтах:

$$\Delta U_{56} = \Delta U_{56\%} \cdot \frac{U_5}{100} = 0,016 \cdot \frac{366,25}{100} = 0,06, \text{ B}.$$

Тогда напряжение в узле 6:

$$U_6 = U_5 - \Delta U_{56} = 366,25 - 0,06 = 366,19$$
, B.

12.6 Расчет послеаварийного режима

Участок 1-2:

Величину напряжения в начале участка принимаем $U_1 = 10,5$ кВ.

Потери напряжения на участке 1-2:

$$\Delta U_{12\%} = \frac{P_{12} \cdot R_{12} + Q_{12} \cdot X_{12}}{10 \cdot U_{1}^{2}} = \frac{1371,16 \cdot 0,108 + 651,48 \cdot 0,011}{10 \cdot 10,5^{2}} = 0,141, \%.$$

В вольтах:

$$\Delta U_{12} = \Delta U_{12\%} \cdot \frac{U_1}{100} = 0,141 \cdot \frac{10500}{100} = 14,8, B.$$

Тогда напряжение в узле 2:

$$U_2 = U_1 - \Delta U_{12} = 10500 - 14,8 = 10485,2$$
, B.

Участок 2-3:

Определим составляющие напряжения короткого замыкания трансформатора:

$$U_{a\%} = \frac{\Delta P_{\text{\tiny K3}}}{S_{\text{\tiny HOM,TD}}} \cdot 100 = \frac{12,2}{1000} \cdot 100 = 1,22, \%.$$

$$U_{p\%} = \sqrt{U_{K3}^2 - U_{a\%}^2} = \sqrt{5,5^2 - 1,2^2} = 5,36, \%.$$

Фактический коэффициент загрузки цехового трансформатора:

$$\beta = \frac{S_{\text{p.tp}}}{S_{\text{HOM,TD}}} = \frac{\sqrt{1371,16^2 + 651,48^2}}{1000} = 1,52.$$

Нагрузка вторичной обмотки трансформатора определена при расчете режимов:

$$\begin{split} P_2 = &1348,42, \text{ кВт.} \\ Q_2 = &567,62, \text{ кВар.} \\ S_2 = &\sqrt{P_2^2 + Q_2^2} = \sqrt{1348,42^2 + 567,62^2} = 1463,02, \text{ кВА.} \\ &\cos \varphi_2 = \frac{P_2}{S_2} = \frac{1348,42}{1463,02} = 0,92. \\ &\sin \varphi_2 = \frac{Q_2}{S_2} = \frac{567,62}{1463,02} = 0,39. \end{split}$$

Потери напряжения на участке 2-3:

$$\Delta U_{23} = \beta \cdot \left(U_a \cdot \cos \varphi_2 + U_p \cdot \sin \varphi_2 \right) + \frac{\beta^2}{200} \cdot \left(U_a \cdot \cos \varphi_2 - U_p \cdot \sin \varphi_2 \right) =$$

$$= 1,52 \cdot \left(1,22 \cdot 0,92 + 5,36 \cdot 0,39 \right) + \frac{1,52^2}{200} \cdot \left(1,22 \cdot 0,92 - 5,36 \cdot 0,39 \right) = 4,9, \%.$$

С учетом потерь в обмотке ВН напряжения ВН равно:

$$U_{\rm BH} = U_2 - \Delta U_{23\%} \cdot \frac{U_2}{100} = 10485, 2 - 4, 9 \cdot \frac{10485, 2}{100} = 9971, 43, \text{ B}.$$

Потеря напряжения на участке:

$$\Delta U_{23} = U_2 - U_{BH} = 10485, 2 - 9971, 43 = 513, 77, B.$$

Перерасчет напряжения НН:

$$U_3 = U_{\text{\tiny HOM}} \cdot \frac{U_{\text{\tiny BH}}}{U_1} = 400 \cdot \frac{9971,43}{10500} = 379,86, \text{ B}.$$

Участок 3-4:

Потери напряжения на участке 3-4:

$$\Delta U_{34\%} = \frac{P_{34} \cdot R_{34} + Q_{34} \cdot X_{34}}{10 \cdot U_3^2} = \frac{232,43 \cdot 0,003 + 231,07 \cdot 0,001}{10 \cdot (379,86 \cdot 10^{-3})^2} = 0,64, \%.$$

В вольтах:

$$\Delta U_{34} = \Delta U_{34\%} \cdot \frac{U_3}{100} = 0,64 \cdot \frac{379,86}{100} = 2,44, \text{ B}.$$

Тогда напряжение в узле 4:

$$U_4 = U_3 - \Delta U_{34} = 379,86 - 2,44 = 377,42, B.$$

Участок 4-5:

Потери напряжения на участке 4-5:

$$\Delta U_{45\%} = \frac{P_{45} \cdot R_{45} + Q_{45} \cdot X_{45}}{10 \cdot U_4^2} = \frac{158,82 \cdot 0,0098 + 104,77 \cdot 0,0075}{10 \cdot \left(377,42 \cdot 10^{-3}\right)^2} = 1,64, \%.$$

В вольтах:

$$\Delta U_{45} = \Delta U_{45\%} \cdot \frac{U_4}{100} = 1,64 \cdot \frac{377,42}{100} = 6,2, B.$$

Тогда напряжение в узле 5:

$$U_5 = U_4 - \Delta U_{45} = 377,42 - 6,2 = 371,21, B.$$

Участок 5-6:

Потери напряжения на участке 5-6:

$$\Delta U_{56\%} = \frac{P_{56} \cdot R_{56} + Q_{56} \cdot X_{56}}{10 \cdot U_5^2} = \frac{15 \cdot 0,0014 + 9,3 \cdot 0,00007}{10 \cdot \left(371,21 \cdot 10^{-3}\right)^2} = 0,016, \%.$$

В вольтах:

$$\Delta U_{56} = \Delta U_{56\%} \cdot \frac{U_5}{100} = 0,016 \cdot \frac{371,21}{100} = 0,06, \text{ B}.$$

Тогда напряжение в узле 6:

$$U_6 = U_5 - \Delta U_{56} = 371,21 - 0,06 = 371,15, B.$$

Расчеты для построения эпюры отклонений напряжения для максимального, минимального и послеаварийного режимов систематизируем в виде таблицы 46.

Эпюры напряжения представлены на рисунке 14.

Таблица 46 – Результаты расчета режимов

т аолица то	T CS y SID TUTBE	pae iera pentimoi	•							
Участок	1 - 2	2 - 3	3 - 4	4 - 5	5 - 6					
Марка	ААШв	TM - 1000/10	ААБГ-2	ШРА1	АВВГ					
кабеля	(3x50)	1 IVI - 1000/10	(4x185)	шгаг	(4x16)					
R, Om	0,108	$U_{\kappa_3}=5,5\%$	0,003	0,0098	0,0014					
Х, Ом	0,011	ΔP_{κ_3} =12,2 κBτ	0,001	0,0075	$0,07 \cdot 10^{-3}$					
Максимальный режим										
Р, кВт	685,58	674,21	232,43	158,82	15					
Q, кВар	325,74	283,81	231,07	104,77	9,3					
ΔU, %	0,07	2,44	0,61	1,56	0,015					
ΔU, B	7,35	256,02	2,38	6,05	0,06					
		Минимальный	режим							
Р, кВт	527,9	519,14	178,97	122,29	15					
Q, кВар	236,16	205,76	167,53	75,96	9,3					
ΔU, %	0,059	1,807	0,507	1,28	0,016					
ΔU, B	5,96	180,59	1,89	4,77	0,06					
		Послеаварийны	й режим							
Р, кВт	1371,16	1348,42	232,43	158,82	15					
Q, кВар	651,48	567,62	231,07	104,77	9,3					
ΔU, %	0,141	4,9	0,64	1,64	0,016					
$\Delta U, B$	14,8	513,77	2,44	6,2	0,06					

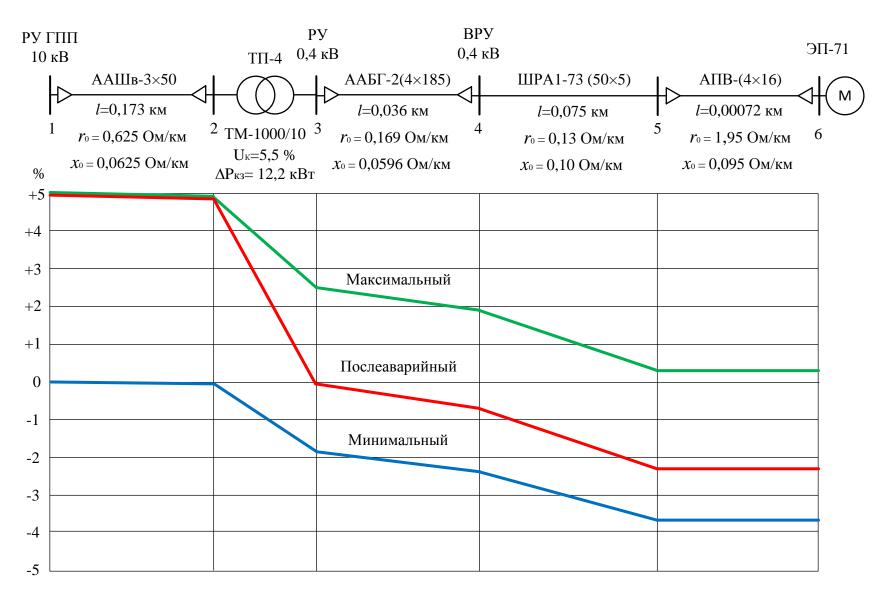


Рисунок 14 – Эпюры напряжения

13. Расчет токов короткого замыкания до 1000 В

Расчет токов КЗ будем производить до самого удаленного электроприемника, которым является вентилятор (ЭП №71).

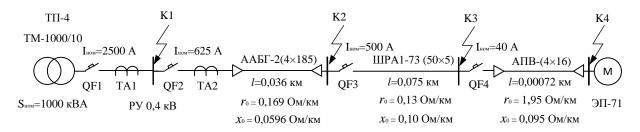


Рисунок 15 – Расчетная схема распределительной сети

По расчетной схеме составляем схему замещения цеховой сети для расчета токов трехфазного и двухфазного КЗ, которая показана на рис. 16.

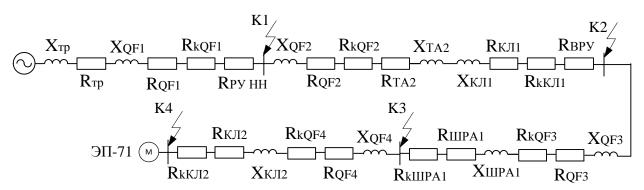


Рисунок 16 – Схема замещения цеховой сети

Определяем сопротивления для расчёта трёхфазного КЗ.

Сопротивление трансформатора таблице 6.7 [3, с.132]:

$$R_{\text{\tiny TP}} = 2 \text{ MOm};$$

$$X_{\rm TD} = 8,5 \, \text{MOM}.$$

Сопротивления автоматического выключателя QF1 табл. 6.16 [3, c.137]:

$$R_{\text{OF1}} = 0.06 \text{ MOm}, X_{\text{OF1}} = 0.07 \text{ MOm}, R_{\text{kOF1}} = 0.07 \text{ MOm}.$$

Сопротивления автоматического выключателя QF2 табл. 6.16 [3, c.137]:

$$R_{\mathrm{QF2}} = 0.1 \mathrm{\ mOm}$$
 , $X_{\mathrm{QF2}} = 0.1 \mathrm{\ mOm}$, $R_{\mathrm{kQF2}} = 0.15 \mathrm{\ mOm}$.

Сопротивления автоматического выключателя QF3 табл. 6.16 [3, c.137]:

$$R_{\text{OF3}} = 0.1 \text{ mOm}$$
, $X_{\text{OF3}} = 0.1 \text{ mOm}$, $R_{\text{kOF3}} = 0.15 \text{ mOm}$.

Сопротивления автоматического выключателя QF4 табл. 6.16 [3, c.137]:

$$R_{\text{QF4}} = 2,4 \text{ MOM}, X_{\text{QF4}} = 2 \text{ MOM}, R_{\text{kQF4}} = 1 \text{ MOM}.$$

Сопротивления первичной обмотки трансформатора тока TA2 табл. 6.15 [3, c.136]:

$$R_{\text{TA}2} = 0.07 \text{ MOM}, X_{\text{TA}2} = 0.05 \text{ MOM}.$$

Сопротивления трансформатора тока TA1 не учитываем ввиду их малости.

Сопротивления кабельных линий:

$$R_{\text{KJII}} = \frac{r_{0\text{KJII}} \cdot l_{\text{KJII}}}{n_{\text{KJII}}} = \frac{0,169 \cdot 36}{2} = 3,04, \text{ MOM};$$

$$X_{\text{KJII}} = \frac{x_{0\text{KJII}} \cdot l_{\text{KJII}}}{n_{\text{KJII}}} = \frac{0,0596 \cdot 36}{2} = 1,07, \text{ MOM};$$

$$R_{\text{KJII}} = r_{0\text{KJII}} \cdot l_{\text{KJII}} = 1,95 \cdot 0,72 = 1,4, \text{ MOM};$$

$$X_{\text{KJII}} = x_{0\text{KJII}} \cdot l_{\text{KJII}} = 0,095 \cdot 0,72 = 0,07, \text{ MOM}.$$

Сопротивления ШРА:

$$R_{\text{IIIPA}} = r_{\text{0IIIPA}} \cdot l_{\text{IIIPA}} = 0.13 \cdot 75 = 9.75, \text{ MOM};$$

 $X_{\text{IIIPA}} = x_{\text{0IIIPA}} \cdot l_{\text{IIIPA}} = 0.10 \cdot 75 = 7.5, \text{ MOM}.$

Переходные сопротивления ступеней распределения берем из табл. 6.8 [3, c.133]:

$$R_{\text{PYHH}} = 15 \text{ MOM}, \ R_{\text{BPY}} = 20 \text{ MOM}.$$

Активные переходные сопротивления неподвижных контактных соединений табл. 6.9 [3, с.133]:

$$R_{\rm kKJ1} = 0.021~{\rm mOm}$$
 , $R_{\rm kKJ2} = 0.085~{\rm mOm}$, $R_{\rm kIIIPA} = 0.009~{\rm mOm}$.

Определим эквивалентные сопротивления на участках схемы между точками K3.

$$R_{\rm l}=R_{\rm Tp}+R_{\rm QF1}+R_{\rm kQF1}+R_{\rm PYHH}=2+0,06+0,07+15=17,13,\,{\rm MOM}.$$

$$X_{\rm l}=X_{\rm Tp}+X_{\rm QF1}=8,5+0,07=8,57,\,{\rm MOM}.$$

$$R_{\rm l}=R_{\rm QF2}+R_{\rm kQF2}+R_{\rm TA2}+R_{\rm KJI}+R_{\rm kKJI}+R_{\rm BPY}=0,1+0,15+0,07+13,04+0,021+20=23,38,\,{\rm MOM}.$$

$$\begin{split} X_2 &= X_{\text{QF2}} + X_{\text{TA2}} + X_{\text{KJII}} = 0,1 + 0,05 + 1,07 = 1,22, \text{ MOm.} \\ R_3 &= R_{\text{IIIPA}} + R_{\text{kIIIPA}} + R_{\text{QF3}} + R_{\text{kQF3}} = 9,75 + 0,009 + 0,1 + 0,15 = 10,01, \text{ MOm.} \\ X_3 &= X_{\text{IIIPA}} + X_{\text{QF3}} = 7,5 + 0,1 = 7,6, \text{ MOm.} \\ R_4 &= R_{\text{QF4}} + R_{\text{kQF4}} + R_{\text{KJI2}} + R_{\text{kKJI2}} = 2,4 + 1 + 1,4 + 0,085 = 4,885, \text{MOm.} \\ X_4 &= X_{\text{QF4}} + X_{\text{KJI2}} = 2 + 0,07 = 2,07, \text{ MOm.} \end{split}$$

Упрощенная схема замещения цеховой сети для расчета токов трехфазного и двухфазного КЗ представлена на рис 17.

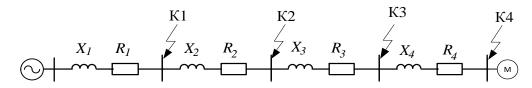


Рисунок 17 – Упрощенная схема замещения

Рассчитываем токи трёхфазного и двухфазного КЗ.

Производим расчёт для точки К1.

Полное сопротивление до точки КЗ:

$$Z_{\text{pes}} = \sqrt{R_1^2 + X_1^2} = \sqrt{17,13^2 + 8,57^2} = 19,15, \text{ MOM}.$$

Периодическая составляющая тока трехфазного КЗ:

$$I_{\text{K3}}^{(3)} = \frac{U_{\text{cp.Hom}}}{\sqrt{3} \cdot Z_{\text{pe3}}} = \frac{400}{\sqrt{3} \cdot 19,15} = 12,06, \text{ KA}.$$

Ударный ток КЗ:

$$i_{y.m.} = \sqrt{2} \cdot I_{\kappa_3}^{(3)} \cdot K_{y.m.} = \sqrt{2} \cdot 12,06 \cdot 1 = 17,06, \text{ KA},$$

где $k_{yд} = 1$ – ударный коэффициент, определяемый по рис. 7.1 [1, с. 149]

Ток двухфазного КЗ:

$$I_{\text{K3}}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{\text{K3}}^{(3)} = \frac{\sqrt{3}}{2} \cdot 12,06 = 10,44, \text{ KA}.$$

Производим расчёт для точки К2.

Полное сопротивление до точки КЗ:

$$Z_{\text{pe3}} = \sqrt{\left(R_1 + R_2\right)^2 + \left(X_1 + X_2\right)^2} =$$

$$= \sqrt{\left(17,13 + 23,38\right)^2 + \left(8,57 + 1,22\right)^2} = 41,68, \text{ MOM}.$$

Периодическая составляющая тока трехфазного КЗ:

$$I_{\text{K3}}^{(3)} = \frac{U_{\text{cp.Hom}}}{\sqrt{3} \cdot Z_{\text{per}}} = \frac{400}{\sqrt{3} \cdot 41,68} = 5,54, \text{ KA}.$$

Ударный ток КЗ:

$$i_{\text{VZL}} = \sqrt{2} \cdot I_{\kappa 3}^{(3)} \cdot K_{\text{VZL}} = \sqrt{2} \cdot 5,54 \cdot 1 = 7,83, \text{ KA},$$

где $k_{yд} = 1$ – ударный коэффициент, определяемый по рис. 7.1 [1, с. 149]

Ток двухфазного КЗ:

$$I_{\text{K3}}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{\text{K3}}^{(3)} = \frac{\sqrt{3}}{2} \cdot 5,54 = 4,8, \text{ KA}.$$

Производим расчёт для точки К3.

Полное сопротивление до точки КЗ:

$$Z_{\text{pes}} = \sqrt{\left(R_1 + R_2 + R_3\right)^2 + \left(X_1 + X_2 + X_3\right)^2} =$$

$$= \sqrt{\left(17,13 + 23,38 + 10,01\right)^2 + \left(8,57 + 1,22 + 7,6\right)^2} = 53,43, \text{ MOM}.$$

Периодическая составляющая тока трехфазного КЗ:

$$I_{\text{K3}}^{(3)} = \frac{U_{\text{cp.HoM}}}{\sqrt{3} \cdot Z_{\text{pe3}}} = \frac{400}{\sqrt{3} \cdot 53,43} = 4,32, \text{ KA}.$$

Ударный ток КЗ:

$$i_{y.m.} = \sqrt{2 \cdot I_{\kappa_3}^{(3)}} \cdot K_{y.m.} = \sqrt{2 \cdot 4}, 32 \cdot 1 = 6,11, \text{ KA},$$

где $k_{\rm yg} = 1$ — ударный коэффициент, определяемый по рис. 7.1 [1, с. 149]

Ток двухфазного КЗ:

$$I_{\text{K3}}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{\text{K3}}^{(3)} = \frac{\sqrt{3}}{2} \cdot 4,32 = 3,74, \text{ KA}.$$

Производим расчёт для точки К4.

Полное сопротивление до точки КЗ:

$$\begin{split} Z_{\text{pe3}} &= \sqrt{\left(R_1 + R_2 + R_3 + R_4\right)^2 + \left(X_1 + X_2 + X_3 + X_4\right)^2} = \\ &= \sqrt{\left(17,13 + 23,38 + 10,01 + 4,885\right)^2 + \left(8,57 + 1,22 + 7,6 + 2,07\right)^2} = 58,72,\text{ MOM}. \end{split}$$

Периодическая составляющая тока трехфазного КЗ:

$$I_{\text{K3}}^{(3)} = \frac{U_{\text{ср.ном}}}{\sqrt{3} \cdot Z_{\text{nes}}} = \frac{400}{\sqrt{3} \cdot 58,72} = 3,93, \text{ KA}.$$

Ударный ток КЗ:

$$i_{\text{VJL}} = \sqrt{2} \cdot I_{\kappa_3}^{(3)} \cdot K_{\text{VJL}} = \sqrt{2} \cdot 3,93 \cdot 1 = 5,56, \text{ KA},$$

где $k_{yд} = 1$ – ударный коэффициент, определяемый по рис. 7.1 [1, с. 149]

Ток двухфазного КЗ:

$$I_{\text{K3}}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{\text{K3}}^{(3)} = \frac{\sqrt{3}}{2} \cdot 3,93 = 3,4, \text{ KA}.$$

Рассчитываем однофазное КЗ.

Определим сопротивления и составим схему замещения для расчета токов однофазного K3.

Ток однофазного КЗ равен:

$$I_{\text{K3}}^{(1)} = \frac{U_{\phi}}{\frac{Z_{\text{TP}}^{(1)}}{3} + Z_{\phi - 0}},$$

где U_{ϕ} – фазное напряжение в точке K3, кB;

 $Z_{\Phi^{-0}}$ – полное сопротивление петли «фаза ноль» до точки КЗ, Ом;

 $Z_{\mbox{\tiny TP}}^{\mbox{\tiny (1)}}$ – полное сопротивление трансформатора при однофазном КЗ, Ом.

При схеме соединения Δ / $Y_{\rm H}$ величина $Z_{\rm TP}^{\scriptscriptstyle (1)}$ /3 равна сопротивлению трансформатора при трех- или двухфазном K3 и определяется по выражению:

$$Z_{\text{Tp}} = \sqrt{R_{\text{Tp}}^2 + X_{\text{Tp}}^2} = \sqrt{2^2 + 8.5^2} = 8,73, \text{ MOM}.$$

К схеме замещения нужно добавить сопротивления нулевых проводников.

Сопротивления нулевой жилы кабельных линий:

$$R_{\text{0-KJII}} = \frac{r_{\text{0KJII}} \cdot l_{\text{KJII}}}{n_{\text{KJII}}} = \frac{0.169 \cdot 36}{2} = 3,04, \text{ MOM};$$

$$R_{0-\text{KJI}2} = r_{0\text{KJI}2} \cdot l_{\text{KJI}2} = 1,95 \cdot 0,72 = 1,4, \text{ MOM};$$

Кроме этого изменятся индуктивные сопротивления кабельных линий.

$$X_{\text{KJI}} = \frac{x_{\text{OKJII}} \cdot l_{\text{KJII}}}{n_{\text{KJII}}} = \frac{0,15 \cdot 36}{2} = 2,7, \text{ MOM};$$

$$X_{\text{KJI2}} = x_{\text{OKJI2}} \cdot l_{\text{KJI2}} = 0,15 \cdot 0,72 = 0,108, \text{ MOM}.$$

Рассчитываем сопротивления для шинопровода:

$$R_{\text{IIIPA}} = r_{\text{0IIIPA}} \cdot l_{\text{IIIPA}} = 0,26 \cdot 75 = 19,5, \text{ MOM};$$

 $X_{\text{IIIPA}} = x_{\text{0IIIPA}} \cdot l_{\text{IIIPA}} = 0,2 \cdot 75 = 15, \text{ MOM}.$

На рисунке 18 представлена схема замещения для расчетов токов однофазного K3.

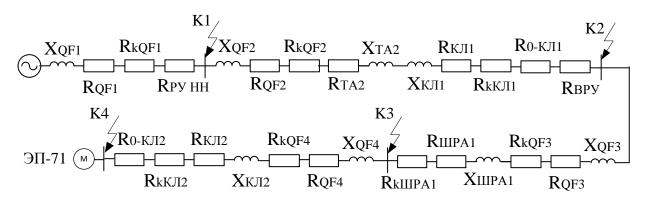


Рисунок 18 – Схема замещения

Упростим схему замещения, определим эквивалентные сопротивления на участках схемы между точками K3.

$$R_1 = R_{\rm QF1} + R_{\rm kQF1} + R_{\rm pyhh} = 0,06 + 0,07 + 15 = 15,13,\, {\rm mOm.}$$

$$X_1 = X_{\rm QF1} = 0,07,\, {\rm mOm.}$$

$$R_2 = R_{\rm QF2} + R_{\rm kQF2} + R_{\rm TA2} + R_{\rm KJI1} + R_{\rm kKJI1} + R_{\rm 0-KJI1} + R_{\rm BPY} = 0,1 + 0,15 + 0,07 + 0,004 + 0,021 + 20 = 26,42,\, {\rm mOm.}$$

$$X_2 = X_{\rm QF2} + X_{\rm TA2} + X_{\rm KJI1} = 0,1 + 0,05 + 2,7 = 2,85,\, {\rm mOm.}$$

$$R_3 = R_{\rm IIIPA} + R_{\rm kIIIPA} + R_{\rm QF3} + R_{\rm kQF3} = 19,5 + 0,009 + 0,1 + 0,15 = 19,76,\, {\rm mOm.}$$

$$X_3 = X_{\rm IIIPA} + X_{\rm QF3} = 15 + 0,1 = 15,1,\, {\rm mOm.}$$

$$R_4 = R_{\rm QF4} + R_{\rm kQF4} + R_{\rm KJI2} + R_{\rm kKJI2} + R_{\rm 0-KJI2} = 2,4 + 1 + 1,4 + 0,085 + 1,4 = 6,285,\, {\rm mOm.}$$

$$X_4 = X_{\rm QF4} + X_{\rm KJI2} = 2 + 0,108 = 2,108,\, {\rm mOm.}$$

Рассчитаем однофазный ток для точки К1.

Полное сопротивление петли «фаза ноль»:

$$Z_{\phi=0} = \sqrt{R_1^2 + X_1^2} = \sqrt{15,13^2 + 0,07^2} = 15,13, \text{ MOm}.$$

Ток однофазного КЗ:

$$I_{\kappa_3}^{(1)} = \frac{U_{\phi}}{\frac{Z_{\tau p}^{(1)}}{3} + Z_{\phi-0}} = \frac{230}{8,73 + 15,13} = 9,64, \text{ KA}.$$

Рассчитаем однофазный ток для точки К2.

Полное сопротивление петли «фаза ноль»:

$$Z_{\phi=0} = \sqrt{\left(R_1 + R_2\right)^2 + \left(X_1 + X_2\right)^2} =$$

$$= \sqrt{\left(15,13 + 26,42\right)^2 + \left(0,07 + 2,85\right)^2} = 41,65, \text{ MOM}.$$

Ток однофазного КЗ:

$$I_{\kappa 3}^{(1)} = \frac{U_{\phi}}{Z_{\tau p}^{(1)} + Z_{\phi - 0}} = \frac{230}{8,73 + 41,65} = 4,57, \text{ KA}.$$

Рассчитаем однофазный ток для точки К3.

Полное сопротивление петли «фаза ноль»:

$$\begin{split} Z_{\Phi^{-0}} &= \sqrt{\left(R_1 + R_2 + R_3\right)^2 + \left(X_1 + X_2 + X_3\right)^2} = \\ &= \sqrt{\left(15,13 + 26,42 + 19,76\right)^2 + \left(0,07 + 2,85 + 15,1\right)^2} = 63,9, \text{ MOM}. \end{split}$$

Ток однофазного КЗ:

$$I_{\kappa_3}^{(1)} = \frac{U_{\phi}}{\frac{Z_{\tau p}^{(1)}}{3} + Z_{\phi-0}} = \frac{230}{8,73 + 63,9} = 3,17, \text{ kA}.$$

Рассчитаем однофазный ток для точки К4.

Полное сопротивление петли «фаза ноль»:

$$\begin{split} Z_{\Phi^{-0}} &= \sqrt{\left(R_1 + R_2 + R_3 + R_4\right)^2 + \left(X_1 + X_2 + X_3 + X_4\right)^2} = \\ &= \sqrt{\left(15,13 + 26,42 + 19,76 + 6,285\right)^2 + \left(0,07 + 2,85 + 15,1 + 2,108\right)^2} = 70,53,\text{ MOM}. \end{split}$$

Ток однофазного КЗ:

$$I_{\kappa_3}^{(1)} = \frac{U_{\phi}}{Z_{\tau p}^{(1)}} + Z_{\phi-0} = \frac{230}{8,73 + 70,53} = 2,9, \text{ KA}.$$

Полученные результаты систематизируем и внесем в таблицу 47.

Таблица 47 – Сводная ведомость токов КЗ

Two many of the state of the st										
Расчетные точки	K1	K2	K3	K4						
$I_{\text{K3}}^{(1)}, \text{KA}$	9,64	4,57	3,17	2,9						
$I_{\mathrm{K3}}^{(2)}, \kappa\mathrm{A}$	10,44	4,8	3,74	3,4						
$I_{\mathrm{K3}}^{\scriptscriptstyle{(3)}},\kappa\mathrm{A}$	12,06	5,54	4,32	3,93						
$I_{\scriptscriptstyle { m y}{ m J}}$,к ${ m A}$	17,06	7,83	6,11	5,56						

14. Карта селективности защитных аппаратов

Карта селективности действия аппаратов защиты служит для проверки правильности выбора аппаратов защиты. Постройка карты осуществляется в логарифмической системе координат.

На рисунке 19 представлена схема для участка цеховой сети 0,4 кВ КТП4 - ЭП 71.

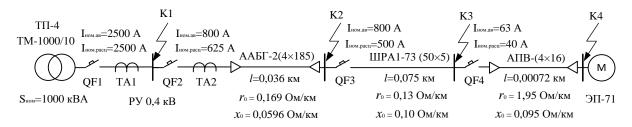


Рисунок 19 – Участок схемы цеховой сети 0,4 кВ

Данные для построения карты селективности приведены таблицах 48, 49.

Таблица 48 – Данные для построения карты селективности

	РУНН	ВРУ	IIID A 1	ЭП71	Ток КЗ, кА					
	КТП-4	БРУ	ШРА1	<i>3</i> 11/1	1	2	3	4		
I_{p} , A	1519,34	497,96	289,08	_						
$I_{\text{пик}}$, A	2364,77	735,65	444,06	_	12.06	5 5 1	4 22	2.02		
I_{HOM} , A	_		_	28,14	12,06	5,54	4,32	3,93		
$I_{\text{пуск}}$, A	_	_	_	140,68						

Таблица 49 — Данные для построения карты селективности действия аппаратов защиты

Наименование аппарата защиты	Номинальный ток расцепителя, А	Номинальный ток срабатывания уставки в зоне КЗ, А
ВА75-45 (РУНН)	2500	7500
ВА74-40 (ВРУ)	625	1250
ВА74-40 (ШРА-1)	500	1000
ВА13-29 (ЭП-71)	40	240

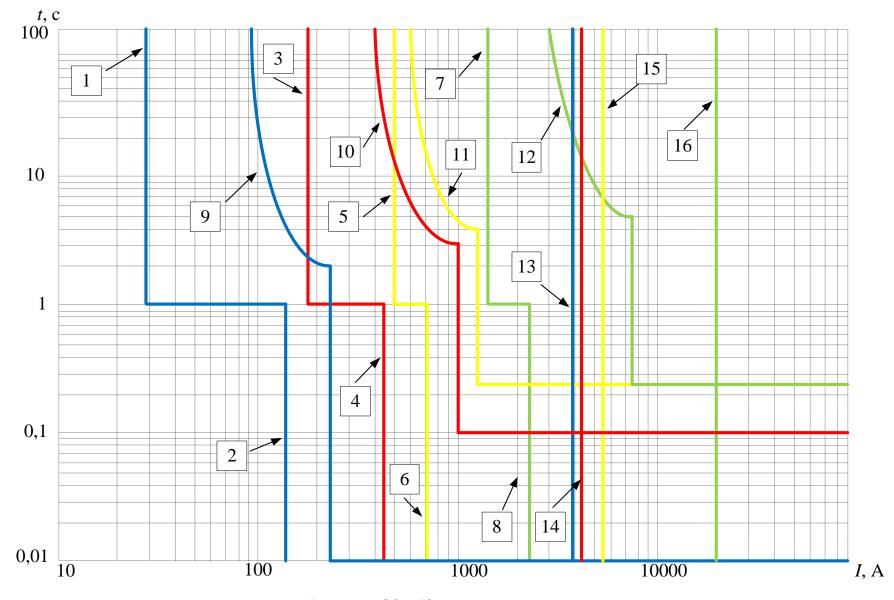


Рисунок 20 – Карта селективности

На рисунке 20 приняты следующие обозначения:

- 1 номинальный ЭП -71;
- 2 пусковой ток ЭП-71;
- 3 расчетный ток ШРА1;
- 4 пиковый ток ШРА1;
- 5 расчетный ток ВРУ;
- 6 пиковый ток ВРУ;
- 7 расчетный ток КТП-4;
- 8 пиковый ток КТП-4;
- 9 защитная характеристика автоматического выключателя ВА13-29;
- 10 защитная характеристика автоматического выключателя ВА74-40;
- 11 защитная характеристика автоматического выключателя ВА74-40;
- 12 защитная характеристика автоматического выключателя ВА75-45;
- 13 ток КЗ в точке К4;
- 14 ток K3 в точке K3;
- 15 ток КЗ в точке К2;
- 16 ток КЗ в точке К1.

16. Социальная ответственность

16.1 Описание рабочей зоны персонала

Социальная ответственность организации представляет собой систему законодательных актов и соответствующих им социально - экономических, технических, гигиенических, организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда

Целью данного раздела является оценка условий труда, анализ вредных и опасных факторов, разработка мер защиты от них, рассмотрение вопросов производственной санитарии, техники безопасности, пожарной профилактики, охраны окружающей среды, защиты в ЧС при работе электротехнического (электроэнергетического) персонала, обслуживающего проектируемую систему электроснабжения прокатно-ремонтного цеха электрооборудования базы по обслуживанию нефтяной промышленности.

Для осуществления производства в данном цехе установлена 71 единица оборудования. Технологический процесс включает в себя работу со сварочным оборудованием, станками и транспортными приспособлениями.

Персонал, обслуживающий электроустановки и оборудование проектируемой системы электроснабжения, работает в условиях возможного воздействия ряда неблагоприятных для здоровья факторов, обусловленных состоянием помещений и характером производства. В связи с этим, обязательным является соблюдение санитарных норм проектирования промышленных предприятий [9].

16.2 Анализ опасных и вредных факторов

В процессе трудовой деятельности электротехнический персонал, обслуживающий проектируемую систему электроснабжения цеха и находящейся на своем рабочем месте подвержен влиянию опасных

(вызывающие травмы) и вредных (вызывающие заболевания) производственных факторов.

К опасным относятся следующие факторы технологического процесса:

- Возможность поражение человека вращающимися частями электрооборудования (токарно-винторезный станок, универсально-заточный станок);
- Возможность поражения электричеством (работа со сварочным аппаратом, случайное прикосновение к токоведущим частям оборудования);
 - Возможность загорания (пожара);
- Возможность повышенного уровня шума и вибраций (в местах, где установлено технологическое оборудование);
- Возможность недостаточной освещенности рабочей зоны, отклонения от нормативов метеоусловий, уровня электромагнитного поля.

16.3 Производственная санитария

Производственной санитарией называется система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.

Для создания нормальных условий работы объем производственных помещений должен составлять на одного работающего не менее 15 m^3 , площадь не менее 4.5 m^2 , при высоте помещения не меньше 3.2 m.

В цехах должны быть предусмотрены гардеробные, душевые, помещения для отдыха, оздоровительные кабинеты для рабочих завода.

16.4 Воздух рабочей зоны

Большое значение для охраны здоровья и труда человека имеет качество воздуха в производственных помещениях.

По ГОСТ 12.1.005-88 [10] нормируются следующие параметры: температура, относительная влажность, скорость движения воздушного потока, ПДК вредных веществ. Эти данные приведены в таблице 61.

Таблица 61 – Нормируемое качество воздуха

·	Категория	Температура,	Относительная	Скорость
Сезон года	работы	C°	влажность, %	движения
	P		,	воздуха, м/с
	I	20-30		0,2
Холодный	IIa	18-20	60-40	0,2
период года	IIб	17-19	00-40	0,3
	III	16-18		0,3
	I	22-25		0,2
Теплый	IIa	21-23	60-40	0,3
период года	IIб	20-22	00-40	0,4
	III	18-21		0,5

При оценке допустимых значений температуры и влажности воздуха учитывается категория тяжести работ. По степени физической тяжести работа электротехнического персонала относится к категории средней тяжести III [10,11].

Параметры микроклимата в зимнее время поддерживаются системой отопления, летом – общеобменной вентиляцией.

16.5 Вентиляция

При осуществлении любого производственного процесса, как правило, всегда выделяется теплота. Источниками теплоты являются печи, котлы, паропроводы и т. д. Теплота выделяется при сжигании топлива, нагреве, при переходе электроэнергии в теплоту и т.п.

Многие производственные процессы сопровождаются выделением пыли. Проникая в организм человека при дыхании, при заглатывании и через поры кожи могут вызвать различные заболевания. Поэтому для поддержания микроклимата в цехах завода в оптимальном состоянии используется вентиляция помещений.

Вентиляция позволяет осуществлять регулируемый воздухообмен, обеспечивающий нормальные санитарно-гигиенические условия в производственных помещениях.

В цехах завода используется общеобменная, механическая приточновытяжная вентиляция. Для очистки загрязненного воздуха, выбрасываемого в атмосферу, используются пылеотделители.

16.6 Защита от шума и вибрации

Повышение звукового давления негативно влияет на орган слуха. Для измерения громкости (в децибелах Дб) может быть использован – двушкальный шумомер. В цехе допускается громкость не выше 140 Дб. Громкость выше заданной нормы может вызвать болевой эффект [12].

Шум на исследовательском рабочем месте создаётся вентиляционной системой и производственным оборудованием (станки, агрегаты).

Для защиты от шума по [13] и вибрации по [14] предусматриваются следующие меры:

- обеспечение персонала индивидуальными средствами защиты [15];
- установка звукоизолирующих кабин;
- звукоизолирующие кожухи и экраны;
- виброизолирующие материалы под оборудование (пружины, резины и другие прокладочные материалы).

Предельно допустимые уровни шума согласно [12] «Шум. Общие требования безопасности» представлены в таблице 62.

Таблица 62 – Предельно допустимые уровни шума

Рабочее место		Уровни звукового давления, дБ								
гаоочее место	31,5	63	125	250	500	1000	2000	4000	8000	шкале
Прокатно- ремонтный цех	107	95	87	82	78	75	73	71	69	80
Главный щит управления	96	83	74	68	63	60	57	55	54	65

Технические нормы вибрации согласно [16] «Вибрационная безопасность» представлены в таблице 63.

Таблица 63 – Нормы вибрации

	Среднеквадратичная частота, Гц									
Вид вибрации		Логарифмический уровень виброскорости								
_	1	2	4	8	16	31,5	63	125	250	500
Прокатно-ремонтный цех	-	103	100	101	106	112	118	-	-	-

16.7 Освещение

Оценка освещенности рабочей зоны необходима для обеспечения нормированных условий работы в помещениях и проводится в соответствии с [17].

Правильно спроектированное и выполненное освещение на предприятии, обеспечивает возможность нормальной производственной деятельности.

Наилучшим видом освещения является дневное, солнечное. Поэтому в соответствии с санитарными правилами все цеха завода имеют естественное освещение.

Однако дневной свет, зависящий также от погодных условий, не может обеспечить необходимый уровень освещенности в течении всех рабочих смен. Поэтому цеха завода обеспечиваются как естественным, так и искусственным освещением.

В качестве источников искусственного освещения применяются люминесцентные лампы.

Нормативы освещенности для прокатно-ремонтного цеха электрооборудования представлены в таблице 64.

Таблица 64 – Нормативы освещенности

•	Oc	вещенность	ь, лк	
Наименование цеха, отделения,	при комбин	ированном		
участка, технологической операции,	освещ	ении	при общем	
оборудования, рабочего места	общее +	общее	освещении	
	местное			
Общий уровень освещенности по цеху			300	
Металлорежущие станки (токарные,				
фрезерные, универсально-заточный и	2000	200		
т. д.)				
Металлорежущие шлифовальные,	2500	250		
резьбонарезные станки	2300	250		
Разметочный стол, слесарные,	2000	200	500	
лекальные работы, работа с чертежами	2000	200	300	
Отдел технического контроля (ОТК)	2500	250	750	

В соответствии с [18] территория Российской Федерации зонирована на пять групп административных районов по ресурсам светового климата, Томская область относится к первой группе.

При проектировании здания необходимо учитывать естественную освещенность и составлять планы цехов таким образом, чтобы уровень КЕО (коэффициент естественной освещенности) удовлетворял нормативным требованиям, приведенным ниже.

Таблица 65 – Нормированные значения КЕО

таолица оз – пормированные значения КЕО							
	Наименьшее нормированное значение КЕО %, при						
	совместном освещении						
Разряд зрительной работы		боковом					
	верхнем или верхнем и боковом	В зонах с					
		устойчивым	На остальной				
		снежным	территории				
		покровом					
I	3.0	1.0	1.2				
II	2.5	0.8	1.0				
III	2.0	0.6	0.7				
IV	1.5	0.4	0.5				
V	1.0	0.2	0.3				
VI	0.7	0.2	0.2				
VII	1.0	0.2	0.3				

16.8 Электромагнитные поля

Воздействие электромагнитного поля на человека можно свести к тепловому действию и специфическому действию на ткани человека, как биологические объекты.

Длительное воздействие электромагнитных полей на организм электротехнического персонала, находящегося вблизи источика электромагнитных полей, может привести к возникновению болезней.

Согласно [19] «Электромагнитные поля в производственных условиях» прибывание вблизи и работу электротехнического персонала с электрооборудованием необходимо нормировать, чтобы воздействие элетромагнитных полей не влияло на состояние здоровья человека.

Предельно допустимые уровни (ПДУ) электромагнитных полей представлены в таблицах 66 и 67.

Таблица 66 –ПДУ постоянного магнитного поля

	Условия воздействия				
Время	Общее		Локальное		
воздействия за	ПДУ	ПДУ	ПДУ	ПДУ	
рабочий день,	напряженности, кА/м	магнитной	напряженности, кА/м	магнитной	
минуты		индукции,		индукции,	
		мТл		мТл	
0-10	24	30	40	50	
11-60	16	20	24	30	
61-480	8	10	12	15	

Таблица 67 – ПДУ воздействия периодического магнитного поля

	Допустимые уровни МП, Н (мТл)/ В (мкТл) при	
Время прибывания, час	воздействии	
	Общем	Локальном
Меньше 1 часа	1600/2000	6400/8000
2	800/1000	3200/4000
4	400/500	1600/2000
8	80/100	800/1000

16.9 Электробезопасность

Основным документом, регламентирующим воздействие электрического тока в производственных условиях, является [20].

По степени опасности поражения людей электрическим током прокатно-ремонтный цех электрооборудования относится к помещениям с повышенной опасностью (2 категория), характеризующиеся наличием в них одного из следующих условий, создающих повышенную опасность, а именно возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электрооборудования – с другой.

Электрический ток представляет значительную опасность для здоровья человека непосредственно при контакте человека с токопроводящей поверхностью.

Электробезопасность — система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного действия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Прохождение электрического тока через тело человека вызывает поражение различных органов, оказывает воздействие на нервную систему, кровеносно-сосудистую систему человека, на кровь, сердце, мозг и т.д.

Виды воздействий электрического тока на организм человека:

- Термическое воздействие тока проявляется в ожогах, нагрев кровеносных сосудов, сердца, мозга и других органов, находящихся на пути протекания тока до критической температуры;
- Электролитическое действие тока выражается в разложении крови, что нарушает ее состав и функции;
- Механическое действие тока проявляется в значительном давлении в кровеносных сосудах и мышечных тканях;
- Биологическое действие тока проявляется в раздражении живых тканей, что вызывает реакцию организма возбуждение, что и обуславливает непроизвольное сокращение мышц.

При наиболее неблагоприятном исходе воздействие электрического тока может привести к смерти человека.

Для защиты персонала от поражения электрическим током в цехах завода используются следующие меры: защита от случайного прикосновения; защитное заземление; зануление.

16.10 Защита от случайного прикосновения

Для исключения возможности случайного прикосновения или опасного приближения к токоведущим частям в цехах завода обеспечивается их недоступность путем ограждения, блокировок или расположения токоведущих частей на недоступную высоту. Ограждения применяются как сплошные, в виде кожухов и крышек, применяемые в электроустановках до 1000 В, так и сетчатые, которые имеют двери, запирающиеся на замок.

В электроустановках до 1000 В ограждаются — неизолированные токоведущие части, находящиеся под напряжением части оборудования, пусковая аппаратура, открытые плавкие вставки.

В электроустановках выше 1000 В – все без исключения токоведущие части (изолированные и неизолированные) должны быть надежно ограждены

сетками, закрыты металлическими дверями, заключены в металлические ящики или расположены на недоступной высоте.

Блокировки применяются в электроустановках, в которых часто производятся работы на ограждаемых токоведущих частях и электрических аппаратах. Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях кожух. Блокировки применяются также для предупреждения ошибочных действий персонала при переключениях [4].

16.11 Защитное заземление

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.). Основное назначение защитного заземления – устранение опасности поражения персонала электрическим током при появлении напряжения на конструктивных частях электрооборудования.

16.12 Зануление

Защитное зануление в электроустановках напряжением до 1 кВ - преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с заземленной точкой источника в сетях постоянного тока, выполняемое в целях электробезопасности.

Зануление применяется в четырехпроводных сетях напряжением до 1000В с заземленной нейтралью. При занулении корпуса электрооборудования соединяются не с заземлителями, а с нулевым проводом.

Принцип действия: зануление превращает замыкание на корпус в однофазное короткое замыкание, в результате чего срабатывает максимальная токовая защита и селективно отключает поврежденный участок сети. Кроме того, зануление снижает потенциалы корпусов, появляющиеся в момент замыкания на землю. При замыкании на зануленный корпус ток короткого замыкания проходит через обмотки трансформатора, фазный провод и нулевой провод.

16.13 Мероприятия по технике безопасности и пожарной безопасности

Прокатно-ремонтный электрооборудования, цех согласно Федеральному Закону от 22.07.2008 №123-ФЗ и Техническому регламенту о пожарной безопасности относится к категории « Γ », т.е. это производство где присутствуют (хранятся, перерабатываются, транспортируются) негорючие вещества или материалы в горячем, раскаленном или расплавленном обработки состоянии, процесс которых сопровождается выделением лучистого тепла, искр и/или пламени. Перед началом работ безопасности необходимо проводить электроустановках целях организационные и технические мероприятия.

К организационным мероприятиям относят выдачу нарядов, распоряжений и допуска к работе, надзор во время работы, оформление перерывов в работе, переводов на другое рабочее место и окончание работы. Наряд и распоряжение — это задания на безопасное производство работ, определяющее их меры безопасности, места и время, а также лица, которым поручено выполнение этих работ. При работе по наряду бригада должна состоять не менее чем из двух человек - производителя работ и члена бригады.

Производитель работ отвечает за правильность подготовки рабочего места, выполнение необходимых для производства работ мер безопасности. Он же проводит инструктаж бригады об этих мерах, обеспечивает их

выполнение ее членами, следит за исправностью инструмента, такелажа, ремонтной оснастки. В зависимости от категории электроустановок (свыше или до 1000 В) производитель выполняемых работ должен иметь группу по электробезопасности не ниже IV, в установках до 1000 В и для работ, выполняемых по распоряжению, не ниже III. Перед допуском к работе ответственный руководитель и производитель работ вместе с допускающим проверяют выполнение технических мероприятий по подготовке рабочего места. После этого допускающий проверяет соответствие состава бригады и квалификации включенных в нее лиц.

Основными причинами пожара могут быть: перегрузка проводов, короткое замыкание, большие переходные сопротивления в электрических цепях, электрическая дуга, искрение и неисправности оборудования.

Согласно [21], пожарная профилактика обеспечивается: системой предотвращения пожара; системой противопожарной защиты; организационно — техническими мероприятиями. К мерам предотвращения пожара относятся: применение средств защитного отключения возможных источников загорания (защитного зануления); применение искробезопасного оборудования; применение устройства молниезащиты здания; выполнение правил (инструкций) по пожарной безопасности.

К мерам противопожарной защиты относятся: применение пожарных извещателей; средств коллективной и индивидуальной защиты от факторов пожара; системы автоматической пожарной сигнализации; порошковых или углекислотных огнетушителей, два ящика с песком 0,5 м³.

Организационно-технические мероприятия: наглядная агитация и инструктаж работающих по пожарной безопасности, разработка схемы действии администрации и работающих в случае пожара, и организация эвакуации людей; организация внештатной пожарной дружины.

При обнаружении загорания рабочий немедленно должен сообщить по телефону 01 в пожарную охрану и руководителю, далее проводится эвакуация людей и материальных ценностей. Тушение пожара организуется

первичными средствами с момента обнаружения пожара. Пострадавшим при пожаре обеспечивается скорая медицинская помощь.

16.14 Охрана окружающей среды

Работа в производственных цехах базы по обслуживанию нефтегазодобывающего месторождения сопряжена с образованием и выделением газообразных, жидких и твердых отходов.

Газообразные отходы, загрязняющие воздух: естественные выделения – углекислый газ, пары воды, летучие органические соединения (ЛОС) такие как альдегиды, кетоны, азотистые соединения и т.д., бытовая пыль. Перед помещений подвергается обязательной выбросом воздух очистке фильтровентиляционных системах, что предотвращает загрязнение атмосферы. Жидкие отходы – бытовые отходы, образующиеся в процессах влажной уборки помещений, при пользовании водопроводом, туалетом и т.п., сбрасываются в городскую канализацию и далее поступают в системы централизованной очистки на городских очистных сооружениях.

При обращении с твердыми отходами: бытовой мусор (отходы бумаги, отработанные специальные ткани для протирки оборудования и экранов мониторов, пищевые отходы и т.д.); отработанные люминесцентные лампы; офисная техника, комплектующие и запчасти, утратившие в результате износа потребительские свойства надлежит руководствоваться Постановлением Администрации г. Томска от 11.11.2009 г. №1110 (с изменениями от 24.12.2014), в котором сказано, что бытовой мусор после предварительной сортировки складируют в специальные контейнеры для бытового мусора (затем специализированные службы вывозят мусор на свалку); утратившее потребительские свойства городскую оборудование передают специальным службам (предприятиям) сортировки, вторичного использования или складирования на городских мусорных полигонах.

Отработанные люминесцентные лампы утилизируются в соответствии с Постановлением Правительства РФ от 03.09.2010 №681. Люминесцентные применяемые искусственного лампы, ДЛЯ освещения, являются ртутьсодержащими и относятся к 1 классу опасности. Ртуть люминесцентных ламп способна к активной воздушной и водной миграции. Интоксикация возможна только в случае разгерметизации колбы, поэтому основным требованием экологической безопасности является сохранность целостности отработанных ртутьсодержащих ламп. Отработанные газоразрядные лампы помещают защитную упаковку, предотвращающую повреждение колбы, и передают специализированной организации для стеклянной обезвреживания и переработки. В случае боя ртутьсодержащих ламп осколки собирают щеткой или скребком в герметичный металлический контейнер с плотно закрывающейся крышкой, заполненный раствором марганцовокислого калия. Поверхности, загрязненные боем лампы, необходимо обработать раствором марганцовокислого калия и смыть водой. Контейнер и его внутренняя поверхность должны быть изготовлены из не адсорбирующего ртуть материала (винипласта).

К сфере защиты рационального использования природных ресурсов относится и экономия ресурсов, в частности, энергетических. Наиболее весовым вкладом является экономия электрической и тепловой энергии на территории предприятия. Во-первых, улучшаются экономические показатели деятельности предприятия (уменьшение расходов на электротепловую энергию). Во-вторых, экономия энергии означает уменьшение газа, мазута, угля, сжигаемого в топках котлов ТЭС и электроустановок (котельных) промпредприятий региональных сетей, что приводит к уменьшению выбросов загрязняющих веществ в атмосферный воздух. Несмотря на кажущуюся малость вклада в энергосбережение и в защиту атмосферного воздуха от загрязнения массовое движение в этом направлении, в том числе, в быту, принесет значимый эффект.

16.15 Предотвращение ЧС и устранение их последствий

Наиболее вероятные чрезвычайные ситуации в ремонтномеханическом цехе: возникновение пожара и электропоражение. Основные причины пожара и методы его предотвращения были рассмотрены в разделе «Мероприятия по технике безопасности и пожарной безопасности».

Современная система электробезопасности обеспечивает защиту от поражения в двух наиболее вероятных и опасных случаях:

- при прямом прикосновении к токоведущим частям электрооборудования;
 - при косвенном прикосновении.

Под косвенным прикосновением понимается прикосновение человека к открытым проводящим частям оборудования, на которых в нормальном режиме (исправном состоянии) электроустановки отсутствует электрический потенциал, но при каких-либо неисправностях, вызвавших нарушение изоляции или ее пробой на корпус, на этих частях возможно появление опасного для жизни человека потенциала.

Согласно [22] «Пожарная безопасность. Общие требования» для защиты от прямого прикосновения к токоведущим частям служат изоляция токоведущих частей, применение ограждений и оболочек, установка барьеров, размещение вне зоны досягаемости, устройства защитного отключения (УЗО).

Для защиты от косвенного прикосновения применяются: защитное заземление и защитное зануление.

В случае если при электропоражении работающий внешне сохранил формат нормального самочувствия, он должен быть осмотрен врачом с заключением о состоянии здоровья, пострадавшему должна быть обеспечена скорая медицинская помощь. Предварительно пострадавший должен быть освобожден от действия электрического тока. Если при этом отключить напряжение быстро невозможно, освобождение от электричества

пострадавшего необходимо производить, изолировав себя диэлектрическими перчатками или галошами. При необходимости перерезать провода (каждый в отдельности) инструментом с изолированными ручками. Если есть необходимость (при потере сознания, остановке сердца и т.п.) оказания первой помощи, то до прибытия медработника необходимо начать делать: наружный массаж сердца, искусственное дыхание.

Для предотвращения от поражения электрическим током при прикосновении к корпусам электроустановок, находящихся под напряжением при пробое изоляции или в других случаях, необходимо рассчитать и установить защитное заземление.

16.16 Эвакуация людей из зданий и помещений

В соответствии с требованиями СНиП 21-01-97 [23] эвакуационные пути должны обеспечивать эвакуацию всех людей, находящихся в помещениях зданий и сооружений, в течение необходимого времени эвакуации. План эвакуации представлен на рисунке 10.

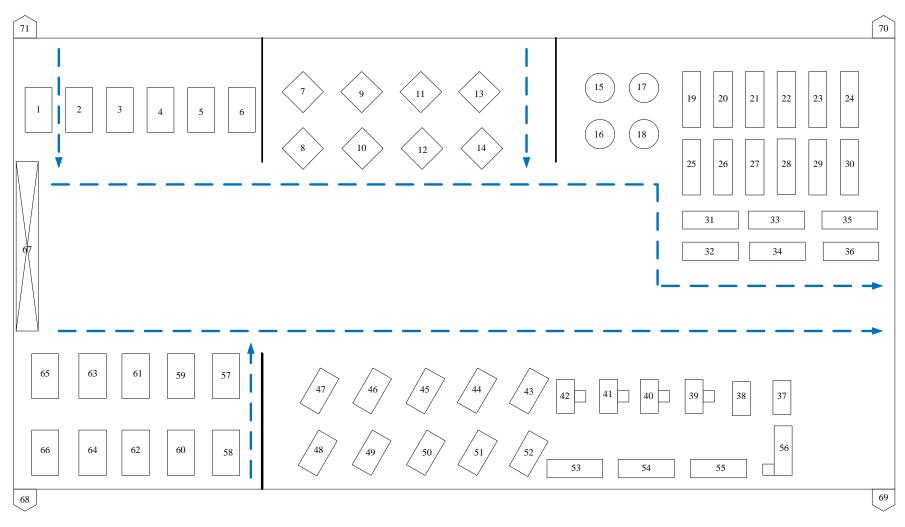


Рисунок 21 – План эвакуации в случае возникновения пожара

ЗАКЛЮЧЕНИЕ

В результате выполнения выпускной квалификационной работы была спроектирована система электроснабжения базы по обслуживания нефтяной промышленности.

Расчет электрических нагрузок прокатно-ремонтного цеха был произведен по методу коэффициента расчетной активной мощности, полная расчетная мощность которого составила $S_p = 327,75$ кВА, расчетный ток прокатно-ремонтного цеха $I_p = 497,96$ А. Полные расчетные мощности всех остальных цехов производственной базы были определены методом коэффициента спроса с учетом осветительной нагрузки, что позволило в последствии определить полную расчетная мощность всего предприятия.

В результате полученных данных расчета нагрузок предприятия была выстроена картограмма нагрузок, найден центр электрических нагрузок и рассеяния ЦЭН. По картограмме можно определены 30НЫ следующие выводы: электрическая нагрузка довольно равномерно всей распределена площади предприятия, установка главной ПО понизительной подстанции в ЦЭН невозможна, поэтому месторасположение главной понизительной подстанции смещено в сторону питающей линии на свободную территорию.

На следующем этапе произведен расчет и выбор оптимального числа и мощности цеховых трансформаторов с учетом компенсации РМ. Питание цеховых КТП осуществляется по радиальной схеме от КРУН 10 кВ кабельными линиями марки ААШв, проложенными в траншеях.

По результатам технико-экономического сравнения различных вариантов компенсации реактивной мощности наиболее экономически обоснованным оказался вариант компенсации реактивной мощности на стороне НН 0,4 кВ конденсаторными батареями.

Питание базы осуществляется от энергосистемы по воздушной линии электропередач на металлических опорах, напряжением 110 кВ. Линия

выполнена сталеалюминевым проводом марки AC-70/8. В качестве силовых трансформаторов главной понизительной подстанции выбраны два трансформатора типа ТМН – 10000/110. Коэффициент загрузки силовых трансформаторов главной понизительной подстанции составил 0,63, что способствует дальнейшей перспективе роста предприятия.

В качестве принципиальной схемы главной понизительной подстанции применена схема 4Н.

Питание электроприемников от радиального шинопровода с учетом нормальной среды помещения выполнено проводами марки АПВ, проложенными в гофрированных трубах. В качестве аппаратов защиты в сети низкого напряжения 0,4 кВ были применены автоматические выключатели. Все выбранные сечения сети 0,4 кВ прошли проверки по длительно допустимому току и по согласованию с выбранными аппаратами защиты.

Произведены необходимые расчеты токов КЗ в сетях до и выше 1000 В.

Эпюры отклонений напряжения были построены для трех режимов работы: минимального, максимального и послеаварийного. Отклонение величины напряжения от номинального не превышает значения $\pm 5\%$.

По данным полученным из расчета токов коротких замыканий в сети 0,4 кВ построена карта селективности действия аппаратов защиты, из которой можно сделать вывод о соблюдении абсолютной селективности при любых аварийных ситуациях.

С точки зрения финансового менеджмента была доказана довольно высокая конкурентоспособность и эффективность реализации в нефтяной промышленности спроектированной системы электроснабжения.

Таким образом при проектировании вновь сооружаемых систем электроснабжения необходим полный комплексный анализ электрической сети, подбор оптимальных технико-экономических решений, направленных на обеспечение эффективной, надежной и безопасной работы сети.

ЛИТЕРАТУРА

- 1. Л.П. Сумарокова. Электроснабжение промышленных предприятий. Учебное пособие. – Томск: Изд-во Томского политехнического университета, 2012. – 288 с.
- 2. Г.Н. Климова, А.В. Кабышев. Элементы энергосбережения в электроснабжении промышленных предприятий: учебное пособие/ Томск: Изд-во Томского политехнического университета, 2008. 189 с.
- 3. Кабышев А.В., Обухов С.Г. Расчет и проектирование систем электроснабжения объектов и установок: учебное пособие/ А.В. Кабышев, С.Г. Обухов. Томск: Изд-во ТПУ, 2006 248 с.
- 4. Правила устройства электроустановок: Все действующие разделы ПУЭ-6 и ПУЭ-7. Новосибирск: Сиб. Унив. Изд-во, 2009. 853 с., ил.
- 5. Руководство по эксплуатации вакуумных выключателей BB/TEL. Российская Группа Компаний «Таврида Электрик», 2012. – 58 с.
- Математическое Обухов С.Г. моделирование В системах электроснабжения: методические указания к выполнению лабораторных работ ПО курсу «Математическое моделирование системах электроснабжения» ДНЭО, обучающихся ДЛЯ студентов направлению 140400 «Электроэнергетика И электротехника», профиль «Электроснабжение промышленных предприятий» / С.Г.Обухов; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2014. – 74 c.
- 7. Видяев И.Г., Серикова Г.Н., Гаврикова Н.А. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение. Томск: ТПУ, 2014. 37 с.
- 8. Фатхутдинов Р. А. Производственный менеджмент: Учебник для вузов. 4-е изд. СПб: 2003. 491 с.
- 9. СП 2.2.1.1312-03. Гигиенические требования к проектированию вновь строящихся и реконструируемых промышленных предприятий:

- Санитарно-эпидемиологические правила. М.: Федеральный центр госсанэпиднадзора Минздрава России, 2003. 40 с.
- 10. ГОСТ 12.1.005-88. Общие санитарно-гигиенические требования к воздуху рабочей зоны. М.: Стандартинформ, 2006. 50 с.
- 11. СанПиН 2.2.2/2.4.1340-03. Гигиенические требования к ПЭВМ и организации работы. М.: Минздрав России, 2003. 56 с.
- 12. ГОСТ 12.1.003-83. Система стандартов безопасности труда (ССБТ). Шум. Общие требования безопасности. М.: Стандартинформ, 1989. 13 с.
- 13. СанПиН 2.2.4/2.1.8.562 96. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки. М.: Минздрав России, 1996. 21 с.
- 14. СанПиН 2.2.4/2.1.8.566 96. Производственная вибрация, вибрация в помещениях жилых и общественных зданий. М.: Минздрав России, 1997. 41 с.
- 15. ГОСТ 12.4.011 89. Система стандартов безопасности труда (ССБТ). Средства защиты работающих. Общие требования и классификация. М.: Стандартинформ, 2000. 8 с.
- 16. ГОСТ 12.1.012 90. Система стандартов безопасности труда. Вибрационная безопасность. М.: Стандартинформ, 2006. 31 с.
- 17. СанПиН 2.2.1/2.1.1.1278-03. Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий. М.: Минздрав России, 2003. 28 с.
- 18. СНи Π 23-05-95. Естественное и искусственное освещение. М.: Минстрой России, 2010. 76 с.
- 19. СанПиН 2.2.4.1191-03. Электромагнитные поля в производственных условиях. М.: Минздрав России, 2003. 38 с.
- 20. ГОСТ 12.1.009-76. Система стандартов безопасности труда. Электробезопасность. Термины и определения. М.: Стандартинформ, 2010. 16 с.

- 21. ГОСТ 12.0.003-74 (СТ СЭВ 790-77). Опасные и вредные производственные факторы. Классификация. М.: Стандартинформ, 2000. 4 с.
- 22. ГОСТ 12.1.004-91. Пожарная безопасность. Общие требования. М.: Стандартинформ, 2006. 83 с.
- 23. СНиП 21-01-97. Пожарная безопасность зданий и сооружений. М.: Минстрой России, 2007. 38 с.