СПИСОК ЛИТЕРАТУРЫ

- 1. Дуплякин В.К. Современные проблемы российской нефтепереработки и отдельные задачи ее развития // Российский химический журнал. 2007. T. 51. N 4. C. 11-12.
- Нефедов Б.К. Углубленная переработка нефтяных остатков как стратегическое направление развития нефтеперерабатывающей промышленности России в 2010—2020 гг. // Катализ в промышленности. — 2010. — № 4. — С. 39—51.
- Кравцов А.В., Иванчина Э.Д. Компьютерное прогнозирование и оптимизация производства бензинов. Физико-химические и технологические основы. – Томск: STT, 2000. – 192 с.
- Бабицкий С.Л., Смолин А.В., Рослик В.В., и др. Опыт промышленного применения моделирующего стенда каталитического риформинга бензинов // Нефтепереработка и нефтехимия. – 2004. – № 11. – С. 37–44.
- Кравцов А.В., Иванчина Э.Д. Компьютерное прогнозирование оптимальной эксплуатации промышленных установок риформинга. – Томск: Изд-во СО РАН, 1992. – 65 с.
- Долганов И.М., Францина Е.В., Афанасьева Ю.И., Иванчина Э.Д., Кравцов А.В. Моделирование промышленных нефтехимических процессов с использованием объектно-ориенти-

- рованного языка Delphi // Известия Томского политехнического университета. -2010. − T. 317. -№ 5. − C. 57-61.
- Кравцов А.В., Иванчина Э.Д., Галушин С.А., Полубоярцев Д.С. Системный анализ и повышение эффективности нефтеперерабатывающих производств методом математического моделирования. – Томск: Изд-во ТПУ, 2004. – 170 с.
- Костенко А.В., Молотов К.В., Иванчина Э.Д., Кравцов А.В., Фалеев С.А., Абрамин А.Л. Разработка и применение технологических критериев оценки активности и стабильности Рt-катализаторов риформинга бензинов методом математического моделирования // Нефтепереработка и нефтехимия. — 2007. — № 6. — С. 18—22.
- Кравцов А.В., Иванчина Э.Д., Молотов К.В., Фалеев С.А., Шарова Е.С. Повышение эффективности реакционных процессов нефтепереработки методом математического моделирования // Труды IX Петербургского Междунар. Форума ТЭК. – Санкт-Петербург, 25–27 марта 2009. – СПб.: Химиздат, 2009. – С. 198–201.

Поступила 08.06.2011 г.

УДК 66.01;004.422.8

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ УСТАНОВКИ ПРОИЗВОДСТВА ЛИНЕЙНЫХ АЛКИЛБЕНЗОЛОВ

И.О. Долганова, Е.Н. Ивашкина, Э.Д. Иванчина

Томский политехнический университет E-mail: dolganovaio@sibmail.com

Разработана компьютерная моделирующая система для процесса алкилирования бензола высшими олефинами. Предложен алгоритм поиска оптимальных технологических параметров с использованием разработанного программного продукта. Показана возможность применения методов математического моделирования к решению задач оптимизации взаимосвязанных процессов алкилирования и регенерации катализатора.

Ключевые слова:

Математическая модель, алгоритм расчета, алкилирование, алкилбензол, критерий оптимальности.

Kev words

Mathematical model, calculation algorithm, alkylation, alkylbenzene, optimality criterion.

Программные комплексы, разработанные с использованием языков объектно-ориентированного программирования, могут применяться не только для создания автономного программного обеспечения, но также для мониторинга и прогнозирования режимов работы промышленных установок на предприятиях любого профиля. Химическая промышленность не является исключением.

В условиях многофакторной зависимости показателей эффективности промышленного процесса от технологических условий и состава перерабатываемого сырья при оптимизации химико-технологических процессов хорошо себя зарекомендовали методы математического моделирования и разработанные на их основе компьютерные моделирующие системы [1, 2]. В основе таких систем лежат физико-химические закономерности протекающих процессов.

Несмотря на наличие работ по математическому моделированию [3, 4], вопрос комплексной оптимизации работы промышленных установок остается нерешенным. Изменение технологического режима может привести к повышению эффективности работы одного реактора, но негативно сказаться на качестве продуктов, получаемых на последующих стадиях, и даже привести к сбою в работе установки. Поэтому чрезвычайно важно поддерживать наиболее выгодный технологический режим с точки зрения всех процессов химико-технологической системы.

Одним из перспективных направлений развития нефтеперерабатывающей промышленности является производство синтетических моющих средств, и, следовательно, линейных алкилбензолов (ЛАБ) как одного из видов сырья для их производства [5, 6]. При этом процесс алкилирования

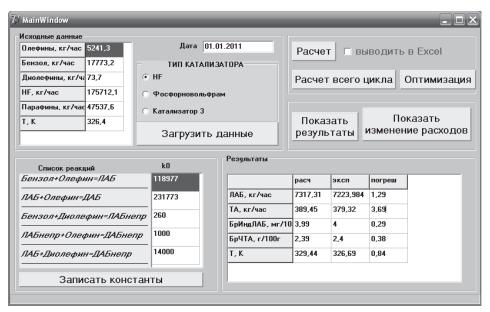


Рис. 1. Главное диалоговое окно программы

бензола высшими олефинами является ключевым этапом технологического процесса [7].

В случае процесса алкилирования проблема заключается в следующем: образование ненасыщенных ЛАБ нежелательно на стадии алкилирования, так как их избыток приводит к снижению качества целевого продукта. В то же время на последующей стадии регенерации HF — катализатора процесса — должно быть такое количество непредельных соединений, которое будет достаточно для предотвращения сбоя в работе колонны-регенератора вследствие образования пленки из моющих средств в кубе аппарата.

Целью данной статьи являлась разработка компьютерной моделирующей системы процесса алкилирования бензола олефинами, позволяющей устанавливать оптимальный технологический режим в реакторе при сохранении бесперебойной работы колонны регенерации катализатора.

Разработка компьютерной программы включает этапы:

- построение схемы превращения углеводородов;
- термодинамический анализ возможности протекания реакций;
- определение гидродинамического и теплового режимов работы реактора;

Таблица 1. Сравнение расчетных и экспериментальных данных по выходу ЛАБ и ТА

Дата	Выход ЛАБ, кг/ч		Δ, %	Выход ТА, кг/ч		A 0/	<i>ВІ</i> , мг/100 г.		Δ, %	ВN, г/100 г.		Δ, %
	Расч.	Эксп.	Δ, 70	Расч.	Эксп.	Δ, %	Расч.	Эксп.	Δ, %	Расч.	Эксп.	Δ , 70
06.02.2007	7111	7109	0,0	271	282	3,9	3,4	3,3	3,1	2,4	2,5	1,2
08.02.2007	7374	7356	0,2	297	322	7,7	3,3	3,1	8,3	2,4	2,4	2,1
09.02.2007	7293	7250	0,6	286	331	13,9	3,4	3,2	8,2	2,5	2,5	0,3
11.02.2007	7254	7227	0,4	281	313	10,4	3,4	3,3	5,5	2,5	2,5	0,0
18.02.2009	7412	7442	0,4	292	277	5,5	2,76	2,50	10,2	2,05	2,27	9,5
25.02.2009	7352	7380	0,4	282	268	5,2	3,1	3,0	1,8	2,3	2,2	2,9
05.02.2010	7218	7212	0,1	277	294	5,9	2,6	2,5	4,3	1,9	1,8	4,3
08.03.2010	7292	7270	0,3	298	330	9,6	2,6	3,0	13,7	1,8	1,8	1,5
30.03.2010	7499	7543	0,6	307	281	9,4	2,9	3,0	2,4	2,1	2,3	6,0
13.08.2010	7441	7494	0,7	296	263	12,6	2,6	3,0	12,0	2,0	2,1	2,9
25.08.2010	7274	7306	0,4	292	275	6,3	3,0	3,0	0,5	2,2	1,9	15,1
08.10.2010	7145	7153	0,1	273	276	1,1	3,2	3,5	8,3	2,3	2,1	14,3
19.01.2011	7302	7264	0,5	289	338	14,4	4,8	4,5	6,0	3,5	3,4	1,9

 Δ – погрешность расчета; ВІ – бромный индекс ЛАБ; ВN – бромное число ТА.

• создание математической модели процесса и ее компьютерная реализация.

В работе [2] приведена поэтапная методика разработки математического описания процесса алкилирования бензола олефинами, основанная на результатах термодинамического анализа и экспериментальных данных с промышленной установки.

На рис. 1 представлено главное диалоговое окно разработанного в среде Delphi 7.0 программного продукта.

Программа обеспечивает достаточную сходимость расчетных и экспериментальных данных [2] (средняя погрешность расчета 15 %) по основным количественным и качественным показателям процесса алкилирования: выходу ЛАБ и тяжелого алкилата (ТА), бромному индексу ЛАБ и бромному числу ТА (табл. 1).

Компьютерная моделирующая система процесса алкилирования предусматривает выполнение следующих функций: типовой расчет при заданных технологических параметрах и составе сырья, расчет массива исходных данных (расчет цикла), корректировка кинетических параметров, а также оптимизация работы реактора алкилирования и колонны регенерации катализатора.

Основные направления использования математической модели процесса алкилирования заключаются в:

- регулировании соотношения ТА/НF в кубе колонны путем корректировки расходов бензола и олефинов на стадии прогнозного расчета;
- выявлении таких технологических параметров и расходов сырьевых потоков, при которых будет обеспечена бесперебойная работа колонны регенерации кислоты с сохранением требуемого качества продуктов процесса алкилирования.

В этой связи возникла задача разработки алгоритма оптимизации работы реактора и колонны регенерации кислоты.

Для исследования связей между оптимальными режимами работы реактора алкилирования и колонны регенерации необходимо определиться с параметрами, влияющими на показатели эффективности их работы.

Можно выделить ряд зависимых и независимых параметров (табл. 2).

Таблица 2. Связь между зависимыми и независимыми параметрами

Независимый	Зависимый параметр Выход ЛАБ, ТА, бромные числа продуктов				
параметр Температура					
Температура					
Расход бензола в реактор	Выход ЛАБ, ТА, бромные числа продуктов, мольное содержание непредельных соеди- нений в смеси ТА и НF в колонне				
Расход HF в ре- актор	Мольное содержание ТА в смеси ТА и HF				

Ориентируясь на значимые параметры, алгоритм оптимизации процессов алкилирования и регенерации катализатора можно представить следующим образом:

- выбирают интервалы и шаги варьирования параметров, табл. 3;
- рассчитывают процесс алкилирования на модели при каждом наборе независимых параметров;
- из набора вариантов расчета выбирают режим, который удовлетворяет критериям оптимальности:
 - максимальный выход ЛАБ;
 - минимальный выход ТА;
 - минимальное мольное содержание ТА в смеси тяжелого алкилата с кислотой;
 - максимальное мольное содержание непредельных углеводородов в смеси тяжелого алкилата с кислотой;
 - минимальный бромный индекс ЛАБ;
 - минимальное бромное число ТА.

Первые три критерия отвечают за выход целевого и побочного продуктов, следующие три - за их качество.

Таблица 3. Интервалы варьирования независимых параметров

Независимый параметр	Интервал варьирования	Шаг варьирования		
Температура, К	323333	2		
Расход бензола, т/ч	1422	0,5		
Расход HF, т/ч	150190	10		

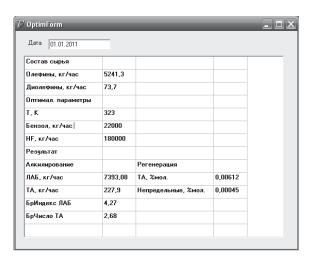
Можно выделить два основополагающих критерия оптимальности:

$$\frac{G_{\scriptscriptstyle LAB}}{G_{\scriptscriptstyle TA}} \rightarrow \max; \ \frac{(x_{\scriptscriptstyle LN} + x_{\scriptscriptstyle DN})}{(x_{\scriptscriptstyle TA} + x_{\scriptscriptstyle HF})(BI + BN)} \rightarrow \max.$$

Здесь G_{LAB} и G_{TA} — расходы ЛАБ и ТА, кг/ч; x_{LN} , x_{DN} , x_{TA} , x_{HF} — число моль непредельных ЛАБ и ДАБ, ТА и НЕ

Следовательно, произведение этих критериев также должно стремиться к максимуму:

$$\frac{G_{LAB}}{G_{TA}} \frac{(x_{LN} + x_{DN})}{(x_{TA} + x_{HF})(BI + BN)} \rightarrow \max.$$


Оптимальным будем считать тот технологический режим, при котором данный критерий будет максимален. Должна быть произведена проверка выполнения следующих условий, отвечающих за качество ЛАБ и ТА и стабильность работы колонны регенерации:

- 1. *BI*<15 мг/100 г;
- 2. $BN<15 \Gamma/100 \Gamma$;
- 3. $(x_{LN}+x_{DN})/(x_{TA}+x_{HF})\geq 0.33\%$ (нижняя граница содержания непредельных соединений в колонне, выявленная при анализе экспериментальных данных).

Диалоговое окно модуля, реализующего процедуру оптимизации, приведено на рис. 2.

С применением описанного алгоритма найден оптимальный набор технологических параметров для реактора алкилирования: температура 323 К; расход бензола 22 т/ч; расход кислоты 189 т/ч.

Результаты расчета на модели при оптимальных параметрах и сравнение оптимальных результатов с текущими представлено в табл. 4.

Рис. 2. Диалоговое окно модуля оптимизации технологического режима

Согласно полученным результатам, средний прирост в выходе ЛАБ составит 81 кг/ч, а падение выхода тяжелого алкилата — 65 кг/ч. Ориенитуясь на рыночную стоимость ЛАБ и ТА, можно рассчитать, что годовой доход предприятия увеличится на 15.4 млн р/год.

Качество ЛАБ и ТА при оптимальных технологических параметров хоть и незначительно снижается (за счет роста BI и BN), но остается в пределах нормы (до 15 мг/100 г и до 15 г/100 г соответственно).

Выводы

1. Предложен и программно реализован алгоритм поиска оптимальных технологических параметров для процессов алкилирования бензола олефинами и регенерации кислоты, который заключается в последовательном варьировании независимых параметров.

СПИСОК ЛИТЕРАТУРЫ

- Фетисова В.А., Ивашкина Е.Н., Иванчина Э.Д., Кравцов А.В. Построение математической модели процесса алкилирования бензола высшими олефинами // Катализ в промышленности. – 2009. – № 6. – С. 27–33.
- Кравцов А.В., Шнидорова И.О., Ивашкина Е.Н., Фетисова В.А., Иванчина Э.Д. Разработка компьютерной моделирующей системы как инструмента для повышения эффективности процесса производства линейных алкилбензолов // Мир нефтепродуктов. Вестник нефтяных компаний. 2009. № 9–10. С. 39–45.
- Долганов И.М., Францина Е.В., Афанасьева Ю.И., Иванчина Э.Д., Кравцов А.В. Моделирование промышленных нефтехимических процессов с использованием объектно-ориентированного языка Delphi // Известия Томского политехнического университета. – 2010. – Т. 317. – № 5. – С. 53–57.

Таблица 4. Сравнение результатов расчета при текущих/оптимальных параметрах

Дата	ЛАБ, кг/ч	ТА, кг/ч	<i>BI</i> , мг/100 г.	<i>BN</i> , г/100 г.	ТА/(ЛАБ+ТА), %
09.02.2007	7295/7361	286/232	2,2/3,5	2,0/2,1	2,3/1,8
10.04.2007	7114/7201	292/221	2,5/3,6	2,3/2,2	2,4/1,8
05.07.2007	7029/7139	306/217	1,9/3,6	1,7/2,2	2,5/1,8
30.08.2007	6998/7069	271/213	3,0/3,6	1,8/2,2	2,2/1,8
30.01.2008	7152/7214	266/216	2,8/4,1	2,6/2,6	2,2/1,8
10.02.2008	7076/7140	264/212	3,1/4,4	2,8/2,8	2,2/1,7
02.05.2008	7144/7229	286/218	4,3/5,9	3,9/3,7	2,3/1,8
04.03.2009	7244/7314	285/228	1,9/3,5	1,8/2,1	2,3/1,8
03.06.2009	7231/7311	287/222	2,1/3,7	1,9/2,3	2,3/1,8
12.08.2009	7445/7519	296/236	2,4/4,2	2,3/2,6	2,3/1,8
20.10.2009	7354/7426	289/230	2,7/3,9	2,5/2,5	2,3/1,8
30.12.2009	7278/7351	285/225	2,0/3,4	1,9/2,1	2,3/1,8
01.03.2010	7184/7249	269/219	2,6/4,7	2,3/2,9	2,2/1,8
02.04.2010	7444/7521	306/242	2,2/3,4	2,0/2,1	2,4/1,9
15.08.2010	7448/7527	301/237	1,9/3,0	1,8/1,9	2,3/1,8
01.09.2010	7436/7514	306/242	2,0/3,4	1,8/2,1	2,4/1,9
02.11.2010	7111/7281	359/226	1,5/3,6	1,4/2,2	2,9/1,8
08.12.2010	7089/7166	274/213	2,7/5,0	2,6/3,2	2,2/1,7
01.01.2011	7317/7393	289/228	2,6/4,3	2,4/2,7	2,3/1,8
26.01.2011	7963/8041	335/273	2,8/4,6	2,7/2,9	2,4/2,0

- 2. Практический результат от поддержания рекомендуемого технологического режима заключаются в увеличении селективности процесса по отношению к целевому продукту линейному алкилбензолу; повышении бромных чисел продуктов в допустимых пределах (качество линейного алкилбензола); приросте годового дохода предприятия.
- Смышляева Ю.А., Иванчина Э.Д., Кравцов А.В., Зыонг Чи Туен. Учет интенсивности межмолекулярных взаимодействий компонентов смеси при математическом моделировании процесса компаундирования товарных бензинов // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. – 2010. – № 9. – С. 9–14.
- Кравцов А.В., Иванчина Э.Д., Ивашкина Е.Н., Шарова Е.С. Системный анализ химико-технологических процессов. – Томск: Изд-во ТПУ, 2008. – 96 с.
- Шнидорова И.О., Фетисова В.А., Ивашкина Е.Н., Иванчина Э.Д., Функ А.А. Разработка кинетической модели процесса алкилирования бензола олефинами // Известия Томского политехнического университета. – 2009. – Т. 314. – № 3. – С. 89–93.
- 7. Баннов П.Г. Процессы переработки нефти. М.: ЦНИИТЭнефтехим, 2001. — 625 с.

Поступила 28.03.2011 г.