СПИСОК ЛИТЕРАТУРЫ

- 1. Рыжов Ю.П. Дальние электропередачи сверхвысокого напряжения. М.: Издательский дом МЭИ, 2007. 488 с.
- Готман В.И., Маркман Г.З. Обобщенные статические характеристики электроэнергетических подсистем и их коэффициенты крутизны // Известия Томского политехнического университета. 2007. Т. 311. № 4. С. 131–134.
- Готман В.И. Единый алгоритм оценки статической устойчивости и расчета установившихся режимов энергосистем // Изве-
- стия Томского политехнического университета. -2007. Т. 311. № 4. С. 134-138.
- Жданов П.С. Вопросы устойчивости электрических систем. М.: Энергия, 1979. – 455 с.
- Готман В.И., Глазачев А.В. Эквивалентирование энергосистем для оценки статической устойчивости // Известия Томского политехнического университета. — 2010. — Т. 316. — № 4. — С. 152—155.

Поступила 04.02.2011 г.

УДК 537.1:537.3

РАСШИРЕННЫЙ МЕТОД ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА ПРИ СИНУСОИДАЛЬНЫХ ТОКАХ

Г.В. Носов, Е.О. Кулешова

Томский политехнический университет E-mail: nosov@tpu.ru

Приведен расширенный метод эквивалентного генератора при синусоидальных токах, позволяющий определять ток в нагрузке и суммарные активную и реактивную мощности в исходной цепи. Предложена комплексная схема замещения расширенного эквивалентного генератора и даны расчетные формулы определения её параметров при заданном режиме изменения комплексного сопротивления нагрузки и мощностей в исходной цепи.

Ключевые слова:

Метод эквивалентного генератора, активный двухполюсник, напряжение холостого хода, ток короткого замыкания, активная мощность, реактивная мощность, активное сопротивление, реактивное сопротивление.

Key words:

The method of equivalent generator, active dipole, the open circuit voltage, short circuit current, active power, reactive power, resistance, reactance.

При синусоидальных токах и напряжениях для определения в нагрузке линейной исходной цепи комплекса действующего значения тока $\dot{I}_{\rm H}$ часто применяется метод эквивалентного генератора [1—3], когда вся внешняя к нагрузке цепь как активный двухполюсник заменяется одним эквивалентным генератором с комплексом действующего значения ЭДС \dot{E}_{Γ} и комплексным внутренним сопротивлением Z_{Γ} (рис. 1).

В результате ток в нагрузке рассчитывается так

$$\dot{I}_{\rm H} = \frac{\dot{E}_{\rm \Gamma}}{Z_{\rm \Gamma} + Z_{\rm H}},\tag{1}$$

причем ЭДС \dot{E}_Γ равна напряжению холостого хода $\dot{U}_{\rm H} = \dot{U}_{\rm X}$ при $Z_{\rm H} = \infty$ и $\dot{I}_{\rm H} = 0$, а сопротивление Z_Γ эквивалентного генератора находится с учетом тока короткого замыкания $\dot{I}_{\rm H} = \dot{I}_{\rm K}$ при $Z_{\rm H} = 0$ и $\dot{U}_{\rm H} = 0$:

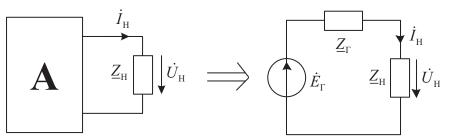
$$\underline{Z}_{\Gamma} = \frac{\dot{U}_{X}}{\dot{I}_{K}} = R_{\Gamma} + jX_{\Gamma}.$$
 (2)

Однако метод эквивалентного генератора не позволяет определять суммарные с учетом нагрузки значения активной P и реактивной Q мощностей в исходной цепи, которые могут потребоваться, например, для определения оптимального значения сопротивления $Z_{\rm H}$, обеспечивающего

максимальную эффективность передачи η в нагрузку активной энергии:

$$\eta = \frac{P_{\rm H}}{\sqrt{P^2 + Q^2}},\tag{3}$$

где $I_{\rm H} \! = \! |\dot{I}_{\rm H}| -$ действующее значение тока нагрузки; $P_{\rm H} \! = \! I_{\rm H}{}^2 R_{\rm H} -$ активная мощность нагрузки.


Таким образом, актуальность расширения возможностей метода эквивалентного генератора с целью определения мощностей в исходной цепи не вызывает сомнений.

Для этого в схему эквивалентного генератора, рис. 1, введем дополнительное комплексное сопротивление $Z_{\perp} = R_{\perp} + j X_{\perp}$, которое совместно с сопротивлениями Z_{Γ} и $Z_{\rm H}$ будет задавать мощности P и Q исходной цепи, рис. 2, причем величины $\dot{E}_{\Gamma} = \dot{U}_{\rm X}$ и $Z_{\Gamma} = \dot{U}_{\rm X}/\dot{I}_{\rm K}$ сохраняют свои значения.

В результате ток будет рассчитываться согласно (1), а сопротивление $Z_{\mathbb{A}}$ найдем из баланса активной P и реактивной мощности Q в схеме рис. 2:

$$P = \frac{U_{X}^{2} \cdot R_{\Pi}}{R_{\Pi}^{2} + X_{\Pi}^{2}} + I_{H}^{2} \cdot (R_{\Gamma} + R_{H});$$

$$Q = \frac{U_{X}^{2} \cdot X_{\Pi}}{R_{\Pi}^{2} + X_{\Pi}^{2}} + I_{H}^{2} \cdot (X_{\Gamma} + X_{H}),$$
(4)

Рис. 1. Комплексная схема замещения эквивалентного генератора: А – активный двухполюсник; $\underline{Z}_H = R_H + jX_H - комплексное$ сопротивление нагрузки; $\dot{U}_H = \dot{I}_H Z_H - komnnekc$ действующего значения напряжения нагрузки

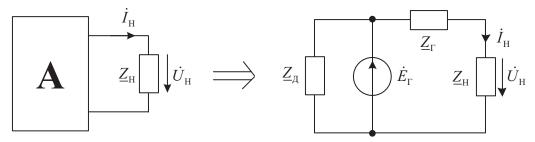


Рис. 2. Комплексная схема замещения расширенного эквивалентного генератора

где $U_X = |\dot{U}_X|$ — действующее значение напряжения холостого хода.

С учетом (1) действующее значение тока нагрузки составит

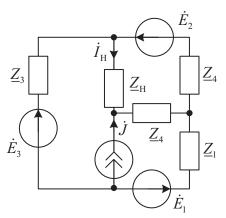
$$I_{\rm H} = \frac{U_{\rm X}}{\sqrt{(R_{\rm \Gamma} + R_{\rm H})^2 + (X_{\rm \Gamma} + X_{\rm H})^2}},\tag{5}$$

тогда на основании формул (4) и (5) получаем расчетный параметр

$$\lambda = \frac{R_{\rm A}}{X_{\rm A}} = \frac{P[(R_{\rm \Gamma} + R_{\rm H})^2 + (X_{\rm \Gamma} + X_{\rm H})^2] - U_{\rm X}^2(R_{\rm \Gamma} + R_{\rm H})}{Q[(R_{\rm \Gamma} + R_{\rm H})^2 + (X_{\rm \Gamma} + X_{\rm H})^2] - U_{\rm X}^2(X_{\rm \Gamma} + X_{\rm H})}, (6)$$

реактивную составляющую дополнительного сопротивления

$$X_{\mathrm{A}} = \frac{U_{\mathrm{X}}^{2}[(R_{\mathrm{\Gamma}} + R_{\mathrm{H}})^{2} + (X_{\mathrm{\Gamma}} + X_{\mathrm{H}})^{2}]}{(1 + \lambda^{2}) \left\{ Q[(R_{\mathrm{\Gamma}} + R_{\mathrm{H}})^{2} + (X_{\mathrm{\Gamma}} + X_{\mathrm{H}})^{2}] - \right\}}, \quad (7)$$


активную составляющую дополнительного сопротивления

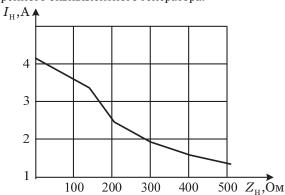
$$R_{\pi} = \lambda X_{\pi}. \tag{8}$$

В формулах (6—8) мощности P и Q являются суммарными мощностями в исходной цепи при конкретном значении сопротивления нагрузки $Z_{\rm H} = R_{\rm H} + j X_{\rm H}$. Очевидно, что при изменении сопротивления $Z_{\rm H}$ будут меняться мощности P, Q и параметры дополнительного сопротивления λ , $R_{\rm L}$, $X_{\rm R}$. Поэтому из режимов холостого хода и короткого замыкания находим расчетом или экспериментально значения напряжения холостого хода $\dot{U}_{\rm H} = \dot{U}_{\rm X}$ и тока короткого замыкания $\dot{I}_{\rm H} = \dot{I}_{\rm K}$, по формуле (2) вычисляем сопротивление $Z_{\rm F}$. При заданном режиме изменения нагрузки для нескольких значений сопротивления $Z_{\rm H}$ рассчитываем или определяем

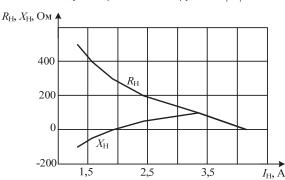
экспериментально соответствующие значения мощностей P и Q, а затем вычисляем по формулам (6—8) параметры λ , $R_{\rm д}$, $X_{\rm д}$. Далее можно проводить исследования в схеме расширенного эквивалентного генератора, рис. 2, с целью нахождения тока (1), мощностей P, Q и эффективности (3). Рассчитанные составляющие дополнительного сопротивления $R_{\rm д}$ и $X_{\rm d}$ могут задаваться графически или приближенными аналитическими зависимостями.

Для иллюстрации применения расширенного метода эквивалентного генератора в качестве примера рассмотрим линейную исходную цепь, комплексная схема замещения которой приведена на рис. 3.

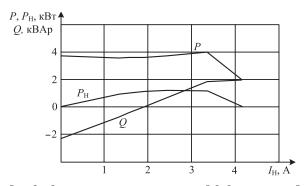
Рис. 3. Комплексная схема замещения исходной цепи с параметрами: \dot{E}_1 =100-j100, B; \dot{E}_2 =100+j100, B; \dot{E}_3 =300+j300, B; \dot{J} =4-j4, A; \underline{Z}_1 =100+j200, D0м; \underline{Z}_2 =100-j100, D0м; \underline{Z}_5 =50+j50, D0м; \underline{Z}_4 =50+j100, D0м

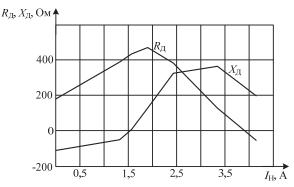

Из режимов холостого хода (Z_H = ∞) и короткого замыкания (Z_H =0) определяем:

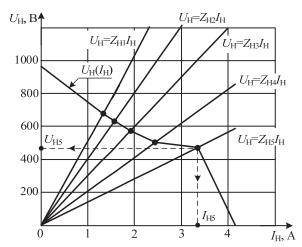
$$\dot{U}_{\rm X}$$
=-935,155+ j 241, B; $U_{\rm X}$ =965,71, B; $\dot{I}_{\rm K}$ =-3,821- j 1,61, A; $Z_{\rm F}$ =185,28- j 141,124, Om.


Таблица.	Параметры	расширенного	эквивалентного	генератора
----------	-----------	--------------	----------------	------------

$\underline{Z}_{H} = R_{H} + jX_{H}$, OM	$Z_{\rm H}= \underline{Z}_{\rm H} $, Om	<i>I</i> _H , A	$U_{H}=Z_{H}I_{H}$, B	<i>P</i> , Вт	<i>Q</i> , вар	λ, -	<i>R</i> д, Ом	<i>X</i> д, Ом
∞	∞	0	965,71	3730	-2316	-1,61	180,46	-112,11
<u>Z</u> _{H1} =500− <i>j</i> 100	Z _{H1} =509	1,33	677,92	3574	-731	-7,75	388,17	-50,07
<u>Z</u> _{H2} =400− <i>j</i> 50	Z _{H2} =403	1,57	632,36	3582	-434	59,42	435,17	7,32
<u>Z</u> _{H3} =300	Z _{H3} =300	1,91	573,33	3613	-5	3,61	470,33	130,28
<u>Z</u> _{H4} 200+ <i>j</i> 50	Z _{H4} =206	2,44	502,92	3707	663	1,17	381,87	325,36
<u>Z</u> _{H5} 100+ <i>j</i> 100	Z _{H5} =141	3,35	473,88	4002	1822	0,35	127,42	363,75
0	0	4,15	0	1979	196	-0,28	-54,24	197,44


Для заданных значений сопротивления нагрузки $Z_{\rm H}$ в таблице и на рис. 4—9 приведены полученные по формулам (1—8) с использованием системы Mathcad [4] результаты расчета параметров расширенного эквивалентного генератора.


Рис. 4. Зависимость действующего значения тока нагрузки $I_{\rm H}$ от модуля сопротивления нагрузки $Z_{\rm H}{=}|\bar{Z}_{\rm H}|$


Рис. 5. Зависимости активной $R_{\rm H}$ и реактивной составляющей $X_{\rm H}$ сопротивления нагрузки $\underline{Z}_{\rm H}$ от действующего значения тока нагрузки $I_{\rm H}$

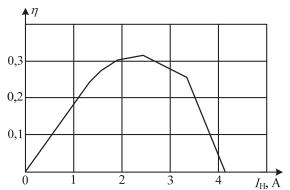

Рис. 6. Зависимости активных мощностей P, P_H и реактивной мощности Q от действующего значения тока нагрузки I_H

Рис. 7. Зависимости активной $R_{\rm L}$ и реактивной составляющей $X_{\rm L}$ дополнительного сопротивления $Z_{\rm L}$ от действующего значения тока нагрузки $I_{\rm H}$

Рис. 8. Зависимости действующего значения напряжения нагрузки U_{II} от действующего значения тока нагрузки I_{II}

Рис. 9. Зависимость эффективности передачи в нагрузку активной энергии η от действующего значения тока нагрузки $I_{\rm H}$

Точки пересечения нелинейной внешней характеристики эквивалентного генератора $U_{\rm H}(I_{\rm H})$ с линейными зависимостями $U_{\rm H} = Z_{\rm H\it K} I_{\it K}$ позволяют найти действующие значения напряжения $U_{{\scriptscriptstyle {\rm H}}{\scriptscriptstyle {\it K}}}$ и тока I_{HK} нагрузки с фиксированным модулем сопротивления Z_{HK} , рис. 8. Таким образом, для исследованной исходной цепи, рис. 3, максимальная эффективность передачи активной энергии в нагрузку $\eta \approx 0.32$ достигается при действующем значении тока $I_{H}\approx 2,4$, A, рис. 9. Этот ток будет при оптимальсопротивлении нагрузки, равном Z_{H} ≈ Z_{H4} =200+j50, Ом, рис. 5, которое отличается от сопряженного значения сопротивления Z_{Γ} , т. е. $Z_{\text{Hmax}} = R_{\Gamma} - jX_{\Gamma} = 185,28 + j141,124$, Ом, когда наблюдается максимум активной мощности нагрузки $P_{\rm H}$ [2]. Следует отметить, что во многих учебниках, например в [2], считают, что при максимуме активной мощности нагрузки эффективность (КПД) передачи активной энергии в нагрузку составляет η ≈0,5. Это утверждение неверно для исходной сложной цепи и справедливо лишь для одноконтурной схемы, состоящей из ЭДС источника \dot{E}_{Γ} и сопротивлений Z_{Γ} , Z_{H} .

СПИСОК ЛИТЕРАТУРЫ

- Носов Г.В., Кулешова Е.О. Расширенный метод эквивалентного генератора при постоянных токах // Известия Томского политехнического университета. — 2011. — Т. 318. — № 4. — С. 73—75.
- Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. 11-е изд., испр. и доп. М.: Гардарики, 2007. 701 с.: ил.

Выводы

- 1. Предложен расширенный метод эквивалентного генератора при синусоидальных токах, позволяющий определить не только ток и напряжение в нагрузке, но и активную и реактивную мощности в исходной цепи, а также эффективность (КПД) передачи активной энергии от всех источников исходной цепи в нагрузку, что может быть использовано для оптимизации параметров сложных электрических цепей.
- 2. Расширенный метод эквивалентного генератора дает возможность найти оптимальное комплексное сопротивление нагрузки для получения реального значения максимальной эффективности передачи в нагрузку активной энергии.
- 3. Для обеспечения заданной активной мощности в исходной линейной цепи величина активной составляющей дополнительного сопротивления может принимать при определенных значениях сопротивления нагрузки отрицательные значения, что свидетельствует о том, что дополнительное сопротивление расширенного эквивалентного генератора является математическим приемом для учета реальных физических процессов в электрических цепях.
- Демирчян К.С., Нейман Л.Р., Коровкин Н.В. Теоретические основы электротехники. – 5-е изд. – СПб.: Питер, 2009. – Т. 1. – 2009. – 512 с.: ил.
- Основы теории цепей / Г.В. Зевеке [и др.]. 5-е изд., перераб. — М.: Энергоатомиздат, 1989. — 528 с.
- Дьяконов В.П. Mathcad 8/2000: Специальный справочник. СПб.: Питер, 2000. – 592 с.

Поступила 02.03.2011 г.