УДК 66.021.1

МОДЕЛИРОВАНИЕ ПРОЦЕССА ПЕРЕМЕШИВАНИЯ СТРУЙНЫМ МЕТОДОМ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ В ЦИЛИНДРИЧЕСКИХ ЕМКОСТЯХ

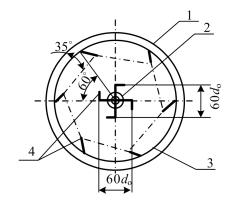
А.В. Балясников, Л.Ф. Зарипова, В.П. Пищулин, А.Я. Сваровский

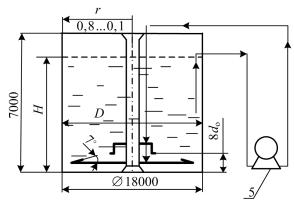
Северский технологический институт НИЯУ «МИФИ» E-mail: pischulin@ssti.ru

Рассмотрен процесс перемешивания жидких радиоактивных отходов в цилиндрических емкостях при тангенциальном расположении сопел. На основе теории подобия проведено моделирование процесса. Определены конструктивные характеристики перемешивающих устройств; скоростные характеристики раствора при истечении из перемешивающих устройств; условия взвешивания частиц в слабосолевых растворах с целью определения времени перемешивания струйным методом.

Ключевые слова:

Емкостное оборудование, перемешивающее устройство, сопла, моделирование.


Key words:


Reservoirs equipment, mixing devices, nozzles, modeling.

Метод струйного перемешивания с подачей растворов под высоким давлением в виде компактной струи является одним из эффективных способов в период подготовки жидких радиоактивных отходов (ЖРО) к переработке. Метод основан на перемешивании ЖРО с использованием погружных сопел, который сопровождается созданием турбулентных потоков перемешиваемой жидкости. В данном случае турбулентность определяется как совокупность разномасштабных вихрей, на которых из-за расстояния создается непрерывное распределение пульсаций скорости в потоке. Организация процесса перемешивания потоков жидкости исходным раствором через погружные сопла и насос позволяет выполнить эксплуатационные требования к оборудованию со сроком службы до 20 лет при изменяющемся уровне раствора в емкости в период подготовки ЖРО к переработке [1-3].

При проектировании перемешивающих устройств (рис. 1) для цилиндрических емкостей, предназначенных для сбора и последующей и переработки ЖРО объемом $1000...1500 \, \mathrm{M}^3$ (таблица), необходимо определить влияние скоростных характеристик взаимодействующих затопленных струй жидкости, вытекающих из сопел, на время перемешивания τ и выявить основные физические и конструктивные параметры при подъеме осевших на дне частиц [4, 5].

Определение времени перемешивания τ осложняется тем, что перемешивание ЖРО осуществляется с заданным расходом раствора на перемешивание и изменяющимся уровнем раствора в процессе его переработки. Эти вопросы можно разрешить только путем моделирования процесса на основе теории подобия гидродинамических явлений, для которых требуется соблюдение геометрического подобия размеров емкостей, физического подобия жидкостей, а также динамического подобия вытекания жидкости из сопел равенством критериев Рейнольдса при циркуляции через сопла.

Рис. 1. Устройство для перемешивания струйным методом: 1) емкость; 2) центральный коллектор; 3) периферийный коллектор; 4) тангенциальные сопла (10 шт.); 5) насос

В совокупности емкость и циркуляционная система (сопла, насосы) определяются следующими параметрами: ρ , μ , d_0 , υ_0 , τ , т. е. время перемешивания τ жидкости в емкости зависит от плотности жидкости ρ , вязкости μ , диаметра сопла d_0 , определяющего факел струи и скорость струи υ_0 на срезе сопла, величина которой влияет как на способность струи перемешивать данный объем при растекании ее, так и на время τ .

Таблица. Характеристика промышленной цилиндрической емкости и перемешивающего устройства

Параметры	Значения
Объем раствора, м³	1500
Высота уровня раствора (max) H, м	5,5
Расход раствора на перемешивание <i>Q</i> , м³/ч	180
Количество сопел (расчетное), <i>п</i>	10
Диаметр сопел (расчетный) d_0 , мм	100
Скорость струи на срезе сопла υ_0 , м/с	0,46
Величина критерия Рейнольдса (Re)	37000
Угол расширения струи от сопла	14°20′

Исходя из критериальных условий подобия, рассчитывая масштабный коэффициент скорости жидкости a_{v} в сопле, при этом, задаваясь масштабом a_{L} =0,1 (геометрического подобия емкостей натурного и модельного аппарата l_{u} > l_{M} в 10 раз), a_{ρ} =1, a_{u} =1, можно записать следующее:

Re =
$$\frac{v_0 d_0 \rho}{\mu}$$
, $\frac{a_v a_L a_\rho}{a_u}$ = 1, $a_v = \frac{a_\mu}{a_L a_\rho}$ = 10.

Таким образом, уменьшая размеры емкости и сопла в 10 раз (a_L =0,1) из условия геометрического подобия, скорость потока жидкости из сопла на модели необходимо увеличить в 10 раз, тогда υ_0 будет равна 4,6 м/с. Для этой скорости определены экспериментально скоростные характеристики совокупности растекающихся струй на модельном аппарате объемом 1,5 м³ (D=1,8 м и H=0,7 м).

Так как время τ зависит от среднеарифметической скорости потоков υ_{cp} и интенсивности турбулентности I, то скорость υ в любой точке турбулентного потока можно выразить как:

$$\upsilon = \upsilon_{cp} + \Delta \upsilon,$$

где $\Delta \upsilon$ — мгновенная пульсационная скорость.

Величиной, характеризующей меру рассеивания истинных скоростей υ относительно средней скорости υ_{cp} , является среднеквадратичное отклонение σ :

$$\sigma = \sqrt{D} = \sqrt{\sum_{i=1}^{n} (\upsilon_i - \upsilon_{cp})^2 P_i},$$

где P_i — вероятность появления скорости υ_{cp} ; D — дисперсия.

Отношение среднеквадратичного отклонения σ к скорости υ_{cp} характеризуется интенсивностью турбулентности I и является мерой пульсаций в точке потока:

$$I = \frac{\sigma}{v_{cp}} 100 \%.$$

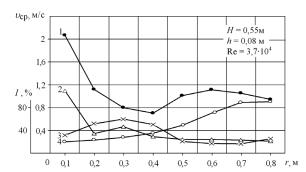
Определение υ_{cp} и σ проводилось на модельной емкости, на различных высотах от дна емкости и в характерных плоскостях, а также определялись линии тока вихревых потоков перемешиваемой жидкости. Эти данные необходимы для конструирова-

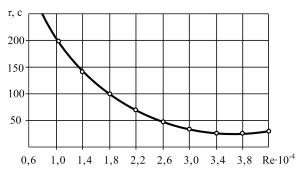
ния перемешивающих устройств выше указанной емкости под ЖРО.

Для описания процесса перемешивания, отрыва твердых частиц от дна и их переноса недостаточно знания одних только средних характеристик скорости потока. Дальнейший перенос твердых частиц осуществляется благодаря наличию в турбулентном потоке пульсаций вертикальной составляющей скорости, и требуются данные о пульсационных характеристиках полей скоростей по всему объему и значений интенсивности турбулентности в потоке жидкости.

Расчет υ_{cp} и I для цилиндрической модельной емкости проводился по радиусу r на разных уровнях от дна емкости и при разных уровнях заполнения

Характерные эпюры скоростей υ_{φ} и интенсивности турбулентности I показаны на рис. 2.




Рис. 2. Распределение скоростей истечения жидкости из сопла в зависимости от радиуса цилиндрической емкости: 1) одновременная работа всех сопел; 2) работа сопел центрального коллектора; 3) интенсивность турбулентности; 4) работа сопел периферийного коллектора

Экспериментальные данные полей средних скоростей и интенсивности турбулентности, линий тока и взаимодействие растекающихся струй в модельных аппаратах, определяющих структуру вихревых течений, режим процесса и время гомогенизации при перемешивании растворов струйным методом для цилиндрических емкостей с перемешивающим устройством (центральным и периферийным коллекторами), выявили наиболее выгодный режим работы сопел обоих коллекторов при Re=3,7·10⁴ на срезе сопла, обеспечивающий вихревой характер потоков перемешиваемой жидкости с максимальной интенсивностью турбулентности (I=50...60%), необходимые величины средних пульсационных скоростей для подъема осадков и перемешивания до суспензии [6].

Экспериментально полученная зависимость времени перемешивания τ от критерия Re показана на рис. 3.

С увеличением критерия Рейнольдса время τ уменьшается при всех измерениях. Высота столба жидкости H в емкости и расположение сопел от дна емкости h оказывают существенное влияние на перемешивание, особенно при малых числах Re, начиная от $0.7 \cdot 10^4$ и ниже. В этих режимах жид-

кость выше сопел перемешивается недостаточно. С увеличением h время τ несколько сокращается, но этот фактор требует конкретного рассмотрения с учетом необходимых скоростей струй у дна емкости при подъеме частиц осадков.

Рис. 3. Зависимость времени перемешивания от числа Рейнольдса

Основываясь на известности фактических величин, участвующих в процессе перемешивания, путем сопоставления этих величин установлен характер функциональной зависимости для τ методом наименьших квадратов из экспериментальных данных для $\tau = f(Re, h, g)$ и методом анализа размерностей для $\tau = f(v, D, g)$. Это вызвано тем, что при проведении экспериментов величины v, D, g оставались постоянными. Найденные уравнения для τ приведены в методике расчета перемешивающих устройств.

Методика расчета перемешивающих устройств струйного типа:

- 1. Диаметр сопла d_0 определяется из соотношения: $D/d_0 \le 180$.
- 2. Длина насадки сопла принимается в пределах $l=(3...5)d_0$; форма насадки влияет на параметры струи и выбирается по назначению.
- 3. Для цилиндрических емкостей перемешивающее устройство рекомендуется выполнять из центрального и периферийного коллекторов с расстоянием тангенциальных сопел от дна емкости равным $8d_0$, с диаметром окружности сопел центрального коллектора $60d_0$ и размещением периферийного коллектора у стенки емкости с установкой осей тангенциальных сопел под углом 7° к горизонту.
- 4. Определение расхода через одно сопло Q_1 , υ_0 , Re:

$$Q_1 = Q/n$$
, $v_0 = 4Q_1/\pi d_0^2$, $\text{Re} = v_0 d_0 \rho / \mu$.

5. Время перемешивания τ рассчитывается по следующей зависимости:

$$\tau = 0.364 \left(\frac{H}{h}\right)^{0.33} \frac{H^{0.6}D^{1.2}}{v^{0.86}g^{0.06} \text{Re}^{0.6}}.$$

Уравнение справедливо для следующих условий: $0,5 \le H/D \le 1; 0,4 \le H/D \le 1; D/d \le 125;$ $0,7 \cdot 10^4 \le Re \le (3,1...3,6) \cdot 10^4.$

При уточнении влияния кинематической вязкости ν перемешиваемой жидкости в пределах $(0,66...1,36)\cdot 10^{-6}\,\text{M}^2/\text{c}$ при T=(283...315) К зависимость для τ принимает вид:

$$\tau = 11, 7 \left(\frac{H}{h}\right)^{0.33} \frac{H^{0.6} D^{1.2}}{v^{0.86} g^{0.06} Re^{0.6}}.$$

Оптимальная погрешность $au_{\it pace}$ и $au_{\it skcn}$ составляет 10 %.

6. По диффузионной теории подъем частиц осадков со дна емкости осуществляется под действием пульсаций скорости и давления, возникающих в турбулентном потоке жидкости. Чем больше отношение средней пульсационной скорости \overline{W} к скорости осаждения частиц W_{oc} , тем больше вероятность уноса частиц с днища.

Величина средней пульсационной скорости определяется следующим образом [7]:

$$\overline{W} = \frac{0.63 \, v_{cp}}{H^{0.22}}.$$

Задаваясь ранее a_L =0,1; a_ρ =1; a_μ =1, получим a_ν =10.

Для известных значений $\upsilon_{cp,u},\ H_u,\ \upsilon_{cp,u},\ H_u$ масштабный коэффициент $a_{\overline{w}}$ равен:

$$a_{\overline{W}} = \frac{0.63 \, v_{cp,M} \, H_{_{M}}^{0.22}}{0.63 \, v_{cp,M} \, H_{_{M}}^{0.22}} = \frac{a_{ucp}}{a_{H}^{0.22}},$$

$$\frac{\overline{W_{\scriptscriptstyle M}}\,W_{\scriptscriptstyle oc,\scriptscriptstyle H}}{\overline{W_{\scriptscriptstyle H}}\,W_{\scriptscriptstyle oc,\scriptscriptstyle M}}=1\,.$$

При этом $a_{\overline{w}}/a_{W_{oc}}=1$ и $a_{W_{oc}}=a_{\overline{w}}=16,6$, т. е. скорость осаждения частиц при моделировании и принятых a_L , a_ρ , a_μ должна быть в 16,6 раза больше скорости осаждения на натурном аппарате.

Из формулы Стокса

$$d_u^2 = \frac{18\mu W_{oc}}{\Delta \rho g}$$

определяется размер частиц осадков модели:

$$d_{_{u,M}} = \sqrt{\frac{18\mu \, 16,6 \, W_{oc}}{\Delta \rho \, g}}.$$

Условие взвешивания частиц осадка в потоке раствора зависит от величины отношения $W_{M}/W_{oc,M}$ или $W_{N}/W_{oc,M}$. В этом случае с увеличением соотношения увеличивается вероятность уноса частиц со дна емкости для слабосолевых ЖРО.

Скорость осаждения частиц рассчитывается по формуле Стокса, затем определяется критерий Рейнольдса:

$$Re = \frac{W_{oc} d_{_{q}} \rho}{\mu}.$$

При условии Re>0,2 теоретическая скорость осаждения W_{∞}' рассчитывается через критерий Архимеда:

Ar =
$$\frac{g d_u^3 (\rho_1 - \rho_2)}{v_2^2 \rho_2}$$
 u Re' = $\left(\frac{Ar}{13.9}\right)^{1/1.4}$,

тогда определяется $W_{oc}' = \frac{\mathrm{Re}' v_2}{d_{_{\boldsymbol{y}}}}$ и сравнивается с

рассчитанными значениями по уравнению Стокса.

Выводы

1. На основе теории подобия проведено моделирование процесса перемешивания струйным методом слабосолевых жидких радиоактивных отхо-

СПИСОК ЛИТЕРАТУРЫ

- 1. Седов В.М. Технология переработки жидких радиоактивных отходов. Л.: ЛТИ им. Ленсовета: 1978. 55 с.
- Копырин А.А. Технология производства и радиохимической переработки ядерного топлива. – М.: Атомэнергоиздат, 2006. – 573 с.
- 3. Громов Б.В. Химическая технология облученного ядерного топлива. — М.: Энергоатомиздат, 1983. — 352 с.
- Балясников А.В., Пищулин В.П., Сваровский А.Я. Интенсификация процессов отмывки специального оборудования от радионуклидов в вихревых потоках // Технология и автоматизация атомной энергетики и промышленности: Матер.

- дов в цилиндрической емкости. Разработана методика расчета перемешивающего устройства.
- По заданным характеристикам раствора и частиц осадка слабосолевых жидких радиоактивных отходов АЭС на модельной цилиндрической емкости определены размер частиц, скорость их осаждения, исследован режим перемешивания и подъема осадков по скоростям потоков жидкости в модели.
 - отрасл. науч.-техн. конф. Северск: СГТИ, 2005. С. 163–166.
- 5. Зимон А.Д. Дезактивация. М.: Атомиздат, 1975. 280 с.
- Хижняк А.Е., Балясников А.В., Пищулин В.П., Сваровский А.Я. Устройство для дезактивации поверхностей аппаратов // Технология и автоматизация атомной энергетики: Сб. статей отрасл. науч.-техн. конф. Северск: СГТА, 2007. С. 122–124.
- Караушев А.В. Проблемы динамики естественных водных потоков. Л.: Гидрометеоиздат, 1960. 392 с.

Поступила 24.11.2011 г.

УДК 544.653.22

ИЗУЧЕНИЕ СОСТАВА БИНАРНОГО ЭЛЕКТРОЛИТИЧЕСКОГО ОСАДКА ИНДИЙ-ПЛАТИНА

Э.М. Устинова, Э.В. Горчаков, Н.А. Колпакова

Томский политехнический университет E-mail: emg87@mail.ru

Изучен состав бинарного электролитического осадка индий-платина и предложен способ расчета величины смещения потенциала электроотрицательного компонента (индия) из электролитического осадка с платиной. Сравнение расчетных данных, полученных при использовании уравнения Полинга, с данными эксперимента, полученными при электроокислении осадка, позволяет оценить фазовый состав образующихся на электроде интерметаллических соединений. Показано, что, при соотношении индия к платине от 5000:1 и выше, наблюдается образование пяти интерметаллических соединений. При соотношении индия к платине больше, чем 10000:1, наблюдается образование одного интерметаллического соединения.

Ключевые слова:

Индий, платина, интерметаллическое соединение, бинарный осадок, инверсионная вольтамперометрия.

Key words

Indium, platinum, intermetallic compound, binary deposit, stripping voltammetry.

Введение

При определении платины методом инверсионной вольтамперометрии ионы Pt(IV) легко восстанавливаются до металла, но не окисляются в области рабочих потенциалов графитового электрода. Определение ионов Pt(IV) [1, 2] осуществляют электроосаждением платины совместно с менее благородным металлом: медью, свинцом, ртутью и др. Обычно, электровосстановленные ионы Pt(IV) на поверхности электрода образуют одно или несколько интерметаллических соединений (ИМС) с электроотрицательным компонентом. Анодные пики, зависящие от концентрации ионов Pt(IV) в растворе, обусловлены селективным элек-

троокислением электроотрицательного компонента сплава.

Целью данной работы было изучить состав электролитического осадка индий-платина, получаемого на поверхности электрода за счет процесса его электроокисления.

Экспериментальная часть

В работе использовали вольтамперометрический анализатор типа ТА-4 (НПП «Томьаналит», г. Томск) с двухэлектродной системой, помещающейся в кварцевом стаканчике объемом 20 см³. Рабочий электрод (импрегнированный полиэтиленом графитовый электрод) готовили по методике