УДК 681.516.75

СИСТЕМА УПРАВЛЕНИЯ ПРОМЫШЛЕННОЙ УСТАНОВКОЙ «КО-МКР»

О.В. Пащенко, А.М. Соловьев, С.В. Юдаков

Томский политехнический университет E-mail: ysv@tpu.ru

Описана система управления промышленной установки «КО-МКР». Кратко отражены конструкция и технологические возможности установки. Обоснован выбор структуры системы управления и центрального контроллера. Описан принцип построения управляющей программы контроллера. Отражены конструктивные особенности системы управления.

Ключевые слова:

Система управления, контроллер ХРАС, рефлектор.

Key words:

Control system, controller XPAC, reflector.

Введение

Технология ионно-плазменного нанесения многослойных радиоотражающих покрытий на изделия сложной геометрии и большой площади весьма сложна. Она требует взаимодействия многих систем и агрегатов — высоковакуумной системы, системы термического отжига, магнетронов и ионных источников, напуска рабочего газа, механических приводов, систем контроля и т. д. — в реальном масштабе времени. Система должна быстро реагировать на изменения параметров процессов, не допускать ухудшения качества покрытий и порчи весьма дорогостоящих изделий, предотвращать аварийные ситуации.

Вышесказанное обуславливает необходимость создания автоматической системы управления установкой, формулирует требования к ней.

Цель работы — создание системы управления промышленной вакуумной установкой «КО-МКР» (комплект оборудования для металлизации крупногабаритных рефлекторов), снабжённой источниками плазмы магнетронного типа и ускоренных ионов.

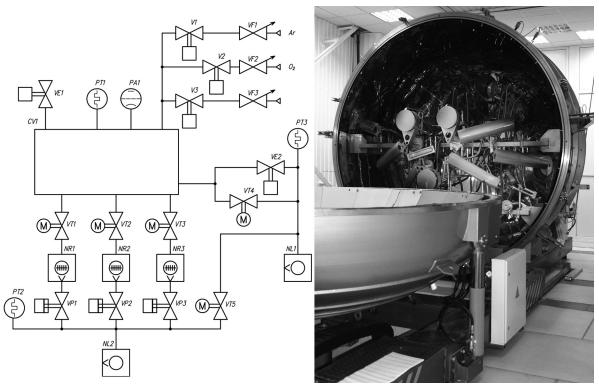
1. Постановка задачи. Описание технологического процесса

В последнее время углепластик получает широкое распространение в различных областях техники. Прочность данного материала позволяет заменить им многие металлические детали, а его легкость значительно уменьшает их массу. Одной из таких деталей можно назвать рефлекторы параболических антенн. В связи с этим возникает задача по увеличению отражающей способности поверхности углепластика, которая решается осаждением тонкопленочного покрытия. Обычно в качестве материала отражающего слоя этого покрытия применяется алюминий, для предотвращения повреждения отражающий слой защищают пленкой из диоксида кремния или оксида алюминия. В работе [1] авторами был обоснован выбор структуры и материального состава покрытия вида {Ni-Cr} $(0.2 \text{ MKM}) - \{AI\} (\text{до } 3 \text{ MKM}) - \{SiO_2\} (\text{до } 0.2 \text{ MKM}).$

Перед нанесением радиотражающего покрытия необходимо выполнить обезгаживание рефлектора для обеспечения адгезионной прочности покрытий. Обезгаживание проводится при давлении в вакуумной камере менее 1 Па при температуре рефлектора $100~^{\circ}$ С в течении $10~^{\circ}$ 4. Скорость нагрева рефлектора 1...3 град./мин. Точность поддержания температуры $\pm 3~^{\circ}$ 6.

Процедура осаждения радиотражающего покрытия на поверхность рефлектора на готовой к работе установке включает в себя следующие операции:

- тепловая дегазация рефлектора;
- очистка поверхности рефлектора с помощью ионного пучка;
- осаждение адгезионного слоя из сплава {Ni-Cr};
- осаждение плёнки алюминия;
- осаждение защитного слоя $\{SiO_2\}$.


Под эту технологическую схему в Физико-техническом институте ТПУ была спроектирована и изготовлена установка «КО МКР». Для неё была разработана специальная система управления, отвечающая условиям, изложенным выше.

2. Основные элементы установки как объекты управления

Установка «КО МКР» состоит из следующих связанных между собой подсистем, которыми необходимо управлять:

- вакуумная;
- напуска рабочего газа;
- электропитания магнетронов и ионных источников;
- транспортная (перемещение тележки и вращение рефлектора);
- нагрева;
- охлаждения;
- электромеханических приводов магнетронов;
- пневматическая.

Подсистемы вакуумная и напуска рабочего газа (рис. 1) предназначены для поддержания рабочего давления (разрежения) и состава газовой среды в вакуумной камере.

Рис. 1. Вакуумная схема установки «КО МКР» слева и фотография вакуумной камеры справа (CV1 — вакуумная камера, VT1-VT4 — вакуумные затворы, NL1, NL2 — форвакуумные насосы, NR1-NR3 — турбомолекулярные насосы, V1-V3 — натекатели рабочего газа, VE1, VE2 — вакуумные клапаны, VF1-VF3 — расходомеры, PT1-PT3 — термопарные вакуумные лампы, PA1 — ионизационная вакуумная лампа)

Вакуумная подсистема включает в себя вакуумную камеру, вакуумные насосы (форвакуумные «Kashiyama» MU-1203 и турбомолекулярные «Shimadzu» TMP-4203 LMC), затворы тарельчатые 23ВЭ-400, клапаны, трубопроводы, а также датчики и приборы контроля вакуума (ATB-2 и AИВ-51). Подсистема напуска рабочего газа содержит баллоны со сжатым газом (Ar, O_2), клапаны (HMБ-1), трубопроводы и расходомеры (устройства, контролирующие величину потока рабочего газа, поступающего в вакуумную камеру) типа РРГ12 фирмы «Элточприбор».

В качестве источников плазмы и ионных пучков использованы соответственно планарные магнетроны (9 шт.) на постоянном токе [2] и протяжённые источники ионов (3 шт.) с замкнутым дрейфом электронов [3]. Подсистема электропитания магнетронов и ионных источников включают в себя блоки питания, а также сопутствующие защитные и распределительные устройства. Она предназначена для поддержания необходимых для технологического цикла значений тока и напряжения в этих диодных системах.

Транспортная подсистема предназначена для перемещения подвижной тележки, вращения фермы с рефлектором и для управления гидравлической системой подъема крышки вакуумной камеры.

Подсистема нагрева предназначена контролируемого разогрева и подержания заданной температуры рефлектора. Включает в себя нагреватели, переизлучатель, схему управления нагревателями

и системы измерения температуры поверхности рефлектора.

Подсистема охлаждения установки состоит из клапанов, датчиков потока и системы охлаждения рабочей жидкости — воды. Охлаждению подлежат вакуумные насосы, магнетроны, ионные источники, стенки вакуумной камеры. Мощность отводимого потока тепла может достигать 100 кВт.

Все магнетроны снабжены управляемыми заслонками, а центральные магнетроны (3 шт.) подвижны и выполняют сканирование при нанесении покрытия на рефлектор. Подсистема электромеханических приводов магнетронов предназначена для управления заслонками магнетронов и сканированием. Для повышения равномерности тонкопленочных покрытий система способна изменять мощность магнетронов при сканировании по задаваемому технологом закону.

Пневматическая подсистема предназначена для управления пневмозамками передней крышки камеры и пневматическими клапанами вакуумной системы (VP1–VP3). Состоит из блока подготовки воздуха, пневмоцилиндров и пневмоклапанов.

3. Структура системы управления

Можно выделить три основных функции системы управления установкой:

 управляющая (все виды автоматизированного управления, автоматическое регулирование, технологические защиты и блокировки);

- информационная (сбор, обработка, хранение информации о технологических параметрах и управляющих воздействиях, решение вычислительных задач, формирование отчетов, визуализация);
- сервисная (диагностика датчиков, сетевых связей).

Оптимальным способом построения системы управления, как показывает практика, является децентрализованный.

Это означает, что некоторые компоненты установки, такие как натекатели рабочего газа, электроприводы, блоки питания магнетронов и ионных источников являются «интеллектуальными» и имеют в своем составе специализированные контроллеры, позволяющие этим устройствам работать автономно. Центральный контроллер осуществляет координацию работы всех устройств путем непосредственного управления исполнительными механизмами и задания параметров для работы «интеллектуальных» устройств. В качестве центрального контроллера мы используем программируемый логический контроллер (ПЛК) серии XPAC фирмы «ICPDAS» (Тайвань). Опыт эксплуатации подобных контроллеров в системах управления вакуумных установок, разработанных ранее в лаборатории [1, 4], свидетельствует о надежности выбранного ПЛК.

Традиционно в системе управления мы выделяем четыре уровня:

- 1) датчиков и исполнительных устройств (вакуумные датчики давления, натекатели рабочего газа, вакуумные и форвакуумные насосы, вакуумные затворы, клапаны и т. д.);
- 2) модулей сопряжения с объектами управления (специализированные оптоизолированные блоки с транзисторными выходами, реле и т. п.);
- 3) ПЛК, который обеспечивает контроль и управление всей установкой;
- 4) оператора/технолога.

Для обеспечения надежности третий и четвертый уровни были совмещены и реализованы на ПЛК.

В системе управления «КО МКР» имеются блокировки на всех четырех уровнях, которые при сбое в работе оборудования (в том числе ПЛК) или из-за некорректных действий оператора не дадут возможности выйти из строя отдельным устройствам, таким как вакуумные затворы, приводы перемещения крышки вакуумной камеры.

4. Программное обеспечение

Программное обеспечение центрального контроллера написано на языке C++ и реализует бесконечный управляющий цикл (рис. 2) с периодом не более 100 мс, обеспечивающий:

- опрос состояния устройств установки. Опрос устройств, коммутируемых по медленным каналам связи, таким как RS-232 или RS-485, реализуется специальным контроллером в отдельных потоках, что способствует уменьшению периода цикла и, как следствие, уменьшению времени реакции управляющей программы;
- посылку управляющих сигналов и команд устройствам установки, определяемых логикой алгоритмов работы системы и командами оператора;
- реализацию макрокоманд-алгоритмов (например, «создать высокий вакуум в рабочей камере»), заключающихся в последовательном и параллельном условном выполнении команд устройствами;
- блокировку недопустимых в данной ситуации команд оператора;
- автоматическое, без участия оператора, выполнение макрокоманд-алгоритмов по выведению установки из аварийных или опасных состояний;
- автоматическое выполнение заданного оператором режима тепловой дегазации или ионно-плазменной обработки.

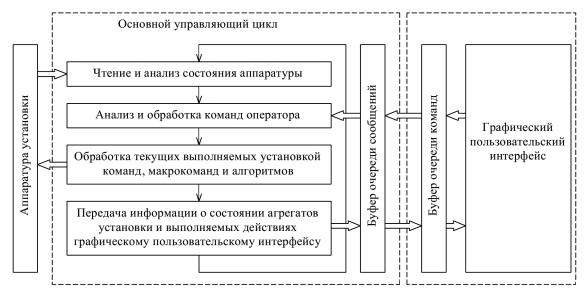


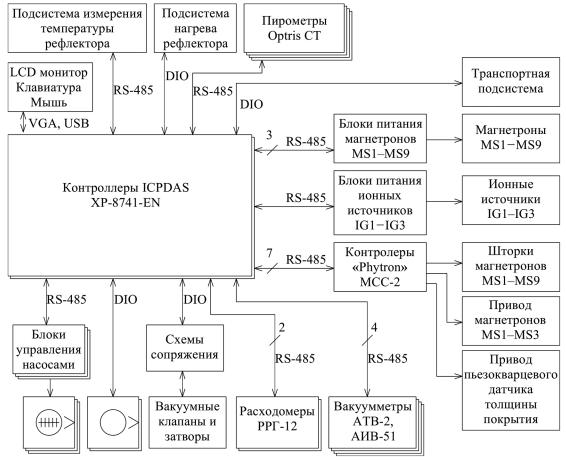
Рис. 2. Структура программы центрального контроллера

Графический пользовательский интерфейс программы обеспечивает:

- визуализацию состояния и активности систем и агрегатов установки в виде мнемосхемы и таблицы состояний объектов;
- протоколирование состояния систем и агрегатов и действий оператора;
- визуализацию основных параметров технологической обработки (параметры облучения, вакуумные условия), их протоколирование для последующего анализа;
- выдачу команд оператора;
- создание и хранение библиотеки режимов облучения для нанесения покрытий различных оптических свойств.

5. Конструктивные особенности

В составе установки имеется 3 ионных источника, 9 магнетронов, 3 турбомолекулярных насоса, 2 форвакуумных вакуумных насоса, 5 вакуумных затвора, и 9 вакуумных клапанов, 5 гидроклапанов, 15 датчиков потока воды, 3 расходомера, 4 пирометра и контроллер измерения температуры.


Для управления вакуумной установкой требуется 55 дискретных выходных каналов ПЛК, 66 дискретных входных каналов ПЛК и 21 интерфейсных канала RS-485 — это более, чем способен обеспечить один контроллер. Поэтому было решено ис-

пользовать два контроллера серии XPAC фирмы «ICPDAS», соединенных между собой через интерфейс Ethernet. Первый, ведущий контроллер состоит из базового модуля XP-8741-EN, четырех модулей дискретного ввода I-8040PW-G (32 канала), четырех модулей дискретного вывода I-8041PW-G (32 канала) и одного модуля дискретного вводавывода I-8042W-G (16 входных и 16 выходных каналов). Для работы с интеллектуальным оборудованием используется второй контроллер, состоящий из базового модуля XP-8741-EN, модуля I-8114iW/D2 (четыре порта RS-232) и шести модулей I-8144IW (четыре порта RS-485).

Структурная схема системы управления изображена на рис. 3.

Для контроля давления в вакуумной системе были выбраны активные вакуумметры ATB-2 и AИВ-51 фирмы «Инситек» (г. Томск). Обмен информации между ПЛК и вакуумметрами осуществляется через интерфейс RS-485.

Каждый магнетрон и ионный источник имеют собственный источник питания. В системе используются два типа источников питания магнетронов MPS-15/10-PC (7 шт.) (максимальный ток 15 A, максимальное напряжение 700 В) и MPS-9/5-PC (3 шт.) (максимальный ток 9 A, максимальное напряжение 600 В) фирмы «ИПС» (г. Томск). Кроме того два источника питания

Рис. 3. Структурная схема системы управления установки «КО-МКР»

МРS-15/10-РС объединены и подключены к одному магнетрону, что позволяет увеличить ток магнетрона до 30 А. Источник питания ионного источника — PS-3/5-DC (3 шт.) (максимальный ток 2 А, максимальное напряжение 3 кВ). Возможны три режима работы блоков питания: стабилизация тока, напряжения и мощности. Управление блоками осуществляется через интерфейс RS-485. Для уменьшения времени опроса состояния блоков они разделены на четыре группы по три блока. Каждая группа подключена к индивидуальному порту RS-485 ПЛК.

Для перемещения магнетронов и шторок используются комплектные электроприводы фирмы «Phytron» (Германия), включающие в себя шаговые двигатели с редукторами VSS43.200.2,5 в вакуумном исполнении (14 шт.) и двухкоординатные блоки управления шаговыми двигателями МСС-2 (7 шт.). Несмотря на то, что блоки управления подключаются к контроллеру через интерфейс RS-485, объединить в сеть блоки не удалось. Каждый блок подключен к отдельному порту ПЛК.

Нагрев рефлектора в вакууме осуществляют керамические инфракрасные нагревательные элементы фирмы «Сегатісх» (Ирландия). На крышке вакуумной камеры под переизлучателем равномерно расположены 120 нагревателей FFE мощностью 750 Вт и 10 нагревателей HFE — 250 Вт. Для нагрева используются 79 нагревательных элемента, остальные — резерв. Все нагреватели сгруппированы в 6 колец. ПЛК может управлять подачей напряжения на каждое кольцо через соответствующее ему твердотельное реле, осуществляя контролируемый нагрев рефлектора.

Контроль температуры рефлектора осуществляют две независимые подсистемы измерения — это 24 канальная основная подсистема, использующая платиновые термосопротивления Pt100 фирмы «Негаеиs» (Германия), и дополнительная — четыре

СПИСОК ЛИТЕРАТУРЫ

- 1. Асаинов О.Х., Баинов Д.Д., Кривобоков В.П., Романенко С.Е., Чернятина А.А. Плазменная технология осаждения отражающего покрытия на поверхность углепластика // Известия вузов. Сер. Физика. 2011. Т. 54. № 11/2. С. 158–161.
- 2. Данилин Б.С., Сырчин В.К. Магнетронные распылительные системы. М.: Радио и связь, 1982. 72 с.
- Жуков В.В., Кривобоков В.П., Янин С.Н. Распыление мишени при ассистировании магнетронного разряда ионным пучком //

пирометра «Optris CT LT» (Германия). Связь с подсистемами осуществляется по интерфейсу RS-485.

Конструктивно система управления состоит из нескольких крупных узлов:

- стойка высотой 1600 мм (контроллеры, 17 дюймовый LCD монитор, полка с клавиатурой и манипулятором типа «мышь»);
- стойка высотой 2200 мм (силовая коммутация, блоки питания иконных источников и блоки питания турбомолекулярных насосов);
- стойка с системой кондиционирования (10 источников питания магнетронов). В стойке выполнена теплоизоляция, проведены воздуховоды. Температурный режим создается и поддерживается холодильным агрегатом RITTAL SK 3387.140;
- на раме вакуумной камеры расположены шкафы: управления двигателями шторок магнетронов, пневмоклапанами;
- на подвижной тележке вместе с крышкой камеры расположены: шкаф управления движением, два шкафа подсистемы нагрева рефлектора. Для укладки шлангов системы охлаждения крышки, силовых кабелей и кабелей управления использованы гибкие кабельные каналы «CPS».

Выводы

Разработана система управления промышленной вакуумной установкой «КО МКР», которая позволяет:

- автоматизировать контроль и управление технологическим процессом нанесения модифицирующих плазменных покрытий;
- оперативно выявлять предаварийные ситуации, блокировать их развитие и предупреждать об этом оператора;
- автоматически формировать архивы накопленных данных для дальнейшего анализа и совершенствования технологического процесса и оборудования.
 - Известия Томского политехнического университета. -2004. Т. 307. № 7. С. 40–45.
- Асаинов О.Х., Баинов Д.Д., Кривобоков В.П., Юдаков С.В. Обработка поверхности материалов плазмой магнетронного разряда и ионными пучками // Известия вузов. Сер. Физика. – 2009. – Т. 52. – № 11/2. – С. 172–175.

Поступила 22.02.2012 г.