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Abstract. The cogeneration combined-cycle gas turbine plant with back-

pressure steam turbine is considered. A simple circuit of the plant increases 

its reliability, and the use of optimal temperatures of the heating and return 

water allows obtaining the highest thermal efficiency of the plant taking 

into account the ratio of its electric and heat power. The technical and 

economic efficiency of the combined-cycle plant with back-pressure steam 

turbine is studied to estimate the capital investment. The parameters and 

conditions to maximize the net present value growth relative to the base 

version are determined. 

1 Introduction 
Combined-cycle technologies have occupied a leading position in heat power engineering 

due to high heat efficiency and environmental friendliness. Generating equipment in 

domestic thermal power plants and in the world energy is mainly implemented through 

combined-cycle power plants (CCPP) [1]. In the most efficient binary-cycle CCPP with 

bottoming cycle and is called a combined cycle gas turbine (CCGT) plant. The exhaust heat 

of gas turbine (GT) is recovered in a heat recovery steam generator (HRSG) for generation 

of superheated steam, which then flows to the steam bottoming cycle. The efficiency of 

these CCGTs based on high-temperature GT reaches 60% and higher [2,3]. Higher levels of 

heat efficiency are obtained in cogeneration combined-cycle plants supplied with different 

cycles and circuits. One of the versions of this plant is CCGT with a back-pressure steam 

turbine (CCGT-BP) [4]. 

2 CCGT with a back-pressure steam turbine  
In CCGT-BP, the exhaust GT gas heat is recovered in HRSG in two sections of the heating 

cycle: upon supply of the superheated steam (hot water, steam generation, superheating) 

and during heating the return water in the HRSG back-end surfaces. The heat generated by 

the exhaust steam is transferred to the steam or to the water supplied directly to the 

network. 
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CCGT-BP is very simple in its design since no several steam pressure levels and 

reheating are required. Fig. 1 shows a CCGT-BP schematic diagram to supply heat to heat 

and hot water consumers and for household needs.

The efficiency of HRSG and that of the whole plant can be increased through deep heat 

recovery due to reduced exhaust gas temperature during transmission of heat to the return 

heating water in the gas-water network heater (GWNH).

 
Fig. 1. Schematic diagram of CCGT with a back-pressure steam turbine: GT (1);  HRSG (2); steam 

turbine (3); steam superheater (4); evaporator (5); economizer (6); GWNH (7); drum (8); network 

heater (NH) (9); heat consumer (10).

The temperature chart of the heat supply system is crucial for the performance of the 

CCGT-BP steam section, since the temperature of the heating water affects the pressure of 

the turbine exhaust steam; its value is close to the atmospheric pressure or exceeds it.  

3 Thermal efficiency of CCGT-BP  

The thermal efficiency of CCGT-BP can be estimated using the so-called total efficiency of 

CCGT, which shows the portion of the fuel heat utilized in the plant.  

Utilized heat is the sum of the CCGT electric power NE, and heat power transferred to 

heat consumers QHC. The total efficiency of CCGT 
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where QCC is the fuel heat input to the working fluid in the GT combustion chamber. 

In turn, the CCGT electric power is the sum of two summands 
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are the electric power of gas and steam turbine. 

Transform the formula of the CCGT total efficiency 
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Thus, the CCGT total efficiency is 
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This formula lacks the efficiency of the steam turbine or any other factor that indicates 

its heat efficiency. Hence, the effectiveness of the combined-cycle plant with a back-

pressure turbine does not depend on the steam cycle (SC) efficiency. This can be attributed 

to the fact that SC works without cycle losses: the exhaust steam condensation heat is fully 

utilized to cover the consumers’ heat demands.

In addition to the total efficiency, the most important characteristic of the CCGT-BP 

heat efficiency is the power ratio NE
ST/QHC.

The aim is to study the effect of a number of factors on CCGT-BP heat efficiency. 

These factors are as follows: 

• temperature of the heating water thw,

• temperature of the return water trw,

• initial steam pressure p0,

• initial steam temperature t0.

In accordance with the recommendations [5], a number of variables are taken: 

• evaporator temperature difference 5 °C,

• subcooling to the saturation temperature of 5 °C in network heater, 

• GWNH temperature difference of 5 °C,

• initial steam temperature t0.

The design conditions for CCGT-BP imply its operation at external temperature of –40

°C (temperature specified for the heating system design in Tomsk). The key GT 

characteristics are calculated with regard to its energy parameters; air heating to 3.4 °C 

through air recirculation at the compressor outlet is considered. The Siemens SGT5-4000F

gas turbine was used as the CCGT-BP basis. The GT performance parameters at external 

temperature of –40 °C are as follows:

• GT load is 100%,

• electrical efficiency is 35.37 %,

• electric power is 247.6 MW,

• exhaust gas temperature is 594.8 °C,

• exhaust gas flow is 644.9 kg/s. 

The values of the performance parameters for the steam section for the base case are 

summarized in Table 1. 

Table 1. Main parameters of the steam section of CCGT-BP and its efficiency for the base case.

No Parameter, dimension Value
1 Initial steam pressure, MPa 5.0

2 Initial steam temperature, °C 540

3 Electric power, MW 68.51

4 Heat power, MW 302.9

5 Heating water temperature, °C 110

6 HRSG efficiency 0.828

7 CCGT total efficiency 0.885

8 Total capital investments, mln. USD 156.3

9 Net present value (NPV), mln. USD 547.9

The model was made in “MathCad” software and tested in the special “Thermoflex”

complex. 

In this study, the total capital investment cannot be taken as a criterion for the solution 

choice since the electric power of the steam turbine varies considerably. Therefore, to 
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choose the best option, a net present value or net value gain relative to the base case should 

be used [6]. 

4 Results of the design efficiency of CCGT-BP
The effect of the external temperature on the main annual technical and economic 

indicators for CCGT-BP indicates the dependences shown in Figures 2,3.

Month 

Fig. 2. Change in electrical and thermal capacity of CCGT-BP throughout the year. 

Fig. 3. Change in the total efficiency (1) and electrical efficiency of CCGT-BP (2) throughout the 

year. Dashed lines show average annual values of the efficiency of electrical output (45%) and total 

efficiency of CCGT-BP (61.2%)

Thermal load during the year varies significantly under change in external temperature 

thus changing in the total efficiency of CCGT-BP. 

4.1 Effect of the heat network chart 

Dependences of the main parameters of CCGT-BP on temperature of the heating water are 

presented in Fig. 4. The return water temperature is 60 °C. 

Reduced temperature of the heating water results in increased efficiency of the 

investment in the project as a result of increased electric power of the steam turbine unit 

and increased gain in the net present value ΔNPV. The values of the CCGT-BP total 

efficiency and that of HRSG do not depend on temperature of the heating water since useful 

power of HRSG does not change due to constant temperature of gases at its inlet and outlet.

The results of the calculations carried out for different values of the return water 

temperature are shown in Fig. 5. The heating water temperature is 110 °C.
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Fig. 4. Variation in CCGT-BP parameters against the temperature of the heating water.

Fig. 5. Variation in CCGT-BP parameters against the temperature of the return water.

When the return water temperature grows from 40 °C to 80 °C, the HRSG efficiency 

drops by 7 %, which reduces the amount of the delivered heat by 8.5 % and reduces the 

total value of the CCGT-BP efficiency by 4.3 %. In addition, as temperature grows, the net 

present value ΔNPV changes by 74.8 %.

4.2 Effect of initial parameters of steam on CCGT-BP efficiency

The results of calculations for the CCGT-BP steam section performed at different heating 

water temperature are shown in Fig. 6. The return water temperature is 60 °C; the initial 

parameters of steam: 5.0 MPa and 540 °C. This effect is not significant.

The growth of the initial temperature in that range (by 7.4 %) leads to a decrease in the 

live steam flow. At increased temperature, the electric power slightly increases regardless 

of the initial pressure level, and the electric power gain is 1.6–1.9 MW.

At increased initial steam pressure, the parameter of the heat transferred to each surface 

of HRSG, except for GWNH, decreases. As a result, the steam flow to the turbine reduces 

and the electric power decreases. At increased pressure, the total capital investment remains 

virtually unchanged: at pressure increased in the above range, it reduces by 0.73 %–0.75 %. 

The value of ΔNPV relative to the base version is negligibly negative in all the cases, and it 

does not virtually change.
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Fig. 6. Variation in CCGT-BP parameters against initial parameters of steam.

Taking into account the impact of ecological benefits of the installation can be using the 

software complex [7]. 

5 Conclusions
• The efficient performance of the steam section does not affect the CCGT-BP heat 

efficiency since bottoming cycle runs without cycle losses. In addition, simple circuit of the 

plant due to single-loop bottoming cycle and lack of steam reheating increases the CCGT-

BP reliability. 

• External temperature significantly affects the CCGT-BP operation, in particular, the 

amount of the produced electric energy and the parameters of the steam generated by waste 

heat recovery boiler. 

• The temperature chart of the heat network is a crucial factor for the CCGT-BP parameters 

since the temperature of the heating network water determines the back pressure. 

• Initial steam parameters do not virtually affect the main CCGT-BP parameters. If no 

additional electrical power is needed, the initial vapor pressure can be decreased to 5 MPa. 

The study complements the results obtained in [8]. 
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