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Introduction

Let v be the flat vector field without particular points
in a G⊂E4 domain. Connect the field v to moving ortho�
normal frame {M;e6α}, М∈G. Its derivative formula is
written down in the form

where r
¸

is radius�vector of point M,

In this case the Pfaffian equation ω4=0 set three�di�
mensional distribution (M, π3) [1], i. e. flat map, correla�
ting any point M∈G with hyperplane π3, orthogonal to
the field vector v in this point. All integral lines and surfa�
ces of the equation ω4=0, crossing M, are tangent to the
hyperplane π3 in the given point. Let us name a system of
all integral curves and surfaces of the Pfaffian equation
ω4=0 (following [2]) a Pfaffian variety, orthogonal to the
vector field v. The plane π3 is the tangential plane of the
Pfaffian variety ω4=0 in the point M. If the equation ω4=0
is completely integrated, then one integral hyperplane go�
es through each point M, and we have a foliation [3]. In
this case the Pfaffian variety is called holonomic [1, 2]. In
the opposite case it is non�holonomic. We shall study the
vector field with non�holonomic Pfaffian variety.

The fundamental invariants of the vector field (as
well as the Pfaffian variety orthogonal to it) coincide
with invariants of the fundamental linear operator A [4],
determined by the formula

Its matrix in the basis {e6α} coincides with the matrix
(Aβ

α), obtained in decomposition of the main Pfaffian
forms ωα

4 in terms of basis forms ωα:

(1)

One of the characteristic values λ0 of the operator A
is equal to zero. The latent vectors ξ6(ξα) corresponding
to λ0=0, are defined by the set of equations

(2)

and are tangent to equidirectional lines (lines, along which
the field vectors are parallel [2, 4]). Depending on rang of
the operator A through the point M either one equidirec�
tional line (rang A=3) or equidirectional plane – two�di�
mension (rang A=2) or three�dimension (rang A=1) goes
through the point M. All these cases we study below.

In the paper the following designations are used: ki
(2)

are the principal curvatures of the 2�nd kind,
K2=–k1

(2)k2
(2)k3

(2) is the total curvature of the 2�nd kind,
ρ6=ρ ie6i is the non�holonomicity vector, are the princi�
pal directions of the 1�st kind, K1=–k1

(1)k2
(1)k3

(1) is the to�
tal curvature of the 1�st kind, A* is the contraction of A
operator onto the plane π3 [4].

Vector field, for which K2=0 and rang A=3

Such a vector field is characterized by the fact that
through every point M goes the only equidirectional li�
ne, this line belonging to the Pfaffian variety ω4=0. Di�
rect the vector e61 at a tangent to the equidirectional line,
then from (2) it follows that A1

1=A1
2=A1

3=0. But as rang
A=3, then the determinant

Let us show that for the investigated field (K2=0,
rang A=3) equidirectional line is also the line of curva�
ture of the 2�nd kind. For this purpose it is enough to
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show that one of the principal directions of the 2�nd
kind coincides with the vector direction e61. The princi�
pal curvatures of the 2�nd kind [4] are different only in
sign from the equation roots

Since K2=0, then at least one of the principal curva�
tures of the 2�nd kind equals to zero, let k1

(2)=0. Corres�
ponding latent vectors, determining the principal direc�
tion of the 2�nd kind, is found from the set of equations

but as A1
1=A1

2=A1
3=0, then in the plane π3 we obtain the

vector, for which ξ 2=ξ 3=0, i. е. The vector e61 is a vector
of the principal direction of the 2�nd kind.

Show that equidirectional line is in addition an
asymptotic line of the Pfaffian variety ω4=0. Find the
asymptotic lines, for them

Hence, using derivation formula, we arrive at the
equation

(3)

defining the asymptotic lines at ω4=0. The equation (3)
at ω2=ω3=ω4=0 is turned into identity. Since
ω2=ω3=ω4=0 are the equidirectional lines, it means
that any equidirectional lines is an asymptotic line. The
asymptotic line coinciding with the equidirectional one
lies in the plane π3. Tangents to the asymptotic lines, go�
ing through the point М , form a cone

(4)

Let us investigate the set of planes π3. Find the plane
characteristic π3 when displaced in any curve, going
through the point M:

(5)

The equation (5) includes only three basic formulas.
It means that the set of planes π3 depends on just three
parameters (but not on four as it is in general case). Cha�
racteristic point M0 of the plane π3 has the coordinates

That is the planes π3 have a envelope – three�dimen�
sional surface, described by the points M0. Having substi�
tuted the coordinates of the point M0 in the equation (4),
we ascertain that the point M0 lies on the tangent to one

of asymptotic lines, going through the point M. Hence,
the line MM0 is the tangent to one of the asymptotic lines.

Place the vector e62 on the plane {M,e61,M
⎯

M0

⎯
}, then

A2
1A3

2=A3
1A2

2 and the frame becomes canonical. Note that
characteristics of the plane π3 at displacement in curves,
belonging to ω4=0, form a bundle, axis of which is the
line MM0, (it follows from (5)).

Let us find the principal directions of the 2�nd kind
corresponding to the curvatures k2

(2),k3
(2). From the equation

we find λ2=–k2
(2), λ3=–k3

(2). Having calculated the prin�
cipal directions of the 2�nd kind corresponding to the
curvatures k2

(2),k3
(2), we see that they are orthogonal to the

line MM0. Thus, the following theorem has been proved.

Theorem 1. Smooth vector field, for which K2=0 and
rang A=3 possesses the following properties: 1) only one of
the principal curvatures of the 2�nd kind is equal to zero
(k1

(2)=0); 2) one equidirectional line goes through the point
M, it coincides with the curvature line of the 2�nd kind and
is an asymptotic line lying in the plane π3, 3) a set of plan�
es π3 depends on the three parameters and has a three�di�
mensional surface as an envelope; 4) the plane characteri�
stics π3, obtained at displacement in all curves belonging to
ω4=0, form a bundle with the axis MM0 (M0 is the point of
envelope in the plane π3); 5) in the point M the principal di�
rections of the 2�nd kind, corresponding to k2

(2) and k3
(2), are

orthogonal to the line MM0; 6) the lineMM0 is a tangent to
the asymptotic line not lying in the plane π3.

Vector fields, for which K2=0 and rang A=2

In this case one 2�dimentional equidirectional sur�
face goes through every point M ∈G, the surface being
an integral surface of the Pfaffian set of equation:

(6)

Denote

The tangent plane T2 of equidirectional surface in
the point M is determined by the equations

(7)

The plane T2 either crosses the plane π3 along the li�
ne, when rang A*=2, or belongs to the plane π3, when
rang A*=1.

Consider each of these possibilities.

a) Let rang A*=2. Direct the vector e61 along the in�
tersection line of Т2 and π3, then

.

As K2=0, then A1
3=0. It is easy to check that in the po�

int M one of the curvature lines of the 2�nd kind (that
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corresponds to the curvature k1
(2)=0) lies on equidirectio�

nal surface, i.e. it is a equidirectional line. Besides, this
line lies in the plane π3 and represents an asymptotic li�
ne. The plane set π3 depends on the three parameters,
but due to the fact that rang A=2, this set does not have
an envelope. Characteristics of the plane π3, obtained at
displacement along the curves from ω4=0, are the two�
dimensional planes, crossing one line

(8)

But characteristics of the plane π3, obtained at dis�
placement along the curve not belonging to ω4=0, are
parallel to the line. The line (8) is tangent to some asym�
ptotic line, not lying in the plane π3. One can show that
the principal directions of the 2�nd kind corresponding
to the curvatures k2

(2)≠0, k3
(2)≠0 are orthogonal to this line.

By doing this the following theorem has been proved.

Theorem 2. Smooth vector field, for which K2=0, ran�
gA=2, rang A*=2 possesses the following properties: 1) only
one of the principal curvatures of the 2�nd kind equals to ze�
ro ; 2) one 2�dimensional equidirectional surface, on which
one of lines is a line of the curvature of the second kind (that
which satisfies the curvature k1

(2)=0) goes through every point
M, it is an asymptotic line as well, lying in the plane π3; 3) a
set of planes π3 depends on the three parameters, but it does
not have an envelope; 4) the plane characteristics π3, obtai�
ned at displacement in the curves from ω4=0 form a bunch,
the axis of which is tangent to the asymptotic line, not coinci�
ding with the curvature line of the 2�nd kind; 5) the curvatu�
re line of the 2�nd kind, corresponding to the curvatures
k2

(2),k3
(2), are orthogonal to that asymptotic one; 6) the plane

characteristics π4, obtained at displacement in the curves, not
belonging to ω4=0, are parallel to the bunch axis.

b) Let rang A*=1. In this case in the point M∈G the
plane T2⊂π3 and 2�dimensional equidirectional surface
is an integral surface for ω4=0.

Place the vectors e61,e
6

2 on the plane T2, then we obtain

Besides, as rang A=2, то A1
3=A2

3=0, (A3
1)2+(A3

2)2≠0.
The equidirectional surfaces are defined by the equa�
tions after that

(9)

but the asymptotic lines – by the equations

Thus, set of all asymptotics breaks up into two sets,
one of which coincides with (9), hence, is holonomic,
the second one is non�holonomic as a set of equations

(10)

is not completely integrated.

The cone of tangents to asymptotic lines in the point
M breaks up into two two�dimensional planes. One of
them coincides with T2, the second T2

* has the equation

having directed the vector e61 along the intersection line
of the planes T2 and T2

*, we obtain A3
1=0,A3

2≠0.
A3

3=–k3
(2)=H, k1

(2)=k2
(2)=0, A3

2=k3
(2)tgϕ, where ϕ is the angle

between the planes T2 and T2
*, if k3

(2)≠0 If k3
(2)=0, the plane

T2
* is orthogonal to the plane T2.

The curvature vector kn6 line of flow of the vector fi�
eld is determined by the formula

Any direction of the plane T2 is a principal direction of
the 2�nd kind corresponding to the curvature k1

(2)=k2
(2)=0.

In this case, if A3
3=0, then k3

(2)=0 and other directions of the
2�nd kind in the point M does not exist. If A3

3≠0, then to
the curvature k3

(2)=–A3
3 corresponds to the principal direc�

tion A3
2e62+A3

3e63, orthogonal to the plane T2
*. The curvature

lines of the 2�nd kind corresponding k1
(2)=k2

(2)=0, coincide
with equidirectional lines, i. e. in each point M they form
2�dimensional surface – integral for the equation ω4=0.
At A3

3=0 there are not any other curvature lines of the 2�nd
kind, but at A3

3≠0 one more curvature line of the 2�nd kind
not belonging to equidirectional surface goes through the
point M. This line is defined by a set of equation

Calculating the principal curvatures and principal di�
rections of the 1�st kind we see that one of the principal
curvatures of the 1�st kind is equal to zero (k1

(1)=0) and
the principal direction coinciding with the vector direc�
tion e61 corresponds to it. Thus, for the given class of the
vector fields not only K2=0, but also K1=0. However
ω4=0 remains non�holonomic variety, since the vector of
non�holonomicity ρ6=1/2A3

2e61≠0
6

. The direction of non�
holonomicity vector coincide with the principal direc�
tion of the 1�st kind (note that it is also one of the prin�
cipal directions of the 2�nd kind). If A3

3=0 (k3
(2)=0), then

the principal direction of the 1�st kind are also the direc�
tions (0: 1: ±1), coinciding with the directions of angle
bisector between the lines obtained in the plane section
T2 and T2

* by the plane orthogonal to the line T2∩T2
*.

Consider the set of planes π3. Find the plane charac�
teristics obtained at its displacement in any direction:

It is seen from here: 1) a set of planes π3 depends on�
ly on two parameters; 2) all characteristics of the plane
π3 form a bunch with axis

3) at displacement in any curve from ω4=0, not lying
on equidirectional surface we have one and the same cha�
racteristic of the plane π3, coinciding with the plane T2

*.

As a result the following statement has been proved.

Theorem 3. Smooth vector field, for which K2=0, rang
A=2, rang A*=1 possesses the following properties: 1) at le�
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ast two of the principal curvatures of the 2�nd kind are
equal to zero (k1

(2)=k2
(2)=0); 2) 2�dimensional equidirectio�

nal surface being an integral surface for ω4=0 and belon�
ging to the hyperplane π3 goes through any point M; 3) all
lines of equidirectional surface are curvature lines of the 2�
nd kind corresponding to the curvatures k1

(2)=k2
(2)=0, as

well as to asymptotic lines; 4) cone of tangents to asympto�
tic lines in the point M breaks up into two, intersecting
along the line, two�dimensional planes T2 and T2

*, one of
which (T2) is a tangent plane to equidirectional surface;
5) a set of all asymptotic lines breaks up into two sets: ho�
lonomic, fibering into equidirectional surface, and non�
holonomic one with tangent planes T2

* at every point M;
6) total curvature K1 of the first kind is also equal to zero,
but among the principal curvatures of the 1�st kind only
one vanishes (k1

(1)=0,k2
(1)≠0,k3

(1)≠0); 7) direction of the line
T2∩T2

* is a principal direction of the 1�st kind correspon�
ding to k1

(1)=0; 8) at k1
(2)=k2

(2)=k3
(2)=0 all directions of the

plane T2 are principal directions of the 2�nd kind, there are
no other principal directions of the 2�nd kind; 9) at
k1

(2)=k2
(2)=0,k3

(2)≠0 besides principal directions of the 2�nd
kind lying in T2, there is one more principal direction of the
2�nd kind, orthogonal to Т2

* and the line T2∩T2
*; 10) a set

of planes π3 depends on only two parameters and has a
tree�dimensional a torse with rectilinear generator as an
envelope; 11) the plane characteristics π3, obtained at dis�
placement in any curve from ω4=0, is the plane Т2

*.

Vector fields, for which K2=0 and rang A=1

If rang A=1, then through every point M∈G goes
one three�dimensional equidirectional surface [3]. The
tangent plane Т3 of this surface either cross the plane π3

along the two�dimensional plane Т2=π3∩Т3, or Т3=π3. In
the latter case the Pfaffian variety ω4=0 is holonomic
and we have a foliation [3], the fibers of which are three�
dimensional ruled surfaces. We leave aside this case and
pass on the consideration of the first one.

The plane Т2=π3∩Т3 is defined by the equations

(11)

Place the vectors e61,e
6

2 on this plane, then A1
2=A2

2=0,
A3

2≠0 and the system (11) has the view

(12)

As in the case considered rang A=1, then

(13)

Under these conditions the cone of tangents to
asymptotic lines in the point М breaks up into two two�
dimensional planes: Т2 and Т2

*. The plane Т2 has the equ�
ations (12), the plane Т2

* – the equations

Since A3
2≠0, one can put A3

1=0 directing the vector e61

along the line T2∩T2
*. Besides, from (13) it follows that

A4
1=0. After that the frame {M,e6α} becomes canonical. In

it the line curvature vector of the field flow v is determi�
ned by the formula

I.e. osculating plane of the field flow line v is ortho�
gonal to the line T2∩T2

*, but nonholonomicity vector

is parallel to this line.

Find the principal curvatures and the principal direc�
tions of the 2�nd kind; obtain k1

(2)=k2
(2)=0,k3

(2)=–A3
3. The

principal directions of the 2�nd kind in the point М, corres�
ponding to the curvatures k1

(2)=k2
(2)=0, are all directions of

the plane Т2. But the direction corresponding to k3
(2)=–A3

3, is
the vector direction A3

2e62+A3
3e63, which at A3

3=0 lies in the
plane Т2, but at A3

3≠0 is orthogonal to the plane Т2
*.

All asymptotic lines tangent to Т2, lie in the tree�di�
mensional plane π3 and coincide with those curvature
lines of the second kind, which correspond to the curva�
tures k1

(2)=k2
(2)=0.

For the principal curvatures of the 1�st kind we find
the formulas

The principal direction of the 1�st kind, correspon�
ding to the curvature k1

(1)=0, coincides with the direction
of the line T2∩T2

*. This is the case when K1=K2=0, but
the Pfaffian variety, orthogonal to the vector field, re�
mains nonholonomic, even if principal curvatures of the
2�nd kind are zeroes. Note that at k1

(2)=k2
(2)=k3

(2)=0 the
planes Т1 and Т2

* are orthogonal.

For the given class of vector fields the characteristics
of the plane π3 are defined by the equations

It is thus seen that a set of all planes π3 depends only on
two parameters. At displacement in any curve from ω4=0,
not lying on equidirectional surface, we have the same cha�
racteristic – the plane Т2

*. At displacement in curves, not
lying in ω4=0, characteristic of the plane π3 are parallel to
Т2

*. Thus, two�parametric family of planes π3 does not ha�
ve an envelope and consists of tangent planes of one�para�
metric family of torses with two�dimensional flat genera�
tors. Thus, we have arrived at the following statement.

Theorem 4. Smooth vector field, for which К2=0, and
the nonholonomicity vector ρ6≠0 possesses the following
properties: 1) At least two principal curvatures of the second
kind are equal to zero (k1

(2)=k2
(2)=0); 2) through every point

М goes one 3�dimensional equidirectional surface, the tan�
gent plane Т3 of which does not cross the plane π2 in two�di�
mensional plane Т2; 3) the curvature lines of the 2�nd kind,
corresponding to the curvatures k1

(2)=k2
(2)=0, form 2�dimen�

sional surface in the point М, it lies in the plane π3 and has
a tangent plane coinciding with Т2; 4) cone of tangents to
asymptotic lines in the point breaks up into a couple of two�
dimensional planes Т2 and Т2

*, not intersecting in the line,
in this case asymptotic lines tangent to Т2, coincide with the
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curvature lines of the 2�nd kind; 5) one of the curvature li�
nes of the 1�st kind equals to zero (k1

(1)=0), but the principal
direction of the 1�st kind corresponding to it coincides with
the direction of the line T2∩T2

*; 6) the planes Т2 and Т2
* are

orthogonal only at k1
(2)=k2

(2)=k3
(2)=0, in this case all principal

curvatures of the 2�nd kind, crossing the point М, belong to
two�dimensional surface; 7) if k3

(2)≠0, the principal direc�
tion of the 2�nd kind corresponding to the curvature k3

(2)≠0,
is orthogonal to the plane Т2

* and the line T2∩T2
*; 8) a set of

planes π3, orthogonal to the vector field, depends on two pa�
rameters, does not have an envelope and consists of tangent
planes of one�dimensional family of torses with 2�dimen�
sional flat generators.

Theorem 5. There is the only vector field of the class
k1

(2)=k2
(2)=k3

(2)=0 with straight lines of flow and nonholono�
micity vector constants not equal to zero.

Proof. Let k1
(2)=k2

(2)=k3
(2)=0 and flow lines of the vec�

tor field are straight lines. Then A4
1=A4

2=A4
3=0, the for�

mulas (1) take on the form

(14)

Nonholonomicity vector ρ6 in this case is determi�
ned by the formula

Necessitate the vector ρ6 to be constant, not equal to
zero vector. Then

I. e. dρe61+ρ 1(ω1
2e62+ω1

3e63)=0
6

. Hence,

(15)

In terms of (14), (15) for exterior differentials of ba�
se forms we have

Differentiating the forms in the exterior way (14)
and applying then the Cartan’s lemma, we obtain ω2

3=0
and then dω 3=0.

As dω 1=0, dω 3=0, one can put ω 1=dt, ω 3=dy. Be�
sides, denote 2ρ 1=α. After that derivation formulas of
the frame have the view

(16)

From (16) we have

Consequently,

where (ε61,ε62,ε63,ε64) is the constant orthonormal basis,
α=const≠0. Note that

Consequently, one can put

Hence,

From here we find

(17

r60 – constant vector. Place origin of the fixed coordinate
system in the point М0(r60), recognize the vectors
(ε61,ε62,ε63,ε64) as a basis. From (17) it follows that any point
М∈Е4 in the given fixed Cartesian coordinate system has
the coordinates (t,x,y,z), but the vector field, meeting the
theorem conditions, is the field e64=sin(αy)ε62–cos(αy)ε64,
where α=const≠0. By doing so it is proved that in Е4 there
is the only vector field, for which all three principal curva�
tures of the 2�nd kind are zeroes, the lines of flow are the
straight lines, but nonholonomicity vector is the constant
vector. The Pfaffian variety orthogonal to the given field,
nonholonomic and is determined by the Pfaffian equation

nonholonomicity vector is the vector

For the vector field e64=sin(αy)ε62–cos(αy)ε64 we find
fundamental invariants, invariant lines and surfaces in
the Cartesian fixed coordinate system.

Equidirectional surfaces are three�dimensional
planes y=c.

Asymptotic lines are lines lying in two�dimensional
planes

(18)

and

(19)

The principal curvatures of the 1�st kind will be 

The curvature lines of the

1�st kind corresponding to the curvature k1
(1)=0, are the

straight lines being the lines of plane intersection (18)
and (19). The curvature lines of 1�st kind, correspon�

ding to the curvatures , are helical

lines, determined by the equations

(1) (1)
2 3,2 2k kα α= = −

(1) (2) (3)
1 2 30, , .2 2k k kα α= = = −

,
tg( ) .

y c
z c x mα

=
= +

 
bz
ax

=
= ,

1.2
αρ ε=

sin( ) cos( ) 0,y dx y dzα α− =

1 2 3 4 0 ,r t x y z rε ε ε ε= + + + +

1 2 3 4 .dr dt dx dy dzε ε ε ε= + + +

2 4

2 4

cos( ) sin( ) ,
sin( ) cos( ) .

y y dx
y y dz

α ω α ω

α ω α ω

+ =

− =

2 4

2 4

(cos( ) sin( ) ) 0,
(sin( ) cos( ) ) 0.

d y y
d y y

α ω α ω

α ω α ω

+ =

− =

2 2 4

4 2 4

2
1 2 4

4
3 2 4

cos( ) sin( ),

sin( ) cos( ),

( cos( ) sin( ))

( sin( ) cos( )),

e y y

e y y

d r dt y y

dy y y

ε α ε α

ε α ε α

ε ω ε α ε α

ε ω ε α ε α

= +

= −

= + + +

+ + −

2
2 2

1 1 3 3 4 22, , , .de d ee e e edy dy
ε ε α α= = = − = −

2 4
1 2 3 4

1

2 4

3

4 2

,

0,

,

0,

.

dr dte e dye e

de

de dye

de

de dye

ω ω

α

α

= + + +

=

= −

=

=

1 2 1 4 3 3

2 3 4 1 3 2
2

0, 2 ,
, 2 .

d d d
d

ω ω ρ ω ω ω

ω ω ω ρ ω ω

= = ∧ =

= ∧ = ∧

1 2 3
1 1const 0, 0.ρ ω ω= ≠ = =

0.d ρ =

1
1.eρ ρ=

1
4

2 1 3
4

3
4

0,

2 ,

0.

ω

ω ρ ω

ω

=

=

=
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(20)

and

(21)

From (20) and (21) we see that curvature lines of the
1�st kind, going through the point М∈Е4 and corres�
ponding to the principal curvatures of the 1�st kind not
equal to zero belong to one tree�dimensional plane, lie 

on two circular cylinder of the same radius with

common generator and common two�dimensional dia�
metral plane. The curvatures k of all curvature lines of 

the 1�st kind are the same Torsions of these li�

nes , i.e. are also the same in all points.1κ
α

= −

1( ).k
α

=

1
α

1

2,

3

,
1 sin( )

1 cos( ) .

t c

x y c

z y c

α
α

α
α

=

= − +

= +

1

2

3

,
1 sin( ) ,

1 cos( )

t c

x y c

z y c

α
α

α
α

=

= +

= − +
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1. Introduction

Study of properties, calculation of parameters and
determination of distribution type of some stochastic
process underling the market fluctuations is a main
problem of econometrics. Information on distribution
is necessary for designing econometric methods
(ARCH, GARCH, EGARCH, FIGARCH, FIE�
GARCH etc.,  see on the methods in details in [1]), es�
timation of risk limit value VAR, calculation of probab�
le values of dynamic series in future as well as defining
asymptomatic behaviour of distribution function densi�
ties. The latter is of particular importance since rare
events determining forms and type of their tails corres�
pond to making the most possible profit or suffering the
most probable losses.

In most cases logarithms of day increments in finan�
cial tool quotations (shares, bonds, swaps, options etc.)
do not have normal distribution [2–4]. It is connected
with the fact that empirical density distribution function
designed on such logarithms has a non�zero excess and

asymmetry; there is an oblongness of density function in
ε�suburb of mathematical expectation point as well as
the so�called «thick tails» (in case when probability of
significant changes in prices is higher than that of nor�
mal distribution) are observed. All these factors make
difficult or impossible to apply the common economet�
ric methods: ARCH(p), GARCH(p,q) and others,
which are initially based on the assumption of normal
increment and remainder distribution.

Dissatisfaction of financial market participants with
the results obtained by normal approximation make the
researchers search for new distributions and develop
new approaches to empirical financial data processing.
Thus, in the works [5–7] to describe time series the Pa�
reto generalized distribution, in [8, 9] the Student gen�
eralized t�distribution, in [3] the Laplace distribution,
in [10] α�stable distribution has been used. However, at
present the idea of combination of all mentioned distri�
butions with normal one is developing increasingly (see,
for example, [11]). The idea consists in cutting off the
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