ОСОБЕННОСТИ ЛУЧЕВЫХ СХЕМ В НЕОДНОРОДНЫХ АЗИМУТАЛЬНО-АНИЗОТРОПНЫХ СРЕДАХ НА ПРИМЕРЕ ОБОБЩЕННОЙ МОДЕЛИ ЮРУБЧЕНО-ТОХОМСКОЙ ЗОНЫ НЕФТЕГАЗОНАКОПЛЕНИЯ

Е.Е. Хогоева

Научный руководитель доцент С.Б. Горшкалев Институт нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук, г. Новосибирск, Россия

Юрубчено-Тохомское месторождение располагается в южной части Сибирской платформы и относится к Лено-Тунгусской нефтегазоносной провинции. Продуктивная толща сложена карбонатами. Поровое пространство карбонатного коллектора представлено кавернами и субвертикальными трещинами, направление которых меняется по латерали. Вертикальная трещиноватость коллектора приводит к появлению азимутальной анизотропии и зависимости проницаемости коллектора от направления, которое необходимо знать для правильного планирования системы разработки. Кроме этого, многочисленные эксперименты показали, что разрез осложнен неоднородной анизотропной верхней частью разреза, в которой азимут плоскостей изотропии меняется в зависимости от пересеченного рельефа местности [1].

Среды с вертикальной направленной трещиноватостью описываются трансверсально-изотропной средой с горизонтальной осью симметрии бесконечного порядка, ортогональной плоскостям трещин – плоскостям изотропии. Так как азимут трещин в коллекторе непостоянен, то он был смоделирован как анизотропная толща, в которой направление оси симметрии изменяется вдоль оси Х. Аналогично была задана верхняя часть разреза, в которой закон изменения направления трещиноватости отличается от заданного в изучаемом коллекторе.

Обобщенная модель Юрубчено-Тохомской зоны представляет собой горизонтально-слоистую среду, состоящую из 11 слоев. Верхний слой соответствует анизотропной верхней части разреза мощностью 170 м, нижний анизотропный слой соответствует целевому интервалу – трещиноватому карбонатному коллектору рифейского возраста мощностью 460 м. Параметры слоев модели среды представлены в таблице 1 и включают в себя скорости продольных и поперечных волн вдоль оси симметрии бесконечного порядка (O_∞), плотности и коэффициенты анизотропни K_p, K_{st}, K_{st} [4].

Таблица 1

Подошва, м	V _p , м/с	v _s , м/с	ρ, кг/м ³	K	K	K _{sh}
170	2000	900	2.1	1.13	1.07	1.13
470	3600	1700	2.4			
870	5600	3100	2.65			
1070	6500	3500	2.75			
1320	4800	2700	2.5			
1600	6100	3200	2.7			
2100	5250	2850	2.6			
2220	6300	3400	2.75			
2300	5300	2800	2.6			
2760	6900	3400	2.8	1.1	1.05	1.1
∞	3700	1500	2.4			

Обобщенная сейсмогеологическая модель Юрубчено-Тохомской зоны нефтегазонакопления

Puc.1. Пример пространственной траектории луча обменной волны PS, в азимуте источник-приемник 90°

В координате X = 0 азимут плоскостей изотропии в верхнем слое составляет 150° , в рифейском коллекторе этот азимут – 120° . Азимут вертикальных плоскостей изотропии изменяется на 1° каждые 50 м по координате X в верхнем слое в большую сторону, а в нижнем – в меньшую. По координате Y свойства среды не меняются. В связи с переменным направлением плоскости изотропии азимутально-анизотропная среда становится неоднородной. В изотропной горизонтально-слоистой среде и в трансверсально-изотропной среде с вертикальной осью симметрии лучевые схемы для наземных наблюдений лежат в вертикальных плоскостях, содержащих источник и приемник. Однако при наличии в разрезе азимутально-анизотропных слоев с горизонтальной осью симметрии лучевые схемы становится пространственными, что представлено на рисунке 1.

Пространственные годографы отраженных обменных волн становятся несимметричными и скоростной анализ по симметричному гиперболоиду

становится некорректным. Поэтому в случае азимутально-анизотропной среды аппроксимировать годограф обменной волны на небольшой базе возможно гиперболоидом с эллипсоидальным сечением, предложенным В.Ю. Гречкой и др. [2]

Наиболее информативными при изучении азимутальной анизотропии являются волны типа PS, так как помимо скоростей суммирования они дают возможность определять направления трещиноватости по поляризации волны PS₁, которая параллельна плоскостям трещин. Наличие двух азимутально анизотропных слоев с различными плоскостями симметрии приводит к расщеплению поперечных волн в каждом из них, что создает интерференцию четырех PS волн на поверхности. Для определения поляризации волны PS₁ в коллекторе необходимо компенсировать расщепление восходящих поперечных волн в верхнем анизотропном слое. Эта проблема успешно решена в работе С.Б. Горшкалева и др. [3].

Для формирования бинов круговой расстановки с удалением 2760 м было проведено асимптотическое бинирование со средневзвешенным значением V_p/V_s , показавшее смещение реальной точки отражения на 100 м. При помощи лучевого трассирования в изотропной среде со скоростями, равными скоростям в анизотропных слоях в вертикальном направлении, были получены значения удалений приемника и источника от центра с погрешностью 10⁻⁵. Далее с помощью имеющейся программы лучевого трассирования в неоднородной среде были получены точки обмена для лучей быстрой обменной PS₁ и медленной обменной PS₂ волн в каждом анизотропном слое для радиальной системы наблюдения с удалением источник-приемник 2760 м, приведенные на рисунке 2. В неоднородной азимутально-анизотропной среде, из-за пространственных лучевых схем, вместо общей точки обмена существует бин некоторых размеров, в котором находятся реальные точки отражения. Очевидно, что реальный бин, соответствующий медленной обменной волне PS₂, заметно больше бина быстрой обменной волне PS₂.

Рис.2. Расположение в плане точек обмена на границе Z = 2760 м для неоднородно-анизотропной среды для обменных волн: a) PS1, б) PS2

При увеличении бина увеличивается и погрешность решения обратной задачи, так как углы, под которыми волны пересекают анизотропный слой, будут существенно отличаться от случая нахождения точки обмена в центре бина. В связи с этим для более корректного проведения скоростного анализа, необходимо осуществить компенсацию расщепления и в нижнем анизотропном слое, получив сейсмограмму быстрой обменной PS_1 и медленной обменной PS_2 волн в каждом анизотропном слое. Это позволит получить скоростную характеристику анизотропного коллектора по каждому типу волны.

Таким образом показано, что даже при идеальном бинировании PS-волн для конкретной отражающей границы в рамках изотропной модели, азимутально анизотропные слои приводят к существенному увеличению реального размера бина. Получение сейсмограмм волны PS, позволяет существенно уменьшить его размеры.

Литература

- Gorshkalev S.B., Karsten W.V., Lebedev K.A., Korsunov I.V. Evidence for rapid variations of azimuthal anisotropy in the near surface: an example from East-ern Siberia, Russia // Journal of Seismic Exploration. – 2007. – V. 16. – № 2-4. – P. 319-330;
- Grechka V., Tsvankin I., Cohen J.K. Generalized Dix equation and analytic treatment of normal-velocity for anisotropic media // EAGE 1999. – Geophysical Prospecting. – № 47. P.117–148;
- Горшкалев С.Б., Карстен В.В., Афонина Е.В., Вишневский Д.М., Хогоева Е.Е. Поляризационный анализ отраженных PS-волн в средах с переменным направлением трещиноватости // Технологии сейсморазведки. - 2016. – №1. – С. 52-60;
- 4. Ляховицкий Ф.М., Невский В.В. Анализ анизотропии скоростей сейсмических волн в тонкослоистых периодических средах. // Известия АН СССР, серия «Физика Земли». 1970. № 9. С.12-21.