На бинарных диаграммах MgO–SiO₂, MgO–FeO, MgO–CaO отчетливо видно, что фигуративные точки составов дунитов, гарцбургитов обоих массивов образуют тренды, которые, очевидно, отражает неравномерную степень деплетирования мантийного вещества. На диаграммах MgO–CaO, MgO–SiO₂, MgO–FeO (рис.) отчетливо выделяются два тренда: I – характерен для Барыньского массива; II – для Оспинского массива. Для тренда I хорошо проявляется закономерность: с повышением содержания MgO уменьшается содержание SiO₂, FeO, CaO. Минимальные значения для SiO₂ равны 41 %, FeO – 14 %, CaO – 0,02 %. В то время как значения MgO колеблются в интервале 39...52 %. Ультрамафиты Оспинского массива оказываются в поле наибольшей деплетированности. Для них устанавливается тренд II, который также отражает степень их деплетированности от гарцбургитов к дунитам.

На диаграммах отчетливо видно, что фигуративные точки ультрамафитов Барыньского массива и Оспинского массива образуют самостоятельные поля, которые на одних диаграммах перекрываются, а на других нет, что свидетельствует о различиях их вещественного состава. Также можно сделать вывод, что с увеличением степени деплетирования ультрамафиты характеризуются увеличением, главным образом, MgO и уменьшением FeO, CaO и Al_2O_3 . Ультрамафиты Оспинского массива в сравнении с Барыньским обогащены MgO и обеднены SiO₂, FeO, CaO и Al_2O_3 (рисунок) и по своему составу отвечают предельно истощенным гарцбургитам и дунитам. Более высокие содержания SiO₂, FeO, CaO и низкие MgO в ультрамафитах Барыньского массива, вероятно, связаны с меньшей степенью деплетированности исходного мантийного субстрата. На диаграмме Al_2O_3 – CaO фигуративные точки Барыньского и Оспинского массивов имеют неравномерное распределение, – они обособляются в две группы (рис.). Первая из них малоглиноземистая, причем Оспинский массив отличается минимальным содержанием CaO, а Барыньский массив, наоборот, – повышенным содержанием CaO, до 25 %. Вторая группа – высокоглиноземистая, что, очевидно, связано с наложенными процессами.

Таким образом, ультрамафиты Барыньского массива близки к таковым из офиолитовых комплексов. Они являются мантийными реститовыми образованиями, которые в пластичном состоянии были перемещены в верхние этажи литосферы по глубинным надвигам.

Литература

- 1. Гончаренко А.И., Чернышов А.И. Деформационная структура и петрология нефритоносных гипербазитов. Томск: Изд-во Томского ун-та, 1990. 200 с.
- 2. Чернышов А.И., Ножкин А.Д., Мишенина М.А Петрогеохимическая типизация ультрамафитов Канского блока (Восточный Саян) // Геохимия, 2010. № 2. С. 126 150.

СРАВНИТЕЛЬНАЯ ПЕТРОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА УЛЬТРАМАФИТОВ КАНСКОГО ЗЕЛЕНОКАМЕННОГО ПОЯСА (ВОСТОЧНЫЙ САЯН) Н.А. Бабинцев

Научный руководитель профессор А.И. Чернышов Национальный исследовательский Томский государственный университет, г. Томск, Россия

Канский зеленокаменный пояс (Канский ЗКП) располагается в северо-западной части Восточного Саяна, примыкая к юго-западной окраине Сибирской платформы. Он сложен преимущественно амфиболито-гнейсовыми толщами метавулканогенно-осадочных комплексов, для которых характерны минеральные ассоциации эпидот-амфиболитовой и амфиболитовой фаций [2]. В пределах Канского ЗКП известно множество мелких тел ультрамафитов, перспективных на обнаружение промышленного Cu-Ni-благороднометального оруденения, в числе которых известно Кингашское Cu-Ni-Pt-Pd месторождение. Проведённые ранее исследования [3] позволили по совокупности признаков объединить породы Кингашского рудного района (располагающегося в пределах Канского ЗКП) в два комплекса: идарский реститовый дунит-гарцбургитовый и кингашский магматический дунит-верлит-пикритовый. Определение формационной принадлежности отдельных ультрамафитовых массивов является ключевой задачей на всех стадиях геологоразведочного процесса в регионе. Один из ключевых методов, используемых для решения этой задачи, – петрохимический анализ.

Петрохимические особенности ультрамафитов Кингашского рудного района (Кингашского РР) приведены в работе [3]. Целью данной работы является проведение сравнительной петрохимической характеристики ультрамафитов Кингашского РР и Кулибинского потенциального рудного узла (Кулибинского ПРУ), который располагается на северо-западном окончании Канского ЗКП. В работе использованы материалы из работ [1, 3] и каменный материал, отобранный автором и научным руководителем в ходе поисковых работ в пределах Кулибинского ПРУ.

Принадлежность ультрамафитов к двум различным формациям подтверждается особенностями их химического состава, наблюдаемыми на бинарных диаграммах (рис.). При построении диаграмм использованы результаты оригинальных анализов ультрамафитов Кулибинского ПРУ и Кингашского РР, а также результаты химических анализов ультрамафитов рудоносного Кингашского массива из [1].

Расположение фигуративных точек на бинарных диаграммах позволяет установить единый эволюционный тренд для магматических ультрамафитов кингашского комплекса по всему Канскому ЗКП. Фигуративные точки реститов идарского комплекса образуют компактное поле, не пересекающееся с полем распространения фигуративных точек кингашского комплекса.

Рис. Бинарные диаграммы для ультрамафитов Канского зеленокаменного пояса. 1-1-кумулятивные ультрамафиты кингашского комплекса в Кингашском РР; 1-2-рудоносные кумулятивные ультрамафиты Кингашского массива; 2 – ультрамафиты кингашского комплекса Кулибинского ПРУ; 3 – реститовые ультрамафиты идарского комплекса Кингашского РР; 4 – реститовультрамафиты идарского комплекса Кулибинского ПРУ; 5 – тренды изменения состава ультрамафитов кингашского комплекса; 6 – поле распространения ультрамафитов идарского комплекса

Тренды, отображённые на бинарных диаграммах, отражают эволюцию исходного высокомагнезиального пикритового расплава в процессе становления интрузивов кингашского комплекса. В ходе дифференциации исходного расплава с последовательным образованием ряда пород от дунитов до пикритов происходило снижение их магнезиальности и железистости при увеличении концентраций SiO₂, CaO, TiO₂. На диаграмме MgO–FeO наблюдается нелинейная зависимость: в высокомагнезиальных разностях отмечается отрицательная корреляция с накоплением FeO при снижении магнезиальности, тогда как в низкомагнезиальных – положительная. Ультрамафиты Кулибинского ПРУ и Кингашского PP образуют единое поле фигуративных точек, однако имеются некоторые различия между ними: породы Кулибинского ПРУ обладают заметно меньшей титанистостью и несколько меньшей железистостью. Повышенные концентрации SiO₂ и CaO в породах Кулибинского ПРУ объясняются большей распространённостью пикритов. Рудоносные ультрамафиты Кингашского массива являются наиболее магнезиальными разностями пород кингашского комплекса и на диаграмме SiO₂–MgO располагаются в основании тренда.

Реститовые ультрамафиты идарского комплекса отличаются от кингашских повышенной магнезиальностью, пониженной железистостью и практически полным отсутствием примеси TiO₂ в их составе. Фигуративные точки пород идарского комплекса образуют компактные поля и при достаточном объёме выборки по результатам силикатных анализов уверенно отделяются от магматических ультрамафитов кингашского комплекса.

Таким образом, петрохимическим критерием рудоносности ультрамафитов Канского ЗКП является повышенная железистость наиболее магнезиальных разностей и высокие концентрации TiO₂ в ультрамафитах. Применение данного критерия в комплексе с петрографической и геохимической характеристикой, позволит уверенно выделить потенциально рудоносные массивы ультрамафитов в регионе.

Литература

- 1. Глазунов О.М., Богнибов В.И., Еханин А.Г. Кингашское платино-медно-никелевое месторождение. Иркутск. 2003. 190 с.
- Ножкин А.Д., Туркина О.М., Бибикова Е.В., Пономарчук В.А. Строение, состав и условия формирования метаосадочно-вулканогенных комплексов Канского зеленокаменного пояса (СЗ Присаянье) // Геология и геофизика, 2001. – Т. 42. – № 7. – С.1058 – 1078.
- 3. Чернышов А.И., Ножкин А.Д., Мишенина М.А Петрогеохимическая типизация ультрамафитов Канского блока (Восточный Саян) // Геохимия, 2010. № 2. С. 126 150.