УДК 550.83;553.98;551.73;551.76(571.16)

СЕЙСМОГЕОЛОГИЧЕСКИЕ КРИТЕРИИ НЕФТЕГАЗОНОСНОСТИ ЗОНЫ КОНТАКТА ПАЛЕОЗОЙСКИХ И МЕЗОЗОЙСКИХ ОТЛОЖЕНИЙ МЕЖОВСКОГО СВОДА (НОВОСИБИРСКАЯ ОБЛАСТЬ)

О.О. Абросимова, А.В. Губа*

ОАО «Сибнефтегеофизика», г. Новосибирск *ФГБУН «Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН», г. Новосибирск E-mail: abrosimova@sbngf.ru

На основе сопоставления характера сейсмической записи с геологическими данными выделены шесть основных сейсмофаций, отображающих наиболее характерные типы пород доюрского комплекса юго-западной части Новосибирской области. Сейсмогеологическая модель строения доюрских отложений позволяет оконтурить предполагаемые зоны распространения различных пород доюрского комплекса. Полученные результаты на качественном уровне можно использовать при оценке выделения зон коллекторов и соответственно перспектив нефтеносности данного стратиграфического уровня.

Ключевые слова:

Нефтегазоносность зоны контакта, сейсмическая запись, временной разрез, динамический анализ, месторождение, Межовский свод, Новосибирская область.

Key words:

Petroleum potential of reservoirs at the Paleozoic-Mesozoic boundary, seismic record, seismic cross section, dynamic analysis, oil and gas field, Mezhovka arch, Novosibirsk region.

В начале 60-х гг. прошлого века в юго-западной части Новосибирской области разведочными скважинам под осадочным мезо-кайнозойским чехлом был вскрыт крупный гранитоидный массив батолитового типа, который образует крупную положительную структуру площадью около 5 тыс. км² и амплитудой по поверхности доюрского комплекса порядка 600 м. С севера свод ограничен Нюрольской впадиной, с юго-востока - Михайловским прогибом и с запада – Кыштовской впадиной. В его пределах пробурено более 30 скважин, которыми выявлен ряд небольших месторождений углеводородов. Нефтегазоносность связана с меловыми и юрскими отложениями, а также корой выветривания гранитов. В связи с этим рассматриваемая территория неоднократно привлекала внимание различных исследователей.

На данный момент на Межовском своде проведена гравиметрическая съемка масштаба 1:200 000. На результирующей карте он представляет собой интенсивный единый минимум напряженности гравитационного поля. В аномальном магнитном поле (съемка масштаба 1:50 000) свод не имеет четкого отображения и в целом характеризуется различными по значениям и морфологии аномалиям. Сопоставление потенциальных полей позволяет очертить границы батолита в плане. Также для уточнения границ массива были использованы данные сейсморазведочных работ, проведенных в пределах района исследования с 1990 по 2009 гг.

Для изучения геологического строения разреза используется большое количество методологических подходов. Одним из них является сейсмофациальный анализ. Цель процедуры — выделение сейсмофаций на основе анализа изменения волновой картины. Сейсмическая фациальная единица (сейсмофация) объединяет группу отражений, ха-

рактеризующихся схожим набором параметров, таких как конфигурация, непрерывность, амплитуда, частота и т. д. Каждый параметр несет определенную информацию о геологическом строении изучаемого интервала. Целью сейсмофациального анализа является прогноз литофаций по данным сейсморазведки. Прямой корреляции между определенным типом рисунка волновой картины и литологическим составом пород не существует. Однако анализ изменяющихся характеристик отражений в комплексе с априорной геологической информацией позволяет получить приемлемые оценки литологии [1].

Литологические заключения, полученные при изучении керна, позволяют выделить шесть основных типов пород доюрского комплекса, которые развиты в рассматриваемом районе. На основе сопоставления характера сейсмической записи с геологическими данными были выделены шесть основных сейсмофаций.

Сейсмофация I характеризуется хаотичным расположением непротяженных осей синфазности различной интенсивности. Энергетическая составляющая такого рисунка волнового поля наиболее низкая. Соответствует гранитам. Данные образования вскрыты скважинами на Межовской, Восточно-Межовской и Веселовской площадях (рис. 1, A).

Сейсмофация II представлена прерывистослоистыми, динамически выраженными отражениями с частотой от 20 до 50 Гц. Предположительно, данная сейсмофация связана с карбонатными отложениями девонского возраста, зафиксированными в скважинах: Дедовские-1,2,3, Восточно-Межовской-102 и Оптимистичной-1 (рис. 1, Б).

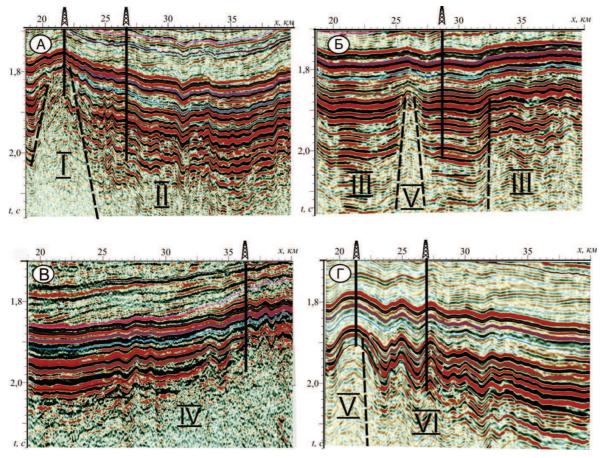
<u>Сейсмофация III</u> по геометрии волнового поля близка с сейсмофацией II, но отличается более энергетически и динамически выраженными отра-

жениями и связана с глинисто-карбонатными породами девонского возраста. Данные отложения выявлены в скважинах Пахомовские-1, 2 (рис. 1, Б).

Сейсмофация IV представлена непротяженными, переменно-амплитудными волнистыми отражениями, часто низкочастотными. Регулярность и энергия записи с увеличением времени быстро затухает. Данный тип сейсмической записи связан с протерозойскими метаморфическими сланцами. Подобные образования вскрыты скважиной Верх-Чековской-1 (рис. 1, В).

<u>Сейсмофация V</u> по геометрии волнового поля похожа на сейсмофацию I, хаотичные чуть более упорядоченные и протяженные фрагменты осей синфазности. Данная сейсмофация связана с эффузивами кислого состава (скважины Бочкаревская 1 и Чековская 1) (рис. 1, Γ).

Сейсмофация VI представлена интенсивными, динамически выраженными, низкочастотными отражениями (частота варьирует от 15 до 40 Гц). Иногда отражения волнистые, переменно-амплитудные. Данный тип сейсмической записи связан с терригенно-вулканогенными отложениями ранне-среднего палеозоя (скважины Рифтовая-1 и Узаская-1) (рис. 1, Γ).


В результате комплексного анализа сейсмической информации, данных аэромагнитной и гра-

витационной съемок и геологической информации была построена сейсмогеологическая модель строения доюрских отложений (рис. 2). Данная модель более детально позволяет оконтурить предполагаемые зоны распространения различных пород доюрского комплекса и, в целом, полученные результаты на качественном уровне позволяют использовать полученную информацию при оценке выделения зон коллекторов и соответственно перспектив нефтеносности данного стратиграфического уровня.

Перспективы поисков углеводородов в пределах подобных объектов могут рассматриваться по следующим направлениям: нефтегазоносность гидротермально измененных собственно магматических пород, кор их выветривания.

Нефтегазоносность гидротермально измененных магматических пород

В последнее время в связи с открытием крупных месторождений углеводородов в интрузивных комплексах фундамента повысился интерес к районам, имеющим сходное геологическое строение [2–4]. Одной из главных теоретических проблем поисков и разведки подобных месторождений является возможность формирования резервуаров в интрузивных породах. Коллекторы могут

Рис. 1. Фрагменты временных разрезов, отображающие типы сейсмической записи, в интервале доюрских образований (I–VI сейсмофации)

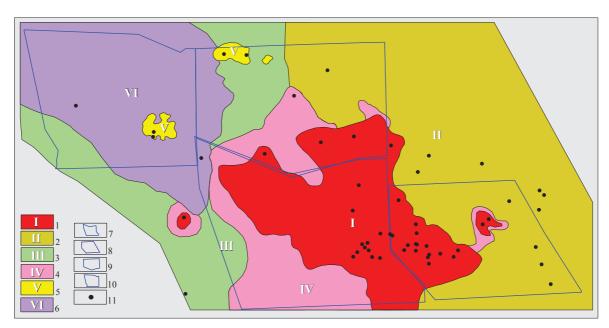


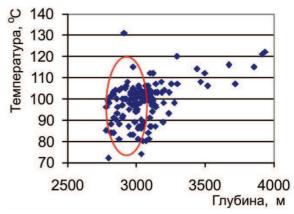
Рис. 2. Схема сейсмофациального районирования доюрского комплекса Межовского свода и прилегающих территорий. Прогнозные литологические разности доюрских отложений, выделенные по типам сейсмофаций (I–VI): 1) интрузивные породы, преимущественно граниты; 2) карбонатные породы, 3) глинисто-карбонатные породы, переслаивающиеся туфами, туффитами, порфиритами; 4) протерозойские сланцы; 5) эффузивы кислого состава; 6) вулканогенно-терригенные породы, эффузивы основного состава. Границы лицензионных участков: 7–10; 11) скважины

образовываться в результате целого комплекса процессов, таких как автометасоматоз, контракционная усадка, а также постмагматических и тектонических процессов. Общее уменьшение объема гранитной магмы при остывании составляет в среднем 8...9 %, причем некоторая часть реализуется в виде различных пустот внутри интрузива [5, 6]. Экранами для залежей могут служить не только перекрывающие их терригенные породы, но и непроницаемые разности разреза гранитоидного массива.

Минералого-петрографическими исследованиями керна установлено, что формирование пород Межовского массива происходило, по крайней мере, в четыре фазы [7]. Наиболее ранними (первая фаза) являются биотитовые граниты, они составляют большую часть массива. Биотитовые граниты вскрыты на Межовской, Восточно-Межовской, Еласской, Буйновской, Веселовской площадях. Вторая фаза представлена микроклиновыми гранитами (Ургульская площадь). В третью фазу формировались граниты аляскитового типа. В завершающую, четвертую, фазу возникли аплитовые граниты. Результаты определений абсолютного возраста пород показали очень большой разброс значений от 106 до 937 млн л [8], что тоже является подтверждением многофазности массива.

Теоретически можно предполагать, что разновозрастные интрузивные комплексы, «пересекаясь» друг с другом по зонам тектонических нарушений, образовывали зоны дробления и метасоматического контактного изменения пород. Также такие разломы могли неоднократно активизироваться в последующие геологические эпохи. В резуль-

тате на глубине возникли зоны разуплотнения. В настоящее время делаются только первые шаги в интерпретации геофизических материалов с целью выделения таких дезинтегрированных, разуплотненных зон в теле гранитного массива. В приповерхностной части массива по трещиноватым зонам могут развиваться зоны коры выветривания повышенной мощности. Подобные зоны могут иметь неплохие коллекторские свойства.


Нефтегазоносность кор выветривания

В пределах свода детальной сейсморазведкой выявлены около десятка локальных поднятий, которые к настоящему времени практически все разбурены хотя бы одной скважиной. В ряде разрезов скважин выделяются образования коры выветривания. Так, Межовская скважина 4 под породами баженовской свиты на отметке 2232 м вскрыла каменный структурный элювий гранитов мощностью 8 м. Северо-Межовская скв. 7 вскрыла кору выветривания гранитов — зону глинистого структурного элювия (2300...2324 м), и вышележащие (интервал 2290...2300 м) переотложенные продукты коры выветривания [9]. Значительную мощность коры выветривания (38 м) вскрыла скважина Тартасская 3 в интервале 2544...2582 м. При испытаниях интервала 2513...2592 м был получен приток хлоркальциевой воды дебитом 285 м³/сут. Количество определений коллекторских свойств измененных гранитов незначительно. Можно привести в пример только данные по керну скважины Межовская 5, где была определена открытая пористость по пяти образцам из интервала 2312,7...2330,8 м, которая колеблется в пределах от 2 до 6,5 %. Нефтегазоносность коры выветривания интрузивных пород была доказана на Межовском своде на одноименном месторождении [10].

Поступление углеводородов юрского происхождения в кровельную часть доюрского комплекса в любой модели формирования в ней коллекторов возможно за счет примыкания нефтематеринских или продуктивных отложений юрского возраста и нисходящей миграции по разломам. В связи с тем, что в пределах Межовского свода повсеместно развита нефтематеринская баженовская свита, в качестве главного критерия нефтегазоносности рассматривалось распределение зон развития коры выветривания, как потенциального коллектора.

Помимо опубликованных обобщений различных геолого-геофизических и геохимических материалов, полученных при изучении нефтегазоносности доюрского комплекса, данной проблеме посвящены и теоретические разработки. Математическое моделирование движения флюида в разделенном разломами на блоки фундаменте и перекрывающем его осадочном чехле детально рассмотрено в исследованиях [11, 12]. В указанных работах отмечается, что восходящая ветвь конвективной ячейки, совпадающая с дизъюнктивной в комплексе основания, должна характеризоваться положительной тепловой аномалией, а нисходящая ветвь приурочена к другому разлому того же ранга – отрицательной. На основе промысловых данных в пределах хорошо изученного Талинского месторождения было подтверждено наличие конвективного тепломассапереноса [13]. Рассматриваемая территория характеризуется значительно меньшей буровой изученностью (по отношению к Талинскому месторождению), поэтому были использованы также данные по скважинам, пробуренным в непосредственной от нее близости. Использованы результаты термометрии пород доюрского комплекса по 153 скважинам. Было отмечено, что в кровле доюрского комплекса (глубинах порядка 2700...3200 м) значения могут различаться на 40 °C.

Температуры, измеренные в более глубоких горизонтах, закономерно увеличиваются (рис. 3).

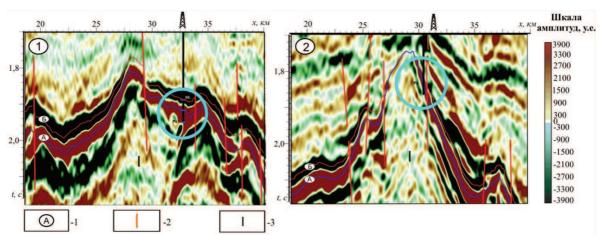
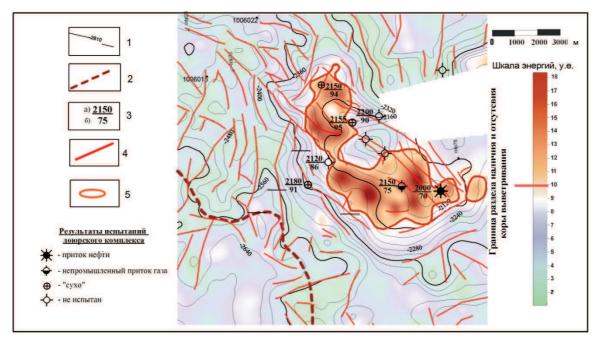


Рис. 3. Распределение температур пород доюрского комплекса в зависимости от глубины замеров


По результатам бурения в пределах Межовского свода было выявлено, что в одних из них (характеризующихся отсутствием притоков или неопробыванных в связи с данными интерпретации ГИС) зафиксированы повышенные температуры (86...95 °C), а в других (с притоками углеводородов) — пониженные температуры (70....75 °C) (рис. 5).

Выполнено сопоставление тепловых аномалий с распределением тектонических нарушений и возможным наличием коллектора (коры выветривания). На фрагментах временных разрезов (рис. 4) видно осложнение сейсмической записи в зонах, отождествляемых с развитием коры выветривания. Изменение сейсмической записи позволяет картировать зоны развития кор выветривания.

Картирование зон коры выветривания было выполнено с использованием динамических параметров сейсмической записи. На рис. 5 представлена карта энергии сейсмической записи. В точках скважин, вскрывших кору выветривания, значения энергии сейсмической записи от 10 услов-

Рис. 4. Фрагменты временных разрезов через скважины, вскрывшие: 1) кору выветривания гранитов; 2) неизмененные граниты. Условные обозначения: 1 – положение основных отражающих горизонтов: А – кровля доюрского комплекса, Б – кровля баженовской свиты; 2 – тектонические нарушения; 3 – сейсмофация

Рис. 5. Схема прогноза развития коры выветривания: 1) изогипсы отражающего горизонта А (кровля доюрского комплекса); 2) граница гранитоидного массива по данным сейсмофациального анализа; 3) а) глубина замера температуры, м; 6) температура, °C; 4) тектонические нарушения; 5) граница зоны развития коры выветривания

ных единиц и более. В связи с этим в качестве граничного было принято значение, равное 10 у.е. Это позволило оконтурить зоны развития коры выветривания.

Анализ схемы позволяет отметить следующие моменты:

- 1. В пределах развития кор выветривания скважинами вскрыты как проницаемые, так и непроницаемые разрезы. Фильтрационно-емкостные свойства кор выветривания за счет вторичных изменений и уплотнения за время формирования осадочного чехла уменьшились, о чем свидетельствует наличие непроницаемых разрезов.
- Во время апт-сеноманского развития Западно-Сибирской плиты произошло подновление старых и возникновение новых тектонических нарушений с формированием зон трещиноватости, о чем свидетельствуют проницаемые разрезы.
- 3. Отложения баженовской нефтематеринской свиты в этом районе залегают непосредственно на образованиях доюрского комплекса. Вероятно, заполнение части коллекторов в кровле гранитоидного массива происходило при нисходящей миграции по зонам разломов мелового возраста.

4. Наиболее перспективным в отношении нефтегазоносности является западный участок развития коры выветривания в зоне, где отмечаются пониженные температурные значения в кровле доюрского комплекса.

Выводь

Районирование юго-восточной части Новосибирской области по вещественному составу доюрского комплекса, реализованное с использованием сейсмофациального анализа, позволило уточнить границы Межовского гранитоидного массива. В качестве главного критерия нефтегазоносности (наличия коллектора) рассматривалось распределение коры выветривания, которое был закартировано на основе динамических параметров сейсмической записи. В кровле доюрского комплекса в пределах свода отмечаются положительные и отрицательные температурные аномалии. Наиболее вероятным механизмом поступления углеводородов в кровельную часть доюрского комплекса помимо примыкания нефтематеринских или продуктивных отложений юрского возраста является миграция по разломам, которые представляют собой нисходящую ветвь конвективной ячейки.

СПИСОК ЛИТЕРАТУРЫ

- Малярова Т.Н., Иванова Н.А. Современные методы сейсмофациального анализа на реальных примерах // Геомодель 2006: Матер. VIII Междунар. научно-практ. конф. – Геленджик, 17–22 сентября 2006. – М.: МГУ, 2006. – С. 136–137.
- 2. Арешев Е.Г., Донг Ч.Л., Киреев Ф.А. Нефтегазоносность гранитоидов фундамента на примере месторождения Белый Тигр // Нефтяное хозяйство. 1996. № 8. С. 50—58.
- Шнип О.А. Образование коллекторов в фундаменте нефтегазоносных территорий // Геология нефти и газа. – 1995. – № 6. – С. 35–37.
- Шустер В.Л. Нефтегазоность кристаллического фундамента // Геология нефти и газа. – 1997. – № 8. – С. 17–19.
- Жабрев И.П. Глубинные углеводороды биогенного генезиса // Геология нефти и газа. – 1994. – № 9. – С. 27–28.
- Осипов М.А. Процесс остывания интрузива и размещение рудных тел // Советская геология. – 1973. – № 3. – С. 21–27.
- Проблема нефтегазоносности палеозоя на юго-востоке Западно-Сибирской низменности / ред. А.А. Трофимука, В.С. Вышемирского. – Новосибирск: Наука, 1976. – 237 с.
- Елкин Е.А., Краснов В.И., Бахарев Н.К. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Палеозой Западной Си-

- бири. Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2001. 163 с
- Коры выветривания Сибири. Формации кор выветривания Западно-Сибирской плиты и Алтае-Саянской области / под ред. В.П. Казаринова. М.: Недра, 1979. 220 с.
- 10. Конторович А.Э., Нестеров И.И., Салманов Ф.К. Геология нефти и газа Западной Сибири. М.: Недра, 1975. 678 с.
- 11. Кормильцев В.В., Нургалиев Д.К., Писецкий В.Б., Ратушняк А.Н. Моделирование флюидодинамических систем, охватывающих осадочный бассейн и фундамент // Георесурсы. 2001. № 2. С. 35—37.
- 12. Кормильцев В.В., Ратушняк А.Н. Моделирование температурных аномалий, связанных с течением флюида при объемной деформации геоблоков // Дегазация Земли: геодинамика, флюиды, нефть и газ. М.: ГЕОС, 2002. С. 156—158.
- Федоров Ю.Н., Князева И.В., Иванов К.С., Кормильцев В.В., Печеркин М.Ф., Свечников Л.И., Криночкин В.Г., Федоров М.Ю. К методике прогноза залежей углеводородов в доюрском основании Западной Сибири // Горные ведомости. –2004. – № 10. – С. 38–53.

Поступила 11.05.2012 г.

УДК 553.98:553.041:552.578:550.8.05

ВЛИЯНИЕ ПАЛЕОКЛИМАТА НА ГЕОТЕРМИЧЕСКИЙ РЕЖИМ И НЕФТЕГЕНЕРАЦИОННЫЙ ПОТЕНЦИАЛ БАЖЕНОВСКОЙ СВИТЫ (НА ШИРОТАХ ТОМСКОЙ ОБЛАСТИ)

Г.А. Лобова, Е.Н. Осипова, К.А. Криницына, Ю.Г. Останкова

Томский политехнический университет E-mail: lobovaga@tpu.ru

Проведено многовариантное палеотемпературное моделирование осадочных разрезов шести глубоких скважин Томской области. Определено существенное влияние векового хода температур на поверхности Земли (палеоклимат) на термическую историю и реализацию нефтегенерационного потенциала отложениями баженовской свиты для различных тектонических структур, расположенных на разных широтах Томской области. В качестве критериев адекватности модели геотермического режима приняты «реперные» геотемпературы из отражательной способности витринита и нефтегазоносность верхнеюрских отложений.

Ключевые слова:

Палетемпературное моделирование, палеоклимат, баженовская свита, отражательная способность витринита, нефтегенерационный потенциал, Томская область.

Key words.

Paleotemperature modeling, paleoclimate, Bazhenov formation, vitrinite reflectance, oil generation potential, Tomsk region.

Постановка задачи

Современные оценки ресурсов углеводородов (УВ) выполняются объемно-генетическим методом, на основе реконструкции геотемпературного режима нефтематеринских отложений [1, 2 и др.].

Одним из факторов, определяющих температурный режим осадочного разреза, является влияние палеоклимата. Поэтому ряд исследователей [3—5] рекомендуют при палеотемпературном моделировании учитывать вековой ход температур на поверхности Земли, в том числе и резкое похолодание в позднечетвертичное время. Существует также мнение [6], что при реконструкции палеотемпературного режима нефтематеринских отложений учитывать вековой ход температур на по-

верхности Земли нет необходимости, так как дно бассейна осадконакопления всегда имеет температуру, близкую к нулевой. Наряду с этим, при палеотемпературном моделировании в пределах Нюрольской мегавпадины [7] влияние резкого похолодания в плейстоцен-голоцене на геотермический режим материнских пород было оценено как маловероятное.

Цель наших исследований — оценить влияние векового хода температур поверхности Земли (палеоклимата) на геотермический режим, и, следовательно, на степень реализации генерационного потенциала баженовской свиты для различных тектонических структур на разных географических широтах Томской области.