ЛИТЕРАТУРА

- 1. Camacho E.F., Bordons C. Model Predictive Control. London: Springer-Verlag, 2004.
- 2. Kogan M.M., Neĭmark Yu.I. On the optimality of locally optimal solutions of linear-quadratic problems of control and filtering // Automation and Remote Control. -1992.-V.53,-N.4,-P.561-569.
- 3. Conte P., Pennesi P. Inventory control by model predictive control methods // Proc. 16th IFAC World Congress, Czech Republic, Prague, 2005. P. 1–6.
- 4. Stoica C., Arahal M. Application of robustied model predictive control to a production-inventory system // Proc. 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai. China, 2009. P. 3993–3998.
- 5. Henneta J.-C. A globally optimal local inventory control policy for multistage supply chains // Int. J. of Production Research. $-2009.-V.47.-Issue\ 2.-P.435-453.$
- 6. Smagin V.I., Koshkin G.M., Kim R.S. Locally Optimal Inventory Control with Time Delay in Deliveries and Incomplete Information on Demand // Proc. II International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management. February 15-18. Beer Sheva. Israel, 2016. P. 570–574.
- 7. Dombrovskii V., Obedko T. Model predictive control for constrained systems with serially correlated stochastic parameters and portfolio optimization // Automatica. -2015. V. 54. P. 325-331.
- 8. Janczak D., Grishin Y., State estimation of linear dynamic system with unknown input and uncertain observation using dynamic programming // Control and Cybernetics. -2006.-V.35.-N.4.-P.851-862.
- 9. Smagin V., Koshkin G. Kalman filtering and conrol algorithms for systems with unknown disturbances and parameters using nonparametric technique // Proc. 20th Int. Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland. 2015. P. 247-251.
 - 10. Anderson T.W., The Statiatical Analysis of Time Series. New York, John Wiley, 1971.
- 11.Dobrovidov A., Koshkin G., Vasiliev V. Non-parametric state space models. Heber, UT 84032, USA. Kendrick Press, Inc. 2012.
- 12. Leung D. Cross-validation in nonparametric regression with outliers $\prime\prime$ Annals of Statistics. -2005.-V.33.-P.2291-2310.

РЕГРЕССИОННЫЕ МОДЕЛИ ПРОГНОЗИРОВАНИЯ ВЫРУЧКИ

E.C. Соломенцева (г. Томск, Томский Государственный Университет Систем Управления и Радиоэлектроники) e-mail: katerinkas_1995@mail.ru

REGRESSION MODELS FOR REVENUE FORECASTING

E.S. Solomenceva

(Tomsk, Tomsk State University of Control Systems and Radioelectronics)

Abstract. This work is dedicated to forecasting revenue using regression models. Autoregressive model, model of seasonal component, model of revenue dependence from day of week are considered.

Key words: Regression models, receipts, forecast, error.

Введение. Выручка является одним из основным показателем деятельности предприятия. Для планирования бюджета, расходов организации, а также выявления тенденции развития определяются прогнозные значения выручки. В настоящее время существует большое

количество методов прогнозирования: скользящее среднее, экспоненциальное сглаживание, модели регрессии, нейронные сети и т.д., каждый из которых имеет свои достоинства и недостатки. Для улучшения прогноза также используется комбинация методов.

Данная работа посвящена прогнозированию выручки с использованием регрессионных моделей. Выбор регрессионной модели зависит от характера изменения значений. В представленном исследовании были использованы ежедневные данные торговой точки за два года, в которых наблюдается выраженные периодические колебания значений (рис.1), что связано с зависимостью выручки предприятия от дня недели: в выходные дни она значительно выше (на рис.1 выходные дни приходятся на 4-5, 11-12, 18-19 числа месяца).

В связи с этим были выбраны три модели, позволяющие учесть данную особенность: авторегрессионная модель, регрессионная модель с включением сезонной составляющей (аддитивная модель) и линейная регрессионная модель (с разбивкой данных по дням недели). В данном исследовании предполагается также рассмотреть комбинации моделей и выполнить учет праздничных дней. В качестве характеристик сравнения моделей будут рассчитаны индекс детерминации и ошибка модели. При этом значение ошибки будет рассчитано для всей выборки и для прогнозной выборки.

Рисунок 1 – Динамика выручки

Регрессионные модели.

Авторегрессионная модель p -го порядка имеет вид [1]:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + ... + \beta_p y_{t-p} + \varepsilon_t$$

где y_t - значение зависимой переменной в момент времени t (в данной работе в качестве зависимой переменной выступает выручка);

 β - параметры регрессии, оцениваемые с помощью метода наименьших квадратов;

t - номер дня;

 ε_{t} - случайный остаток.

Данная модель описывает значение выручки в момент t в зависимости от её величины в предыдущие моменты t-1, t-2, t-p. Если значение y_t в момент t определяется только ее величиной в предшествующий период t-1, то такая модель является авторегрессионной моделью 1-го порядка. В данной работе будут представлены авторегрессионные модели первого, второго и седьмого порядков.

При моделировании выручки с помощью сезонных компонент путем анализа структуры сезонных колебаний выполняется выбор модели временного ряда: аддитивной или мультипликативной [2-3]. При постоянной амплитуде сезонных колебаний используется аддитив-

ная модель, если амплитуда изменяется (возрастает, уменьшается), то применяется мультипликативная модель. Поскольку в данном случае амплитуда постоянна, то используется аддитивная модель, которая имеет вид:

$$Y = S + T + E$$
.

где Y - прогнозное значение выручки;

S - сезонная вариация;

T - трендовое значение;

E - случайная ошибка модели.

Третья модель, используемая в данном исследовании – линейная модель парной регрессии:

$$y_t^{(j)} = \beta_0 + \beta_1 t + \varepsilon_t.$$

где j - номер дня недели (1-понедельник, 2- вторник и т.д.), j = 1..7.

Для каждого дня недели строится своя модель. В зависимости от того, к какому дню недели принадлежит прогнозное значение, происходит выбор той или иной модели.

Кроме того, в ходе изучения данных было обнаружено, что на величину выручки влияет не только день недели, но и тот факт, является ли день праздничным. Для учета праздничных дней используется схема, включающая удаление праздничных дней из выборки; определение, являются ли праздничные дни «выбросом» для выборки; расчет полученного прироста выручки (если праздничный день является «выбросом»). Далее если прогнозное значение выпадает на праздничный день, оно корректируется с учетом полученного прироста.

Заключение. В представленной работе рассмотрены регрессионные модели прогнозирования выручки. Были выбраны три модели, позволяющие учесть периодические колебания в данных, вызванные неравномерным распределение выручки в течение недели. Выполнено моделирование с использованием реальных данных.

ЛИТЕРАТУРА

- 1. Кремер Н.Ш., Путко Б.А. Эконометрика М.: ЮНИТИ-ДАНА, 2002. 311 с.
- 2. Одияко Н.Н, Голодня Н.Ю. Применение аддитивной и мультипликативной моделей прогнозирования // Экономика и предпринимательство. -2013. Т. 41. № 12. С. 667–674
- 3. Любушин Н.П, Бабичева Н.Э. Анализ подходов к оценке и прогнозированию выручки от продаж с учетом сезонной составляющей // Экономический анализ: теория и практика. -2004. -№ 6. -C. 6-16.

РЕШЕНИЕ ЗАДАЧИ ОПТИМИЗАЦИИ ЗАКУПОК С ПОМОЩЬЮ ОБРАТНЫХ ВЫЧИСЛЕНИЙ

П.Э.Тугар-оол

(г. Томск, Томский государственный университет систем управления и радиоэлектроники) e-mail: paula94@rambler.ru

SOLUTION OF THE PROBLEM OF OPTIMIZATION OF PROCUREMENT WITH REVERSE CALCULATIONS

P.E. Tugar-ool

(Tomsk, Tomsk State University of Control Systems and Radioelectronics)

Abstract. The article describes the solution of the problem of optimization of purchases with the help of reverse computations with known demand, price and volume of funds