УДК 553.98(571)

# РЕКОНСТРУКЦИИ ГЕОТЕРМИЧЕСКОГО РЕЖИМА НЕФТЕМАТЕРИНСКОЙ КИТЕРБЮТСКОЙ СВИТЫ АРКТИЧЕСКОГО РЕГИОНА ЗАПАДНОЙ СИБИРИ С УЧЕТОМ ВЛИЯНИЯ ПАЛЕОКЛИМАТИЧЕСКИХ ФАКТОРОВ

Искоркина Альбина Альбертовна<sup>1</sup>,

iskorkina.a@mail.ru

## Прохорова Полина Николаевна<sup>1</sup>,

prokhorova.polina1988@gmail.com

### Стоцкий Виталий Валерьевич<sup>1</sup>,

Stotskiy VV@sibmail.com

# Фомин Александр Николаевич<sup>2</sup>,

fominan@ipgg.sbras.ru

- <sup>1</sup> Национальный исследовательский Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30.
- <sup>2</sup> Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Россия, 630090, г. Новосибирск, пр. Ак. Коптюга, 3.

**Актуальность**. Арктические районы Западной Сибири, ставшие приоритетным регионом изучения и поисков, имеют уникальные палеоклиматические особенности, инверсионную седиментацию в палеоген-неогене, значительные вариации характеристик нефтематеринских отложений. Это обусловливает необходимость совершенствовать схемы и определять параметры количественной оценки ресурсов углеводородов объемно-генетическим методом, основанным на палеореконструкциях геотермического режима материнских отложений.

**Цель исследования:** выявить и оценить влияние факторов палеоклимата – векового хода температур на земной поверхности и неоплейстоценовых толщ мерзлоты, ледниковых покровов – на расчетный геотермический режим нефтематеринской нижнеюрской китербютской свиты.

**Объект исследования:** китербютские отложения мезозойско-кайнозойского разреза, вскрытые глубокими скважинами на площадях Малоямальского, Арктического и Бованенковского месторождений (п-ов Ямал).

**Методика** исследования базируется на оригинальном компьютерном палеотемпературном моделировании, учитывающем параметры седиментационной истории и истории теплофизических свойств осадочной толщи, включающей вечномерзлые породы и ледники, и не требующем априорных сведений о величинах и природе глубинного теплового потока.

**Результаты** исследования на представительных мезозойско-кайнозойских разрезах месторождений, расположенных в южном, центральном и северном районах п-ва Ямал, позволили сделать выводы и дать рекомендации. Учет палеоклимата обусловливает наиболее точную термическую историю материнских отложений, увеличение расчетного палеотемпературного максимума в истории китербютских отложений на 5–18 °C. При определении ресурсов китербютских нефтей объёмно-генетическим методом на землях арктического региона рекомендуется применять индивидуальный для территории «арктический» вековой ход температур и учитывать динамику толщи неоплейстоценовой мерзлоты мощностью 300–600 м. Отмечено несущественное влияние ледникового покрова на реконструкции термического режима китербютских отложений. В случае неучета мерзлоты и палеоклиматического хода температур расчетные ресурсы углеводородов могут быть занижены от 30 % до 3-х раз. Достоверность выводов уверенно контролируется геофизическим критерием «невязки», сопоставлением с экспериментальными данными о тепловом потоке на территории исследований, согласованностью с данными бурения и испытания скважин.

#### Ключевые слова:

Палеоклимат, геотермический режим, нефтематеринские китербютские отложения, ресурсы, п-ов Ямал.

#### Введение

Важнейшей задачей, стоящей перед нефтегазовой геологией и геофизикой, является изучение перспектив нефтегазоносности арктических районов Западной Сибири [1, 2].

Количественная оценка перспектив нефтегазоносности – оценка плотности ресурсов углеводородов, районирование территорий – выполняется объемно-генетическим методом (бассейновое моделирование). Количество генерированных углеводородов рассчитывается на основе реконструкции геотемпературного режима нефтематеринских отложений [2–9]. В зарубежной литературе – это часть первая моделирования осадочных бассейнов и нефтегазовых систем, названная «basin modeling».

Регионы Западно-Сибирской нефтегазоносной провинции имеют уникальные палеоклиматические особенности: 1) мезозойско-кайнозойский вековой ход температур, индивидуальный для региональных палеоклиматических зон; 2) разномасштабные процессы формирования и деградации неоплейстоценовых толщ вечномерзлых пород; 3) зонально и периодически формирующиеся позднечетвертичные ледниковые покровы. Похолодание в плейстоцене на земной поверхности, формирование и деградация мощных толщ многолетнемерзлых пород, ледниковых покровов могли приводить к снижению, существенной нестационарности температурного поля во всем осадочном разрезе [10].

В зарубежные программно-математические комплексы бассейнового моделирования PetroMod и Temis [11], применяемые для определения ресурсов углеводородов Приенисейской и Арктической областей Западной Сибири [2, 12], температуры на поверхности осадочной толщи включены как граничное условие. Здесь динамика векового хода температур формируется автоматически, в зависимости от географических координат территории исследований, с учетом только *теоретически* рассчитанной орбитальной солярной составляющей.

Известный отечественный комплекс бассейнового моделирования ГАЛО [13], используемый для моделирования термической истории осадочных бассейнов Западной Сибири и других нефтегазоносных провинций, тоже учитывает вековой ход температур на поверхности Земли. Применяемый здесь вековой ход температур, основанный на экспериментальных данных, можно условно назвать «стандартным», т. к. он применяется единообразно для разных региональных палеоклиматических зон Сибири.

В публикации Арктической экспедиции IODP 302 [14] приводятся результаты построения и анализа геотермической модели в пределах Хребта Ломоносова. Для учета палеоклиматического фактора авторами построен и применен «местный» (для района Хребта Ломоносова) вековой ход температур на земной поверхности, начиная со 100 млн лет назад. Для этого использовались экспериментальные данные – результаты палинологического анализа и изотопного анализа углерода органического вещества. Авторы публикации заключили, что эволюционирование температур на земной поверхности оказывает большое влияние на зрелость нефтематеринской породы: в зависимости от временных вариаций поверхностных температур могут быть большие или меньшие объемы получаемых УВ.

Недавно [15, 16] объектом исследований был геотермический режим нефтематеринской баженовской свиты (J<sub>3</sub>+K<sub>1</sub>bg), которая является основным источником формирования залежей углеводородов (УВ) в ловушках верхнеюрского и мелового нефтегазоносных комплексов (НГК). Результаты выполненных геотермических исследований на Ростовцевском, Средне-Ямальском и Арктическом месторождениях п-ва Ямал показали актуальность количественной оценки и учета роли мезозойско-кайнозойского климата и, в частности, установленного по экспериментальным данным «арктического» векового хода температур на земной поверхности, многолетнемерзлых пород неоплейстоцена и ледников в позднечетвертичное время. Учет палеоклимата дает увеличение расчетного палеотемпературного максимума в истории материнских отложений на 10–13 °С, обуславливает наиболее точную термическую историю материнских баженовских отложений, а следовательно, обеспечивает наибольшую расчетную плотность ресурсов генерированных нефтей. В случае неучета толщ вечной мерзлоты и палеоклиматического хода температур расчетные ресурсы УВ могут быть занижены до 40–50 %.

Вместе с тем представляет несомненный интерес для исследований геотермический режим китербютской свиты (J<sub>1</sub>kt), временного аналога тогурской [15], являющейся источником формирования залежей УВ в ловушках нижнеюрского и, возможно, доюрского НГК. Глинистая толща китербютская, обладающая нефтематеринским потенциалом, формируется во времена бореальных трансгрессий в ранней юре – тоаре [17].

В отличие от южных и центральных районов Западно-Сибирской нефтегазоносной провинции [18], баженовские отложения в арктическом регионе существенно варьируют как по концентрациям рассеянного органического вещества (РОВ), нередко уменьшаясь до 1-2%, так и по типу РОВ, переходя к гумусово-сапропелевому типу. Тогда как РОВ китербютской свиты арктических районов имеет более стабильные концентрации (база данных ИНГГ СО РАН).

Основная цель исследования – дальнейшая аргументация существенного влияния факторов палеоклимата на расчетный геотермический режим нефтематеринских свит, определяющий подсчет плотности ресурсов. Для этого выполнены палеотемпературные исследования китербютских отложений, вскрытых глубокими скважинами на Малоямальском, Арктическом и Бованенковском месторождениях п-ова Ямал.

#### О методике исследований

Для исследования применен метод палеотемпературного моделирования, основанный на численном решении уравнения теплопроводности горизонтально-слоистого твердого тела с подвижной верхней границей, реализованный в оригинальном программном обеспечении [19–21].

В математическую модель непосредственно включены: климатический вековой ход температур на земной поверхности, как краевое условие, и палеотемпературы из определений отражательной способности витринита (ОСВ), как «наблюденные». Краевое условие, определяемое температурой поверхности осадконакопления, задается в виде кусочно-линейной функции «арктического» векового хода температур на поверхности Земли [15]. Для перехода от ОСВ (в интервале  $R_{vt}^{0}$ =0,5-0,8%) к соответствующей геотемпературе используется хорошо апробированный способ [22].

В модели палеотектонические реконструкции в строгой математической форме непосредственно сопряжены с палеотемпературными реконструкциями. Скорость осадконакопления может быть нулевой и отрицательной, что позволяет учитывать перерывы осадконакопления и денудацию. Наличие перерывов в осадконакоплении и величины денудации выявляются путем многовариантных расчетов при различных сценариях тектоноседиментационной истории и последующего выбора сценария, отвечающего критериям оптимальности и достоверности [23].

Параметрически осадочная толща описывается мощностями стратиграфических комплексов, для каждого из которых заданы теплопроводность, температуропроводность, плотность тепловыделения радиоактивных источников в породах и время осадконакопления. Формирование, существование, деградация толщи многолетнемерзлых пород и ледниковых покровов учитываются как своеобразные динамичные литолого-стратиграфические комплексы, обладающие аномально высокими значениями теплопроводности и температуропроводности [16].

Объектом палеотемпературного моделирования является осадочный разрез представительной глубокой скважины. Такие скважины выбраны по следующим критериям, выполняемым одновременно: 1) наличие замеров пластовых температур, используемых в качестве «наблюденных» для палеотемпературного моделирования; 2) наличие ощутимых притоков флюида при испытании пластов, что повышает достоверность пластовых температур; 3) наличие определений геотемператур по ОСВ.

Параметризация осадочного разреза, вскрытого скважиной, определяющая параметры седиментационной и теплофизической модели, принимается в соответствии со стратиграфической разбивкой скважины по «Каталогу литолого-стратиграфических разбивок скважин» (база данных ИНГГ СО РАН).

Расчет палеотемператур состоит из двух этапов. На первом по распределению температур, «наблюденных» в точках разреза скважины, рассчитывается тепловой поток через поверхность основания осадочного чехла, т. е. решается обратная задача геотермии. На втором этапе, с известным значением теплового потока, решаются прямые задачи геотермии – непосредственно рассчитываются температуры в заданных точках осадочной толщи (в том числе в материнских свитах) на заданные моменты геологического времени.

Оценка плотности генерации нефтей материнской свитой осуществляется следующим образом. Решение прямых задач геотермии для скважины выполняется на ключевые моменты геологического времени, соответствующие временам начала/завершения формирования каждой свиты, перекрывающей материнскую. Балансовая модель процессов нефтегазообразования [24] позволяет по геотемпературному критерию выполнить выделение и пространственно-временную идентификацию очагов интенсивного образования нефтей из РОВ материнских отложений: с 85 °С вхождение материнских пород в главную зону нефтеобразования (ГЗН) для аквагенного РОВ, с 95  $^\circ C$  – для террагенного РОВ.

Таким образом, для материнской свиты рассчитывается интегральный показатель плотности генерации нефтей R (в усл. ед.) [8]. Расчетное значение плотности генерации напрямую зависит от времени нахождения материнской свиты в ГЗН и от геотемператур ГЗН. Оценка плотности генерации выполняется в условных единицах, что является корректным для последующего сопоставления результатов вариантов моделирования.

Основным критерием оптимальности результатов палеотемпературного моделирования выступает оптимальная согласованность («невязка») максимума расчетных геотемператур с «наблюденными» температурами «максимального палеотермометра» – с температурами, определенными по ОСВ. В той же степени важна оптимальная «невязка» расчетных геотемператур с «наблюденными» пластовыми температурами. Оптимальная «невязка» – это средняя квадратичная разность расчетных и наблюденных значений, равная погрешности наблюдений [25–27]. Эта погрешность порядка ±2 °С.

Важным критерием достоверности результатов палеотемпературного моделирования является согласованность расчетных значений плотности теплового потока с данными экспериментального определения плотности теплового потока на территории исследований [28].

В качестве критерия достоверности результатов моделирования и расчетов плотности генерации принята степень согласованности очагов интенсивной генерации УВ, выделяемых по геотемпературному критерию в материнских свитах, с установленной геологоразведкой нефтегазоносностью недр [29].

Обратная задача решается в условиях квазипостоянства значения плотности теплового потока из основания осадочного чехла Западной Сибири начиная с юрского времени [10, 30]. Поэтому неизвестный геодинамический параметр – значение плотности теплового потока – для принятой модели определяется однозначно.

Решение обратной задачи выполняется в рамках параметрического описания седиментационной истории и истории теплофизических свойств *только* осадочной толщи, без привлечения сведений о геодинамике ниже основания осадочного разреза. Вместе с тем общеизвестна сложность и неоднозначность определения теплового потока из основания осадочной толщи, базирующегося на моделях рифтинга литосферы [31].

Так как в математическую модель непосредственно включены палеотемпературы из ОСВ, как «наблюденные», то никаких отдельных вариационных «калибровок  $R_0$ » [11], «калибровок модели» [13] по температурам ОСВ выполнять не требуется.

Примененный расчет плотности генерации нефти (через интегральный показатель R, усл. ед.) не является заменяющим расчеты [11, 32, 33] объемной плотности генерации УВ (кг/м<sup>2</sup>), выполняемые с использованием параметров нефтематеринской толщи и параметров «макрореактора». Расчет R – это рабочий инструмент для оценок вариантов моделирования геотермического режима нефтематеринских отложений в разрезе скважины (сопоставление по относительному значению параметра).



- Рисунок. Обзорная схема территории исследований: 1 населенный пункт и его название; 2 – поисково-разведочная скважина; 3 – сейсмический профиль работ МОГТ 2D; 4 – контур месторождения и его название (объекты экспериментальных исследований); 5 – гидрография и береговая линия; 6 – моделируемая скважина и ее индекс: МЯ-3002 – Малоямальская 3002; Арк-11 – Арктическая 11, Бо-116 – Бованенковская 116
- **Figure.** Review scheme of the studied area: 1 is the locality and its name; 2 is the exploration well; 3 is the seismic profile of works MOGT 2D; 4 is the contour of the field and its name (objects of experimental research); 5 is the hydrography and coastline; 6 is the well simulated and its index: MR-3002 Maloyamalskaya 3002, Apκ-11 Arkticheskaya 11, Бо-116 Bovanenkovskaya 116

#### Объект исследований

Моделирование палеогеотемпературных условий нефтематеринских китербютских отложений выполнено для геолого-геофизических и палеоклиматических условий арктических районов Западной Сибири на площадях глубокого бурения 3-х месторождений углеводородов п-ова Ямал (рисунок). Исследования проведены на месторождениях, расположенных в пределах Нурминского мегавала субмеридионального простирания [34]: Малоямальское, Арктическое и Бованенковское.

Осадочный мезозойско-кайнозойский чехол территории исследования начинает формироваться в ранней юре. Во времена бореальных трансгрессий формируется глинистая толща китербютская ( $J_1$ kt), обладающая нефтематеринским потенциалом. К концу волжского века трансгрессия моря расширилась, идет накопление баженовской свиты ( $J_3$ + $K_1$ bg), обогащенной органическим веществом (табл. 1).

Начиная с апт-сеномана морской режим господствует до начала эоцена. Раскрытие котловины Арктического бассейна приводит к смене знака вертикальных тектонических движений, и наступает позднеэоценовая регрессия. Анализ мощностей палеоген-неогена [35–37] показывает, что кровля люлинвора (ирбита) могла быть подвергнута денудации. При этом мощность размытытого слоя могла достигать 700 м.

Результаты многовариантных палеотектонических и палеотемпературных реконструкций [23] в пределах Малоямальской площади показывают, что накопление шло до середины миоцена (18,5 млн л назад, формирование абросимовской свиты) и за 4 млн л, в раннебищеульское время, отложения абросимовской, туртасской, новомихайловской, атлымской, тавдинской, нюрольской, ирбитской, серовской и тибейсалинской свит (358 м) были размыты. В пределах Арктической площади в раннебищеульское время, за 4 млн л, были размыты отложения абросимовской, туртасской, новомихайловской, атлымской, тавдинской и нюрольской свит (535 м). В пределах Бованенковской площади в раннебищеульское время, за 4 млн л, были размыты отложения абросимовской, туртасской, новомихайловской, атлымской, тавдинской, нюрольской, ирбитской, серовской и тибейсалинской свит (238 м).

Ингрессиям бореального моря в среднем миоцене – раннем плиоцене, с конца бищеульского времени и до конца новопортовского, обязаны накопления осадков толщиной 113–143 м, которые в последующий этап положительных тектонических движений [38], за 1,3 млн л, денудируются. С началом позднего миоцена идет накопление плиоценчетвертичных озерно-аллювиальных осадков.

В качестве примера параметризации осадочного разреза, вскрытого скважиной, определяющей параметры оптимальной седиментационной и теплофизической модели, приводится скважина Бованенковская 116 (табл. 2).

|                                                                                                                                                                                                             | Значение/Value                                                                                                     |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Характеристики                                                                                                                                                                                              |                                                                                                                    | Скважина/W                                                                                                                                                                                                                             | /ell                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Characteristics                                                                                                                                                                                             | Малоямальская 3002                                                                                                 | Арктическая 11                                                                                                                                                                                                                         | Бавоненковская 116                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                                                                                                                                                             | Maloyamalskaya 3002                                                                                                | Arcticheskaya 11                                                                                                                                                                                                                       | Bovanenkovskaya 116                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Забой, м/Bottom, m                                                                                                                                                                                          | 2751                                                                                                               | 3624                                                                                                                                                                                                                                   | 3388                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Отложения на забое (свита)<br>Sediments at the bottom (suite)                                                                                                                                               | Китербютская (J1t)<br>Kiterbyutskaya                                                                               | Левинская (J1lv)<br>Levinskaya                                                                                                                                                                                                         | Палеозой<br>Paleozoic                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Кровля китербютской свиты (J <sub>1</sub> kt), м<br>Roof of the Kiterbyutsk suite (Lkt) m                                                                                                                   | 2645                                                                                                               | 3495                                                                                                                                                                                                                                   | 3093                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Мощность китербютской свиты, м                                                                                                                                                                              | 106                                                                                                                | 39                                                                                                                                                                                                                                     | 68                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Кровля баженовской свиты (J <sub>3</sub> +K <sub>1</sub> bg), м                                                                                                                                             | 2219                                                                                                               | 2792                                                                                                                                                                                                                                   | 2522                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Root of the Bazhenov suite (J <sub>3</sub> +K <sub>1</sub> bg), m<br>Мощность баженовской свиты, м                                                                                                          |                                                                                                                    | 10                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Power of the Bazhenov suite, m                                                                                                                                                                              | 21                                                                                                                 | 16                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Мощность палеогеновых отложении<br>в современном разрезе, м<br>Capacity of the Paleogene deposits<br>in the modern section, m                                                                               | 120                                                                                                                | 223                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Мощность неоген-четвертичных<br>отложений в современном разрезе, м<br>Capacity of the Neogene-Quarternary<br>deposits in the modern section, m                                                              | 260                                                                                                                | 280                                                                                                                                                                                                                                    | 212                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Размыв палеоген-неогеновых отложений<br>(14,5–18,5 млн лет назад), м<br>Scour of the Paleogene-Neogene deposits<br>(14,5–18,5 million years ago), m                                                         | 358                                                                                                                | 535                                                                                                                                                                                                                                    | 238                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Размыв неогеновых отложений<br>(4,1—5,4 млн лет назад), м<br>Scour of the Neogene deposits<br>(4,1—5,4 million years ago), m                                                                                | 113                                                                                                                | 113                                                                                                                                                                                                                                    | 143                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Мощность вечномерзлых пород<br>в плиоцен-квартере (0,52–0,18 млн лет<br>назад), м<br>Capacity of the permafrost rocks in the<br>Pliocene-Quarternary<br>(0,52–0,18 million years ago), m                    | 600                                                                                                                | 600                                                                                                                                                                                                                                    | 600                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Мощность вечномерзлых пород в плио-<br>цен-квартере (0,18-0,0 млн лет назад), м<br>Capacity of permafrost rocks in the Plio-<br>cene-Quarternary (0,18-0,0 million years<br>ago), m                         | 300                                                                                                                | 300                                                                                                                                                                                                                                    | 300                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Мощность ледникового покрова в нео-<br>плейстоцене (0,18-0,13 млн лет назад), м<br>Capacity of glacial cover in the Neo-Pleisto-<br>cene (0,18-0,13 million years ago), m                                   | 500                                                                                                                | 500                                                                                                                                                                                                                                    | 500                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Мощность ледникового покрова в нео-<br>плейстоцене (0,13-0,05 млн лет назад), м<br>Capacity of glacial cover in the Neo-Pleisto-<br>cene (0,13-0,05 million years ago), m                                   | 1500                                                                                                               | 1500                                                                                                                                                                                                                                   | 1500                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Мощность ледникового покрова в нео-<br>плейстоцене (0,05-0,015 млн лет назад), м<br>Capacity of glacial cover in the Neo-Pleisto-<br>cene (0,05-0,015 million years ago), m                                 | 500                                                                                                                | 500                                                                                                                                                                                                                                    | 500                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Результаты испытаний нижнеюрских<br>пластов (свита; пласт; тип флюида;<br>дебит, м <sup>3</sup> /сут)<br>Test results of the Early Jurassic layers<br>(suite; layer; fluid type; output, m <sup>3</sup> /d) | Надояхская; Ю <sub>10</sub> ;<br>вода с пленкой нефти;<br>33<br>Nadoyakhskaya; Yu10;<br>water with an oil film; 33 | Надояхская; Ю <sub>10</sub> ; сухо<br>Nadoyakhskaya; Yu <sub>10</sub> ; dry<br>Шараповская; Ю <sub>11</sub> ; сухо<br>Sharapovskaya; Yu <sub>11</sub> ; dry<br>Левинская; Ю <sub>12</sub> ; сухо<br>Levinskaya; Yu <sub>12</sub> ; dry | Вымская; Ю <sub>6</sub> ; нефть с газом; 2,5<br>Vymskaya; Yu <sub>6</sub> ; oil with gas; 2,5<br>Надояхская; Ю <sub>10</sub> ; слабогазонасыщенная<br>Nadoyakhskaya; Yu <sub>10</sub> ; poorly gas-saturated<br>Левинская; Ю <sub>12</sub> ; слабогазонасыщенная<br>Levinskaya; Yu <sub>12</sub> poorly gas-saturated |  |  |  |  |  |  |

Таблтца 1.Характеристика разрезов скважин Малоямальского, Арктического и Бавоненковского месторожденийTable 1.Characteristic of well sections of Maloyamalskoye, Arcticheskoye and Bovanenkovskoye fields

### Окончание табл. 1

#### Table 1

|                                                                                                                                                                                                                                                                    | Значение/Value                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Характеристики                                                                                                                                                                                                                                                     | Скважина/Well                                                                                                                                                                 |                                                                                                                       |                                                                                                                                                                                              |  |  |  |  |  |
| Characteristics                                                                                                                                                                                                                                                    | Малоямальская 3002<br>Maloyamalskaya 3002                                                                                                                                     | Арктическая 11<br>Arcticheskaya 11                                                                                    | Бавоненковская 116<br>Bovanenkovskaya 116                                                                                                                                                    |  |  |  |  |  |
| Измеренные пластовые температуры<br>(свита; глубина замера, м;<br>температура, °C)<br>Measured reservoir temperatures<br>(suite; measurement depth;<br>temperature, °C)                                                                                            | Малышевская<br>Malyshevskaya; 2312; 67,5<br>Малышевская<br>Malyshevskaya; 2355; 69<br>Леонтьевская<br>Leontyevskaya; 2392; 75<br>Леонтьевская<br>Leontyevskaya; 2552; 76      | Надояхская<br>Nadoyakhskaya;<br>3383; 119<br>Левинская Levinskaya;<br>3533; 125<br>Левинская Levinskaya;<br>3560; 126 | Малышевская<br>Malyshevskaya; 2610; 94<br>Малышевская<br>Malyshevskaya; 2657; 97<br>Вымская/Vymskaya; 2795; 103<br>Надояхская<br>Nadoyakhskaya; 3050; 113<br>Левинская/Levinskaya; 3235; 120 |  |  |  |  |  |
| «Измеренные» температуры по ОСВ<br>(глубина отбора, м; ( <i>R</i> <sup>o</sup> <sub>vt</sub> );<br>температура, °С)<br>Measured temperatures by reflective ability<br>of a vitrinit (selection depth; ( <i>R</i> <sup>o</sup> <sub>vt</sub> );<br>temperature, °C) | 1917; (0,5); 80<br>1922; (0,51); 81<br>1937; (0,50); 80<br>2300;(0,57); 90<br>2315; (0,57);90<br>2323; (0,57); 90<br>2339; (0,58); 91<br>2373; (0,59); 92<br>2407; (0,59); 92 | 2000; (0,65); 100<br>2500; (0,80); 120                                                                                | 2615; (0,8); 120                                                                                                                                                                             |  |  |  |  |  |

Примечание. Данные испытаний глубоких скважин изучены и сведены из «Каталога литолого-стратиграфических разбивок» (материалы Института нефтегазовой геологии и геофизики СО РАН, г. Новосибирск). ОСВ определены в Лаборатории геохимии нефти и газа Института нефтегазовой геологии и геофизики СО РАН (г. Новосибирск).

Note. Test data of deep wells are studied and consolidated from «The catalog of the litologic-stratigrafic of breakdowns» (materials of Institute of oil and gas geology and geophysics of the Siberian Branch of the Russian Academy of Science, Novosibirsk). Vitrinit reflectivity values (VRV) are defined in the Laboratory of geochemistry of oil and gas of the Institute of oil and gas geology and geophysics of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk).

**Таблица 2.** Пример параметрического описания седиментационной истории и теплофизических свойств осадочной толщи, вскрытой скважиной Бованенковская 116

**Table 2.**Parametrical description of sedimentation history and thermophysical properties of sedimentary thickness opened by the<br/>Bovanenkovskaya 116 well

| Свита толша                                        | Мошность   | Возраст        | Время накопле-     | Плотность         | Теплопровол-      | Температуропро-             | Тепловылеле-           |
|----------------------------------------------------|------------|----------------|--------------------|-------------------|-------------------|-----------------------------|------------------------|
| (стратиграфия)                                     | м          | млн л назад    | ния, млн л         | Г/СМ <sup>3</sup> | ность, Вт/м-град  | водность, м <sup>2</sup> /с | ние, Вт/м <sup>3</sup> |
| Suite, strata                                      | Thickness, | Age, million   | Accumulation time, | Density,          | Thermal conducti- | Heat diffusivity,           | Heat genera-           |
| (stratigraphy)                                     | m          | years ago      | million years      | g/cm <sup>3</sup> | vity, W/m∙deg     | m²/s                        | tion, W/m <sup>3</sup> |
|                                                    | -          | 0,015-0,00     | 0,015              | -                 | _                 | _                           | -                      |
|                                                    | -500       | 0,02-0,015     | 0,005              | 0,92              | 2,25              | 1,2e-006                    | 1,22e-007              |
|                                                    | -          | 0,04-0,02      | 0,02               | -                 | -                 | -                           | -                      |
|                                                    | -1000      | 0,05-0,04      | 0,01               | 0,92              | 2,25              | 1,2e-006                    | 1,22e-007              |
|                                                    | -          | 0,120-0,050    | 0,070              | -                 | -                 | -                           | -                      |
|                                                    | +1000      | 0,130-0,120    | 0,010              | 0,92              | 2,25              | 1,2e-006                    | 1,22e-007              |
| Неоплейстоцен                                      | -          | 0,177-0,130    | 0,047              | -                 | -                 | -                           | -                      |
| Neo-Pleistocene Q-N <sub>2</sub>                   | +500       | 0,182-0,177    | 0,005              | 0,92              | 2,25              | 1,2e-006                    | 1,22e-007              |
|                                                    | 300        | 0,18215-0,1820 | 0,00015            | 2,10              | 2,09              | 1,05e-006                   | 1,22e-006              |
|                                                    | 300        | 0,1823-0,18215 | 0,00015            | 2,10              | 1,3               | 7e-007                      | 1,22e-006              |
|                                                    | -600       | 0,1826-0,1823  | 0,0003             | -                 | -                 | -                           | -                      |
|                                                    | -          | 0,5167-0,1826  | 0,3341             | -                 | -                 | -                           | -                      |
|                                                    | 600        | 0,5197-0,5167  | 0,003              | 2,10              | 2,09              | 1,05e-006                   | 1,22e-006              |
|                                                    | -600       | 0,520-0,5197   | 0,0003             | -                 | -                 | -                           | -                      |
| Квартер+плиоцен <i>Q-№</i><br>Quarter+Pliocene     | 212        | 4,1-0,520      | 3,58               | 2,04              | 1,29              | 6,5e-007                    | 1,1e-006               |
| N <sub>1-2</sub>                                   | -143       | 4,1-5,4        | 1,3                |                   |                   |                             |                        |
| Новопортовская N <sub>1-2</sub><br>Novoportovskaya | 80         | 5,4-8,4        | 3                  | 2,08              | 1,33              | 7e-007                      | 1,2e-006               |
| Таволжанская <i>N</i> 1<br>Tavolzhanskaya          | 25         | 8,4-12,5       | 4,1                | 2,08              | 1,33              | 7e-007                      | 1,2e-006               |

# Продолжение табл. 2.

## Table 2

| Свита, толща<br>(стратиграфия)<br>Suite, strata<br>(stratigraphy)             | Мощность,<br>м<br>Thickness,<br>m | Возраст,<br>млн л назад<br>Age, million<br>years ago | Время накопле-<br>ния, млн л<br>Accumulation time,<br>million years | Плотность,<br>г/см <sup>3</sup><br>Density,<br>g/cm <sup>3</sup> | Теплопровод-<br>ность, Вт/м-град<br>Thermal conducti-<br>vity, W/m-deg | Температуропро-<br>водность, м²/с<br>Heat diffusivity,<br>m²/s | Тепловыделе-<br>ние, Вт/м <sup>3</sup><br>Heat genera-<br>tion, W/m <sup>3</sup> |
|-------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| Бищеульская bsch N <sub>1</sub><br>Bishcheulskava                             | 38                                | 12,5-14,5                                            | 2                                                                   | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| N <sub>1</sub>                                                                | -238                              | 14 5-18 5                                            | 4                                                                   |                                                                  |                                                                        |                                                                |                                                                                  |
| Абросимовская N <sub>1</sub>                                                  | 10                                | 18,5-23,0                                            | 4,5                                                                 | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Туртасская <i>tur</i> Р <sub>3</sub>                                          | 20                                | 23,0-28,0                                            | 5                                                                   | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Пигтазякауа<br>Новомихайловская<br>nvm ₽₃                                     | 15                                | 28,0-30,0                                            | 2                                                                   | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Novomikhaylovskaya                                                            |                                   | -,,-                                                 |                                                                     | ,                                                                | <b>y</b> = -                                                           |                                                                | ,                                                                                |
| Атлымская <i>atl ₽</i> <sub>3</sub><br>Atlymskaya                             | 37                                | 30,0-34,0                                            | 4                                                                   | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Тавдинская <i>tv ₽</i> ₂<br>Tavdinskaya                                       | 50                                | 34,0-42,6                                            | 8,6                                                                 | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Нюрольская <i>nl ₽</i> ₂<br>Nyurolskaya                                       | 37                                | 42,6-50,4                                            | 7,8                                                                 | 2,08                                                             | 1,33                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Ирбитская <i>₽</i> ₂ir<br>Irbitskaya                                          | 5                                 | 50,4-55,0                                            | 4,6                                                                 | 2,09                                                             | 1,35                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Серовская ₽₁sr<br>Serovskaya                                                  | 20                                | 55,0-58,0                                            | 3                                                                   | 2,09                                                             | 1,35                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Тибейсалинская <i>₽</i> 1tb<br>Tibeysalinskaya                                | 44                                | 58,0-63,7                                            | 5,7                                                                 | 2,09                                                             | 1,35                                                                   | 7e-007                                                         | 1,2e-006                                                                         |
| Ганькинская <i>K</i> 2 <i>+₽</i> 1gn<br>Gankinskaya                           | 35                                | 63,7-73,0                                            | 9,3                                                                 | 2,11                                                             | 1,37                                                                   | 7e-007                                                         | 1,25e-006                                                                        |
| Березовская <i>K</i> <sub>2</sub> b<br>Berezovskaya                           | 279                               | 73,0-89,0                                            | 16                                                                  | 2,15                                                             | 1,41                                                                   | 7,5e-007                                                       | 1,25e-006                                                                        |
| Кузнецовская <i>K</i> ₂ <i>kz</i><br>Kuznetsovskaya                           | 37                                | 89,0-92,0                                            | 3                                                                   | 2,18                                                             | 1,43                                                                   | 8e-007                                                         | 1,25e-006                                                                        |
| Марресалинская<br><i>K</i> 2 <i>-K</i> 1 <i>mr</i><br>Marresalinskaya         | 523                               | 92,0-102,0                                           | 10                                                                  | 2,26                                                             | 1,49                                                                   | 8e-007                                                         | 1,25e-006                                                                        |
| Яронгская <i>K<sub>1</sub>jar</i><br>Yarongskaya                              | 168                               | 102-108,5                                            | 6,5                                                                 | 2,39                                                             | 1,6                                                                    | 8e-007                                                         | 1,25e-006                                                                        |
| Танопчинская <i>K</i> 1 <i>tn</i><br>Tanopchinskaya                           | 746                               | 108,5-133,2                                          | 24,7                                                                | 2,44                                                             | 1,62                                                                   | 8e-007                                                         | 1,25e-006                                                                        |
| Ахская <i>K<sub>1</sub>ah</i><br>Akhskaya                                     | 522                               | 133,2-142,7                                          | 9,5                                                                 | 2,44                                                             | 1,64                                                                   | 8e-007                                                         | 1,25e-006                                                                        |
| Баженовская <i>J</i> <sub>3</sub> + <i>K</i> <sub>1</sub> bg<br>Bazhenovskaya | 15                                | 142,7-149,3                                          | 6,6                                                                 | 2,42                                                             | 1,62                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Абалакская <i>nr J</i> 2<br>Abalakskaya                                       | 83                                | 149,3-161,7                                          | 12,4                                                                | 2,42                                                             | 1,62                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Малышевская <i>J₂ml</i><br>Malyshevskaya                                      | 84                                | 161,7-171,0                                          | 9,3                                                                 | 2,45                                                             | 1,63                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Леонтьевская J <sub>2</sub> In<br>Leontyevskaya                               | 90                                | 171,0-173,0                                          | 2                                                                   | 2,47                                                             | 1,65                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Вымская <i>vm J</i> 2<br>Vymskaya                                             | 143                               | 173,0-175,0                                          | 2                                                                   | 2,45                                                             | 1,63                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Лайдинская <i>ld J</i> 2<br>Laidinskaya                                       | 83                                | 175,0-177,0                                          | 2                                                                   | 2,47                                                             | 1,65                                                                   | 8e-007                                                         | 1,3e-006                                                                         |
| Надояхская <i>nd J</i> 2+J1<br>Nadoyakhskaya                                  | 73                                | 177,0-182,5                                          | 5,5                                                                 | 2,45                                                             | 1,63                                                                   | 8e-007                                                         | 1,3e-006                                                                         |

| Свита, толща<br>(стратиграфия)<br>Suite, strata<br>(stratigraphy) | Мощность,<br>м<br>Thickness,<br>m | Возраст,<br>млн л назад<br>Age, million<br>years ago | Время накопле-<br>ния, млн л<br>Accumulation time,<br>million years | Плотность,<br>г/см <sup>3</sup><br>Density,<br>g/cm <sup>3</sup> | Теплопровод-<br>ность, Вт/м-град<br>Thermal conducti-<br>vity, W/m·deg | Температуропро-<br>водность, м <sup>2</sup> /с<br>Heat diffusivity,<br>m <sup>2</sup> /s | Тепловыделе-<br>ние, Вт/м <sup>3</sup><br>Heat genera-<br>tion, W/m <sup>3</sup> |  |
|-------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Китербютская <i>kt J</i> 1<br>Kiterbutskaya                       | 68                                | 182,5-184,0                                          | 1,5                                                                 | 2,47                                                             | 1,65                                                                   | 8e-007                                                                                   | 1,3e-006                                                                         |  |
| Шараповская <i>shrJ</i> 1<br>Sharapovskaya                        | 85                                | 184,0-186,0                                          | 2                                                                   | 2,45                                                             | 1,63                                                                   | 8e-007                                                                                   | 1,3e-006                                                                         |  |
| Левинская <i>lv J</i> 1<br>Levinskaya                             | 111                               | 186,0-186,70                                         | 0,7                                                                 | 2,47                                                             | 1,65                                                                   | 8e-007                                                                                   | 1,3e-006                                                                         |  |
| Зимняя <i>zm</i> J <sub>1</sub><br>Zimnyaya                       | 13                                | 186,7-200,2                                          | 13,5                                                                | 2,45                                                             | 1,63                                                                   | 8e-007                                                                                   | 1,3e-006                                                                         |  |
| Мощность разреза, м<br>Power section, m                           | 3370                              |                                                      |                                                                     |                                                                  |                                                                        |                                                                                          |                                                                                  |  |

## Окончание табл. 2.

Table 2

Примечание. Коричневой заливкой показаны времена накопления нефтематеринских баженовской и китербютских свит и их параметрическое описание. Серой показаны размывы палеоген-неогеновых отложений. Синей заливкой показаны времена формирования, существования и деградации толщи мерзлоты, светло-синей – времена формирования, существования и деградации толщи ледников.

Note. Accumulation time of Bazhenov and Kiterbutsk petromaternal suites and its parametric description are filled with brown. Erosion of the Paleogene-Neogene deposits is filled with grey. Times of formation, existence and degradation of the permafrost thickness are filled with blue. Times of formation, existence and degradation of glaciers thickness is filled with dark blue.

#### Реконструкции геотермического режима китербютской свиты

В работах [15, 16] выполнен анализ влияния палеоклиматических факторов на результаты палеотектонических и палеотемпературных реконструкций осадочного разреза, включающего верхнеюрскую баженовскую свиту, для глубоких скважин Ростовцевского, Средне-Ямальского и Арктического месторождений. В настоящей статье выполняется детальный анализ влияния полного комплекса палеоклиматических факторов (мезозойско-кайнозойского векового хода температур на поверхности Земли, векового хода мощностей неоплейстоценовой мерзлоты и векового хода мощностей позднечетвертичных ледниковых покровов) на геотермический режим нижнеюрской китербютской свиты, на примере скважины Бованенковская 116, с последующим сводным анализом по скважинам Малоямальского, Арктического и Бованенковского месторождений (рисунок).

Количественное определение влияния палеоклимата на расчетный геотермический режим и на оценку степени реализации генерационного потенциала материнских китербютских отложений выполняется на основе анализа вариабельности результатов пяти вариантов палеотемпературных реконструкций. Вариант 1 – без учета факторов палеоклимата. Вариант 2 – учет «стандартного» векового хода температур [13, 39], без учета неоплейстоценовой мерзлоты и ледников. Вариант 3 учет «арктического» векового хода температур [15], без учета неоплейстоценовой мерзлоты и ледников. Вариант 4 - учет «арктического» векового хода температур, учет динамики неоплейстоценовой мерзлоты [15], без учета ледников. Вариант 5 – учет «арктического» векового хода температур, учет динамики неоплейстоценовой мерзлоты и динамики ледников [16].

Анализ расчетных значений плотности теплового потока из основания осадочного разреза (табл. 3) показывает следующее. В вариантах 1, 3,

Примечание. Вариант 1 – без учета факторов палеоклимата. Вариант 2 – учет «стандартного» векового хода температур, без учета неоплейстоценовой мерзлоты и ледников. Вариант 3 – учет «арктического» векового хода температур, без учета мерзлоты и ледников. Вариант 4 – учет «арктического» векового хода температур и динамики неоплейстоценовой мерзлоты. Вариант 5 – учет «арктического» векового хода температур, динамики неоплейстоценовой мерзлоты и ледникового покрова. Коричневой заливкой показаны температуры главной фазы нефтеобразования (ГФН), темно-коричневой заливкой – палеотемпературный максимум ГФН. Серой заливкой обозначены времена размыва палеоген-неогеновых отложений

Note. Variant 1 – excluding paleoclimate factors. Variant 2 – considering «standard» secular variation of temperatures, without Neo-Pleistocene permafrost and glaciers. Variant 3 – considering «arctic» secular variation of temperatures, without permafrost and glaciers. Variant 4 – considering «arctic» secular variation of temperatures and dynamics of Neo-Pleistocene permafrost. Variant 5 – considering «arctic» secular variation of temperatures and dynamics of Neo-Pleistocene permafrost and the glacial cover. The temperatures of the major oil generation zone (MOGZ) is filled with brown, the paleotemperature maxima MOGZ is filled with dark-brown, the times of Paleogene-Neogene sediment erosion is filled with grey.

| ад<br>ago    | д, °С                    | υ,<br>υ,<br>υ,        | bix<br>rost                 | a, M<br>5, M      | , ™<br>of<br>af x f        | Геотемпературы китербютской свиты, °С<br>Geotemperatures of Kiterbyutsk suite °C |     |          |     |                 |                                        |  |  |  |
|--------------|--------------------------|-----------------------|-----------------------------|-------------------|----------------------------|----------------------------------------------------------------------------------|-----|----------|-----|-----------------|----------------------------------------|--|--|--|
| Ha3<br>Pars  | × xo,<br>entu<br>C       | on, Xo                | грзл<br>И<br>maf            | Cier              | ени<br>зить<br>oth<br>te h | <u> </u>                                                                         |     |          |     | Вариа           | HT/Variant                             |  |  |  |
| п уе         | ый»<br>° Ce              | ий»<br>Vrcti<br>riati | , ме<br>д, N<br>per<br>s, n | лед<br>gla        | dej<br>Sui                 |                                                                                  |     |          |     | Dapridi         | 5                                      |  |  |  |
| , MJ         | ртн<br>darc<br>ours      | ieck<br>e «/          | ocri<br>opc<br>ock          | / of              | utsk                       |                                                                                  |     |          |     |                 | Глубина положения китербютской         |  |  |  |
| емя<br>с, т  | НДа<br>tanc<br>cc        | th the                | щн<br>n<br>acity            | acity             | ан<br>Бют<br>Sem<br>rby    | 1                                                                                | 2   | 3        | 4   | Геотемпературы  | свиты, м (учет ледникового покрова)    |  |  |  |
| Bpe          | CTai<br>«St              | Apk                   | Mo                          | 10LL              | Iy6v<br>Ba:                |                                                                                  |     |          |     | Geotemperatures | Basement depth of Kiterbyutsk suite, m |  |  |  |
|              | )<br>W                   | ¥                     | 0                           | 20                | 5                          |                                                                                  |     |          |     |                 | (taking into account a glacial cover)  |  |  |  |
| 0            | 0                        | -4                    | 300                         | -                 | 3127                       | 118                                                                              | 116 | 116      | 115 | 115             | 3111                                   |  |  |  |
| 0,015        | -2                       | -10                   | 300                         | -                 | 3126                       | 118                                                                              | 116 | 115      | 115 | 114             | 3110                                   |  |  |  |
| 0,02         | -3                       | -8                    | 300                         | 500               | 3126                       | 118                                                                              | 115 | 115      | 115 | 113             | 3610                                   |  |  |  |
| 0,030        | -4                       | -5                    | 300                         | 500               | 3125                       | 118                                                                              | 115 | 116      | 114 | 113             | 3609                                   |  |  |  |
| 0,04         | -2                       | -0                    | 300                         | 1500              | 3125                       | 110                                                                              | 115 | 115      | 114 | 112             | 4109                                   |  |  |  |
| 0,030        | -1                       | -1                    | 300                         | 1500              | 3123                       | 110                                                                              | 110 | 110      | 114 | 109             | 4008                                   |  |  |  |
| 0,070        | -1                       | -5                    | 300                         | 1500              | 3123                       | 118                                                                              | 116 | 115      | 112 | 103             | 4609                                   |  |  |  |
| 0 120        | -7                       | -6                    | 300                         | 1500              | 3121                       | 118                                                                              | 116 | 114      | 111 | 107             | 4609                                   |  |  |  |
| 0 130        | -1                       | -7                    | 300                         | 500               | 3120                       | 118                                                                              | 116 | 114      | 111 | 106             | 3609                                   |  |  |  |
| 0.150        | -4                       | -6                    | 300                         | 500               | 3119                       | 118                                                                              | 117 | 114      | 111 | 106             | 3608                                   |  |  |  |
| 0.177        | -6                       | -7                    | 300                         | 500               | 3118                       | 118                                                                              | 116 | 114      | 122 | 106             | 3607                                   |  |  |  |
| 0,1820       | -6                       | -7                    | 300                         | -                 | 3118                       | 118                                                                              | 116 | 114      | 119 | 106             | 3108                                   |  |  |  |
| 0,1826       | -7                       | -7                    | 600                         | -                 | 3118                       | 118                                                                              | 116 | 114      | 112 | 106             | 3087                                   |  |  |  |
| 0,200        | -7                       | -8                    | 600                         | -                 | 3117                       | 118                                                                              | 117 | 114      | 111 | 106             | 3107                                   |  |  |  |
| 0,240        | -10                      | -9                    | 600                         | -                 | 3115                       | 118                                                                              | 117 | 113      | 111 | 106             | 3107                                   |  |  |  |
| 0,5167       | -6                       | -10                   | 600                         | -                 | 3100                       | 114                                                                              | 118 | 112      | 119 | 114             | 3089                                   |  |  |  |
| 0,5197       | -5                       | -11                   | -                           | -                 | 3100                       | 117                                                                              | 118 | 112      | 126 | 114             | 2907                                   |  |  |  |
| 0,520        | -5                       | -11                   | -                           | -                 | 3100                       | 117                                                                              | 118 | 112      | 118 | 114             | 3127                                   |  |  |  |
| 1,8          | -3                       | -13                   | -                           | -                 | 3034                       | 114                                                                              | 116 | 109      | 115 | 110             | 3051                                   |  |  |  |
| 3,2          | -2                       | +5                    | -                           | -                 | 2962                       | 111                                                                              | 113 | 120      | 126 | 121             | 2968                                   |  |  |  |
| 4,1          | +3                       | +4                    | -                           | -                 | 2915                       | 110                                                                              | 113 | 119      | 125 | 120             | 2915                                   |  |  |  |
| 4,9          | +5                       | +4                    | -                           | -                 | 3003                       | 113                                                                              | 116 | 121      | 127 | 123             | 3003                                   |  |  |  |
| 5,4          | +5                       | +4                    | -                           | -                 | 3058                       | 115                                                                              | 119 | 124      | 130 | 125             | 3058                                   |  |  |  |
| 8,4          | +9                       | +5                    | -                           | -                 | 2978                       | 112                                                                              | 117 | 118      | 127 | 122             | 2978                                   |  |  |  |
| 10           | +9                       | +6                    | -                           | _                 | 2968                       | 111                                                                              | 11/ | 122      | 127 | 123             | 2968                                   |  |  |  |
| 12,5         | +10                      | +6                    |                             | _                 | 2953                       | 110                                                                              | 110 | 121      | 127 | 122             | 2953                                   |  |  |  |
| 14,5<br>10 E | +10                      | +0                    |                             | _                 | 2915                       | 110                                                                              | 118 | 121      | 120 | 122             | 2915                                   |  |  |  |
| 73           | +1                       | +8                    | _                           | -                 | 31/3                       | 120                                                                              | 127 | 132      | 120 | 133             | 31/3                                   |  |  |  |
| 23           | +8                       | +8                    | _                           | _                 | 3123                       | 119                                                                              | 122 | 132      | 137 | 132             | 3123                                   |  |  |  |
| 30           | +10                      | +9                    | -                           | -                 | 3108                       | 117                                                                              | 124 | 131      | 137 | 132             | 3108                                   |  |  |  |
| 34           | +11                      | +9                    | -                           | -                 | 3071                       | 116                                                                              | 126 | 130      | 136 | 131             | 3071                                   |  |  |  |
| 35           | +14                      | +9                    | -                           | -                 | 3065                       | 116                                                                              | 128 | 130      | 135 | 130             | 3065                                   |  |  |  |
| 42,6         | +20                      | +12                   | -                           | -                 | 3021                       | 114                                                                              | 133 | 131      | 136 | 131             | 3021                                   |  |  |  |
| 50           | +21                      | +15                   | -                           | -                 | 2986                       | 112                                                                              | 132 | 132      | 137 | 132             | 2986                                   |  |  |  |
| 50,4         | +21                      | +15                   | -                           | -                 | 2984                       | 112                                                                              | 132 | 132      | 137 | 132             | 2984                                   |  |  |  |
| 55           | +21                      | +15                   | -                           | -                 | 2979                       | 112                                                                              | 131 | 132      | 137 | 133             | 2979                                   |  |  |  |
| 58           | +20                      | +16                   | -                           | -                 | 2959                       | 111                                                                              | 130 | 132      | 136 | 132             | 2959                                   |  |  |  |
| 63,7         | +19                      | +16                   | -                           | -                 | 2915                       | 109                                                                              | 127 | 130      | 135 | 130             | 2915                                   |  |  |  |
| 70           | +19                      | +16                   | -                           | -                 | 2891                       | 108                                                                              | 126 | 128      | 134 | 129             | 2891                                   |  |  |  |
| 73           | +19                      | +15                   | -                           | -                 | 2880                       | 107                                                                              | 126 | 127      | 133 | 128             | 2880                                   |  |  |  |
| 85           | +19                      | +13                   | -                           | -                 | 2671                       | 98                                                                               | 117 | 116      | 121 | 116             | 2671                                   |  |  |  |
| 89           | +20                      | +13                   | -                           | -                 | 2601                       | 95                                                                               | 115 | 113      | 118 | 114             | 2601                                   |  |  |  |
| 92           | +20                      | +13                   | -                           | -                 | 2564                       | 94                                                                               | 113 | 111      | 116 | 112             | 2564                                   |  |  |  |
| 100          | +22                      | +15                   | -                           | -                 | 2146                       | 77                                                                               | 98  | 95       | 99  | 96              | 2146                                   |  |  |  |
| 102          | +22                      | +15                   | _                           | -                 | 2041                       | 73                                                                               | 94  | 91       | 95  | 92              | 2041                                   |  |  |  |
| 108,5        | +22                      | +15                   | -                           | -                 | 18/3                       | 67                                                                               | 87  | 85       | 88  | 85              | 18/3                                   |  |  |  |
| 120          | +22                      | +16                   | _                           | -                 | 1526                       | 54                                                                               | /5  | 12       | /5  | /3              | 1526                                   |  |  |  |
| 134          | +21                      | +15                   |                             | _                 | 1020                       | 34                                                                               | 59  | 55       | 5/  | 55              | IU83                                   |  |  |  |
| 1/2 5        | +22                      | +15<br>15             |                             | _                 | IU28                       | 32<br>77                                                                         | 5/  | 52<br>20 | 20  | 53<br>20        | IU28<br>616                            |  |  |  |
| 142,5        | T22                      |                       |                             | -                 |                            | 22                                                                               | 44  | ЪŎ       | 22  | ٥٥              | סוט                                    |  |  |  |
| Es Es        | четный те<br>timation he | eat flow fi           | rom the base                | вания,<br>ment, r | mbi/M <sup>2</sup>         | 57                                                                               | 56  | 59       | 62  | 60              |                                        |  |  |  |

 Таблица 3. Расчетные геотемпературы китербютской свиты в разрезе скважины Бованенковская 116

 Table 3.
 Calculated geotemperatures of the Kiterbyutsk suite in the well section Bovanenkovskaya 116

4 и 5 тепловой поток увеличивается на 1-3-6-4 мВт/м<sup>2</sup> по отношению к расчетному значению теплового потока *варианта* 2 – 56 мВт/м<sup>2</sup>.

Анализ термической истории тогурской свиты (табл. 3) в разрезе скважины Бованенковская 116 свидетельствует о том, что в варианте 1 (без учета всех факторов палеоклимата) материнская свита «пережила» самую короткую и самую «холодную» главную фазу нефтеобразования (ГФН).

В вариантах 2, 3, 4 и 5 (с учетом факторов палеоклимата) китербютская свита имеет «богатые» термические истории ГФН. Главные фазы нефтеобразования этих вариантов имеют разные значения абсолютных максимумов палеотемператур.

В *варианте* 4 присутствие толщи вечномерзлых пород, обладающих высокими значениями теплопроводности и температуропроводности, приводит к максимальным расчетным значениям плотности теплового потока, что, в свою очередь, приводит к наибольшей продолжительности ГФН, увеличивает расчетные геотемпературы материнских отложений до максимальных значений.

Отметим, что доучет ледникового покрова (*вариант 5*) мало повлиял и на величину расчетного значения плотности теплового потока из основания, и на интенсивность и продолжительность ГФН.

Сопоставление расчетных и «наблюденных» геотемператур для 3-х скважин приведено в табл. 4. Так как «наблюденные» (измеренные) температуры (включая определенные по ОСВ) имеют погрешность порядка ±2 °C, то варианты 1 и

**Табл. 4.** Сопоставление измеренных и расчетных геотемператур китербютской свиты в скважинах Малоямальского, Арктического и Бованенковского месторождений

| Table 4. | Comparison of the measured and calculated geotemperatures of the Kiterbyutsk suite in the wells of Low-Yamal, Arctic and |
|----------|--------------------------------------------------------------------------------------------------------------------------|
|          | Bovanenkovsk fields                                                                                                      |

|                        |                                                                                       |                                         | Вариант/Variant   |                        |                   |                        |                   |                        |                   |                        |                   |                        |
|------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|-------------------|------------------------|
|                        | Измеренные                                                                            |                                         |                   | 1                      |                   | 2                      |                   | 3                      |                   | 4                      |                   | 5                      |
| Глубина, м<br>Depth, m | температуры, °C<br>Measured tempe-<br>ratures, °C                                     | Способ измерения<br>Measurement method  | Значение<br>Value | Разница<br>Discrepancy |
|                        | •                                                                                     | Скважина Малоямальс                     | кая 300           | 2/Malo                 | yamalsl           | kaya 300               | 02 well           |                        |                   |                        |                   |                        |
| 2312                   | 67,5                                                                                  | пластовые/in-place                      | 81                | +14                    | 74                | +6                     | 72                | +4                     | 68                | 0                      | 73                | +5                     |
| 2355                   | 69                                                                                    | пластовые/in-place                      | 83                | +14                    | 81                | +12                    | 73                | +4                     | 69                | 0                      | 74                | +5                     |
| 2391                   | 75                                                                                    | пластовые/in-place                      | 84                | +9                     | 76                | +1                     | 74                | -1                     | 70                | -5                     | 75                | 0                      |
| 2552                   | 76                                                                                    | пластовые/in-place                      | 89                | +13                    | 81                | +5                     | 79                | +3                     | 75                | -1                     | 80                | +4                     |
| 1917                   | 80                                                                                    | по OCB/on OSV                           | 73                | -7                     | 76                | -4                     | 77                | -3                     | 79                | -1                     | 77                | -3                     |
| 1922                   | 81                                                                                    | по OCB/on OSV                           | 73                | -8                     | 76                | -5                     | 77                | -4                     | 79                | -2                     | 77                | -4                     |
| 1937                   | 81                                                                                    | по OCB/on OSV                           | 73                | -8                     | 77                | -4                     | 78                | -3                     | 79                | -2                     | 78                | -3                     |
| 2300                   | 90                                                                                    | по OCB/on OSV                           | 85                | -5                     | 87                | -3                     | 89                | -1                     | 91                | +1                     | 89                | -1                     |
| 2315                   | 90                                                                                    | по OCB/on OSV                           | 85                | -5                     | 88                | -2                     | 90                | 0                      | 91                | +1                     | 89                | -1                     |
| 2323                   | 90                                                                                    | по OCB/on OSV                           | 86                | -4                     | 88                | -2                     | 90                | 0                      | 92                | +2                     | 89                | -1                     |
| 2339                   | 91                                                                                    | по OCB/on OSV                           | 86                | -5                     | 89                | -2                     | 90                | -1                     | 92                | +1                     | 90                | -1                     |
| 2339                   | 92                                                                                    | по OCB/on OSV                           | 87                | -5                     | 89                | -3                     | 91                | -1                     | 93                | +1                     | 91                | -1                     |
| 2407                   | 92                                                                                    | по OCB/on OSV                           | 88                | -4                     | 91                | -1                     | 92                | 0                      | 94                | +2                     | 92                | 0                      |
| Среднеква<br>М         | дратическое отклон<br>ean squared error («                                            | іение («невязка»), °C<br>residual»), °C | ±9                |                        | ±                 | ±5 ±3                  |                   | ±2                     |                   | ±3                     |                   |                        |
|                        |                                                                                       | Скважина Арктич                         | еская 1           | 1/Arctic               | heskay            | a 11 well              |                   |                        |                   |                        |                   |                        |
| 2000                   | 100                                                                                   | по OCB/on OSV                           | 91                | -9                     | 97                | -3                     | 99                | -1                     | 102               | +2                     | 100               | 0                      |
| 2500                   | 120                                                                                   | по OCB/on OSV                           | 109               | -11                    | 115               | -5                     | 117               | -3                     | 121               | +1                     | 119               | -1                     |
| 3533                   | 125                                                                                   | пластовые/in-place                      | 133               | +8                     | 128               | +3                     | 126               | +1                     | 124               | -1                     | 126               | +1                     |
| 3560                   | 126                                                                                   | пластовые/in-place                      | 133               | +7                     | 129               | +3                     | 127               | +1                     | 124               | -1                     | 126               | 0                      |
| Среднеква<br>М         | дратическое отклон<br>ean squared error («                                            | іение («невязка»), °C<br>residual»), °C | ±                 | ±9                     |                   | ±4                     |                   | ±2                     |                   | ±1                     |                   | =1                     |
|                        |                                                                                       | Скважина Бованенков                     | ская 116          | 5/ Bovai               | nenkovs           | skaya 116              | 5 well            |                        |                   |                        |                   |                        |
| 2610                   | 94                                                                                    | пластовые/in-place                      | 100               | +6                     | 98                | +4                     | 97                | +3                     | 96                | +2                     | 97                | +3                     |
| 2657                   | 97                                                                                    | пластовые/in-place                      | 102               | +5                     | 100               | +3                     | 99                | +2                     | 97                | 0                      | 99                | +2                     |
| 2795                   | 103                                                                                   | пластовые/in-place                      | 107               | +4                     | 105               | +2                     | 104               | +1                     | 103               | 0                      | 104               | +1                     |
| 3050                   | 113                                                                                   | пластовые/in-place                      | 116               | +3                     | 114               | +1                     | 113               | 0                      | 112               | -1                     | 113               | 0                      |
| 2615                   | 120                                                                                   | по OCB/on OSV                           | 102               | -18                    | 110               | -10                    | 113               | -7                     | 119               | -1                     | 115               | -5                     |
| Среднеква<br>М         | Среднеквадратическое отклонение («невязка»), °<br>Mean squared error («residual»), °С |                                         |                   | :9                     | ±                 | :5                     | ±4                |                        | ±1                |                        | ±3                |                        |

Примечание. Коричневой заливкой показаны варианты оптимальные (приемлемые) по критерию «невязки».

Note. The optimal variants (accepted) by «residual» criterion are filled with brown.

2 решений нельзя признать приемлемыми. В этих вариантах «невязки» превышают оптимальное значение в 2 раза и много больше, а в *варианте* 1 разница с пластовыми температурами и с температурами по ОСВ достигает 14 и 18 °С.

В случае учета палеоклимата (*варианты* 3, 4 и 5) как «невязки» для пластовых температур, так и сходимость с «максимальным палеотермометром» оптимальны и примерно равноценны. Несколько иные результаты получены для скважины Бованенковская 116. Здесь оптимальным (приемлемым) можно признать, пожалуй, только *вариант* 4.

- **Табл. 5.** Расчет интегрального показателя R, дающего экспресс-оценку плотности генерации китербютских нефтей
- **Table 5.** Calculation of the integrated indicator R giving the express assessment of generation density of Kiterby-utsk oil

| Вариант палеотемпературного<br>моделирования<br>Variant of paleo temperature modeling | Экспресс-расчет плотности<br>генерации ( <i>R</i> ), усл. ед<br>Express calculation of generation<br>density ( <i>R</i> ), си. | Период работы палеоочага млн л назад<br>Work period of the paleohearth,<br>million years ago | Время работы палеоочага, млн л<br>Lifetime of the paleohearth, million years | Расчетная плотность теплового потока из основания осадочного разреза, ${\rm MBT/M}^2$ Settlement heat flow density from the basis of the sedimentary section, ${\rm mW/m}^2$ | Максимальные геотемпературы<br>палеоочага генерации нефти, °C<br>Maximum geotemperatures of oil<br>generation paleohearth, °C |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Скважина Малоямальская 3002/Maloyamalskaya 3002 well                                  |                                                                                                                                |                                                                                              |                                                                              |                                                                                                                                                                              |                                                                                                                               |  |  |  |
| 1                                                                                     | 13                                                                                                                             | 28,0-18,5                                                                                    | 9,5                                                                          | 52                                                                                                                                                                           | 97                                                                                                                            |  |  |  |
| 2                                                                                     | 48                                                                                                                             | 63,7-18,5                                                                                    | 45,2                                                                         | 48                                                                                                                                                                           | 102                                                                                                                           |  |  |  |
| 3                                                                                     | 48                                                                                                                             | 63,7-18,5                                                                                    | 45,2                                                                         | 50                                                                                                                                                                           | 101                                                                                                                           |  |  |  |
| 4                                                                                     | 49                                                                                                                             | 63,7-18,5                                                                                    | 45,2                                                                         | 51                                                                                                                                                                           | 102                                                                                                                           |  |  |  |
| 5                                                                                     | 48                                                                                                                             | 63,7-18,5                                                                                    | 45,2                                                                         | 49                                                                                                                                                                           | 100                                                                                                                           |  |  |  |
|                                                                                       | Скважина А                                                                                                                     | рктическая                                                                                   | 11/Arct                                                                      | icheskaya 11 v                                                                                                                                                               | vell                                                                                                                          |  |  |  |
| 1                                                                                     | 107                                                                                                                            | 92,0-0                                                                                       | 92,0                                                                         | 56                                                                                                                                                                           | 140                                                                                                                           |  |  |  |
| 2                                                                                     | 128                                                                                                                            | 102,0-0                                                                                      | 102,0                                                                        | 54                                                                                                                                                                           | 145                                                                                                                           |  |  |  |
| 3                                                                                     | 127                                                                                                                            | 100,0-0                                                                                      | 100,0                                                                        | 56                                                                                                                                                                           | 149                                                                                                                           |  |  |  |
| 4                                                                                     | 132                                                                                                                            | 102,0-0                                                                                      | 102,0                                                                        | 58                                                                                                                                                                           | 154                                                                                                                           |  |  |  |
| 5                                                                                     | 131                                                                                                                            | 102,0-0                                                                                      | 102,0                                                                        | 58                                                                                                                                                                           | 152                                                                                                                           |  |  |  |
| Сква                                                                                  | жина Боване                                                                                                                    | енковская 11                                                                                 | 6/Bova                                                                       | anenkovskaya                                                                                                                                                                 | 116 well                                                                                                                      |  |  |  |
| 1                                                                                     | 98                                                                                                                             | 89,0-0                                                                                       | 89,0                                                                         | 57                                                                                                                                                                           | 120                                                                                                                           |  |  |  |
| 2                                                                                     | 122                                                                                                                            | 100,0-0                                                                                      | 100,0                                                                        | 56                                                                                                                                                                           | 127                                                                                                                           |  |  |  |
| 3                                                                                     | 123                                                                                                                            | 100,0-0                                                                                      | 100,0                                                                        | 59                                                                                                                                                                           | 132                                                                                                                           |  |  |  |
| 4                                                                                     | 128                                                                                                                            | 100,0-0                                                                                      | 100,0                                                                        | 62                                                                                                                                                                           | 138                                                                                                                           |  |  |  |
| 5                                                                                     | 116                                                                                                                            | 116 92,0-0                                                                                   |                                                                              | 60                                                                                                                                                                           | 133                                                                                                                           |  |  |  |

Примечание. Коричневой заливкой показаны варианты оптимальные (приемлемые) по критерию «невязки».

Note. The optimal variants (accepted) by «residual» criterion are filled with brown.

Расчет интегрального показателя R (табл. 5) – экспресс-расчет плотности генерации китербютских нефтей – дает максимальное или несколько большее значение для варианта 4, наиболее приемлемого по критерию «невязки». Максимальный расчетный эффект достигается по причине боль-

шого времени нахождения материнской свиты в ГЗН и наибольших геотемператур ГЗН. В этом варианте, помимо учета «арктического» векового хода температур на дневной поверхности, учтена динамика неоплейстоценовой мерзлоты. Максимальные значения примерно те же, что и в *варианте 3*, в котором учтен только один фактор палеоклимата – вековой ход температур, но на 30 % и до 3 раз больше, чем в *варианте 1*, в котором не учтен ни один фактор палеоклимата.

Достоверность результатов палеотемпературного моделирования, выполненного на Малоямальской, Арктической и Бованенковской площадях, подтверждается хорошей согласованностью полученных расчетных значений плотности теплового потока (51–58–62 мВт/м<sup>2</sup>) с экспериментальными определениями плотности теплового потока для п-ва Ямал: 47–58 мВт/м<sup>2</sup>, при установленной закономерности увеличения плотности теплового потока в северо-западном направлении [40].

Как было отмечено выше, китербютская свита является источником формирования залежей УВ в ловушках нижнеюрского и, возможно, доюрского НГК. В этой связи важно оценить согласованность очагов интенсивной генерации китербютских нефтей, выделенных по геотемпературному критерию в разрезах скважин, с результатами испытаний нижнеюрских пластов (табл. 1).

На Малоямальской площади китербютская свита находилась в ГЗН с ганькинского времени (порядка 65 млн л назад) до основного размыва в неогене (18 млн л назад) (табл. 5). И, действительно, скважина Малоямальская 3002 вскрыла нижнеюрский пласт Ю<sub>10</sub> с признаками нефтеносности.

На Арктической площади китербютская свита находится в ГЗН с марресалинского времени (порядка 100 млн л назад). А в период с 50 млн л назад до основного размыва в неогене свита входила в нижнюю зону газообразования (НЗГ), прогреваясь до 154 °С (табл. 5). Но, к сожалению, в нижнеюрских пластах Ю<sub>10</sub> и Ю<sub>11</sub>, вскрытых скважиной Арктическая 11, притоков флюида не получено – «сухо».

На Бованенковской площади китербютская свита находится в ГЗН с марресалинского времени (порядка 100 млн л назад). А в течении порядка 15 млн л, до основного размыва в неогене, свита вплотную приближалась к НЗГ, прогреваясь до 133 °С (табл. 3, 5). И, действительно, скважина Бованенковская 116 вскрыла нефтегазонасыщенные пласты Ю<sub>6</sub>, Ю<sub>10</sub> и Ю<sub>12</sub>.

#### Выводы

 На представительных мезозойского-кайнозойских разрезах Малоямальского, Арктического и Бованенковского месторождений, расположенных в южном, центральном и северном районах п-ва Ямал, установлено, что неучет индивидуальных для региона «арктического» векового хода температур на поверхности Земли и толщи неоплейстоценовой мерзлоты не позволяет адекватно восстановить термическую историю нефтематеринских нижнеюрских китербютских отложений. Учет «арктического» векового хода температур, неоплейстоценовой мерзлоты позволяет корректно восстановить термическую историю китербютских отложений.

- 2. Учет палеоклимата обусловливает увеличение расчетного палеотемпературного максимума в истории китербютских отложений на площадях п-ва Ямал на 5–18 °С, обусловливает наиболее точную термическую историю материнских отложений, а следовательно, обеспечивает наибольшую расчетную плотность генерации китербютских нефтей.
- 3. Полученные результаты по оценке роли позднечетвертичных ледниковых покровов (в районе п-ва Ямал) позволяют отметить несущественное влияние ледникового покрова на термический режим материнских китербютских отложений, имеющий ключевое значение для процессов генерации УВ.

## СПИСОК ЛИТЕРАТУРЫ

- Особенности геологического строения зоны сочленения Карского моря и Гыданского полуострова и прогноз ее нефтегазоносности / В.С. Бочкарев, А.М. Брехунцов, М.О. Кочергин, И.И. Нестеров (мл.), Д.А. Огнев // Горные ведомости. 2010. № 10. С. 6–18.
- Historical-geological modeling of hydrocarbon generation in the mesozoic-cenozoic sedimentary basin of the Kara sea (basin modeling) / A.E. Kontorovich, L.M. Burshtein, N.A. Malyshev, P.I. Safronov, S.A. Gus'kov S.A., S.V. Ershov, V.A. Kazanenkov, N.S. Kim, V.A. Kontorovich, E.A. Kostyreva, V.N. Melenevsky, V.R. Livshits, A.A. Polyakov, M.B. Skvortsov // Russian Geology and Geophysics. - 2013. - V. 54. - № 8. - P. 1179-1226.
- Connan J. Time-temperature relation in oil genesis // AAPG Bull. - 1974. - V. 58. - P. 2516-2521.
- Depositional environments, organic richness, and petroleum generating potential of the Campanian to Maastrichtian Enugu formation, Anambra basin, Nigeria / S.O. Akande, O.J. Ojo, B.D. Erdtmann, M. Hetenyi // The Pacific Journal of Science and Technology. - 2009. - V. 10. - P. 614-628.
- Galushkin Y.I., Sitar K.A., Kunitsyna A.V. Numerical modeling of the organic matter transformation in the sedimentary rocks of the northeastern Sakhalin shelf // Oceanology. - 2011. - V. 51. -№ 3. - P. 491-501.
- Kosakowski P., Wrobel M., Krzywiec P. Modelling hydrocarbon generation in the Palaeozoic and Mesozoic successions in the Poland West Ukraine // J. Petroleum Geol. Sci. Press Ltd. - 2013. -V. 36. - № 2. - P. 139-162.
- Maturity and petroleum systems modelling in the offshore Zambezi delta depression and Angoche basin, Northern Mozambique / E.S. Mahanjane, D. Franke, R. Lutz, J. Winsemann, A. Ehrhardt, K. Berglar, C. Reichert // J. Petroleum Geol. Sci. Press Ltd. 2014. V. 37. № 4. P. 329-348.
- Isaev V.I., Lobova G.A., Osipova E.N. The oil and gas contents of the Lower Jurassic and Achimovka reservoirs of the Nyurol'ka megadepression // Russian Geology and Geophysics. – 2014. – V. 55. – P. 1418–1428.

- 4. Достоверность результатов палеотемпературного моделирования уверенно контролируется классическим геофизическим критерием «невязки», сопоставлением с экспериментальными данными о тепловом потоке на территории исследований, согласованностью с данными бурения и испытания скважин.
- 5. При определении ресурсов УВ объёмно-генетическим методом на землях арктического региона Западной Сибири рекомендуется применять «арктический» вековой ход температур и учитывать динамику толщи неоплейстоценовой мерзлоты мощностью 300-600 м. В случае неучета толщ многолетней мерзлоты и палеоклиматического хода температур расчетные ресурсы УВ могут быть занижены от 30 % до 3-х раз.
- 6. Полученные результаты для китербютской свиты арктического региона Западной Сибири вполне согласуются с характером ранее полученных оценок существенного влияния мезозойско-кайнозойского климата на геотермический режим баженовской свиты п-ва Ямал [15, 16].

Статья подготовлена при частичной финансовой поддержке РФФИ в рамках научного проекта № 16-35-00080 мол\_а.

- Razvozzhaeva E.P., Prokhorova P.N., Lapkovskii V.V. Numerical Modeling of the Tectonic and Thermal History of the Kyndal Graben of the Bureya Basin (Far East of Russia) // Russian Journal of Pacific Geology. – 2017. – V. 11. – № 3. – P. 205–222.
- Kurchikov A.R. The geothermal regime of hydrocarbon pools in West Siberia // Russian Geology and Geophysics. - 2001. -V. 42. - № 11-12. - P. 678-689.
- Hantschel T., Kauerauf A.I. Fundamentals of basin and petroleum systems modeling. – Heidelberg: Springer, 2009. – 476 p.
- Моделирование процессов генерации, миграции и аккумуляции углеводородов в юрских и меловых комплексах Енисей-Хатангского бассейна / П.И. Сафронов, С.В. Ершов, Н.С. Ким, А.Н. Фомин // Геология нефти и газа. – 2011. – № 5. – С. 48–55.
- Галушкин Ю.И. Моделирование осадочных бассейнов и оценка их нефтегазоносности. – М.: Научный Мир, 2007. – 456 с.
- Influence of Surface Temperatures on Source Rock Maturity: an Example from the Russian Artic / S. Nelskamp, T. Donders, J.-D. van Wess, O. Abbink // ROGTEC. - 2014. - № 18. -P. 26-35.
- 15. Искоркина А.А. Палеоклиматические факторы реконструкции термической истории нефтематеринской баженовской свиты арктического региона Западной Сибири // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2016. – Т. 327. – № 8. – С. 59–73.
- 16. Комплексная оценка палеоклиматических факторов реконструкции термической истории нефтематеринской баженовской свиты арктических районов Западной Сибири / В.И. Исаев, А.А. Искоркина, В.Ю. Косыгин, Г.А. Лобова, Е.Н. Осипова, А.Н. Фомин // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2017. – Т. 328. – № 1. – С. 13–28.
- Богоявленский В.И., Полякова И.Д. Перспективы нефтегазоносности больших глубин Южно-Карского региона // Арктика: экология и экономика. – 2012. – № 3 (7). – С. 92–103.
- 18. Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin / A.E. Kontorovich,

A.N. Fomin, V.O. Krasavchikov, A.V. Istomin // Russian Geology and Geophysics. – 2009. – V. 50. – № 11. – P. 917–929.

- Isaev V.I., Volkova N.A., Nim T.V. Solution of direct invers sedimentation heat-flow problems // Geology of the Pacific Ocean. – 1996. – V. 12. – № 3. – P. 523–536.
- Estimation of the Oil-and-Gas Potential of Sedimentary Depression in the Far East and West Siberia Based on Gravimetry and Geothermy Data / R.Yu. Gulenok, V.I. Isaev, V.Yu. Kosygin, G.A. Lobova, V.I. Starostenko // Russian Journal of Pacific Geology. 2011. V. 5. № 4. P. 273-287.
- Нефтегазоносность нижнемеловых резервуаров Нюрольской мегавпадины / Е.Н. Осипова, Г.А. Лобова, В.И. Исаев, В.И. Старостенко // Известия Томского политехнического университета. - 2015. - Т. 326. - № 1. - С. 14-33.
- Isaev V.I., Fomin A.N. Loki of generation of bazhenov- and togurtype oils in the southern Nyurol'ka megadepression // Russian Geology and Geophysics. - 2006. - V. 47. - № 6. - P. 734-745.
- 23. Тектоно-седиментационная интерпретация данных геотермии при выявлении и оценке позднеэоценовой эрозии на арктических месторождениях углеводородов (п-ва Ямал) / В.И. Исаев, В.И. Старостенко, Г.А. Лобова, А.Н. Фомин, А.К. Исагалиева // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2017. – Т. 328. – № 7. – С. 19–31.
- Модель катагенеза органического вещества (на примере баженовской свиты) / Л.М. Бурштейн, Л.В. Жидкова, А.Э. Конторович, В.Н. Меленевский // Геология и геофизика. 1997. Т. 38. – № 6. – С. 1070–1078.
- 25. Старостенко В.И. Устойчивые численные методы в задачах гравиметрии. Киев: Наук. думка, 1978. 228 с.
- 26. Strakhov V.N., Golizdra G.Ya., Starostenko V.I. Theory and practice of interpreting potential fields: Evolution in the 20<sup>th</sup> century // Izvestiya – Physics of the Solid Earth. – 2000. – V. 36. – № 9. – P. 742–762.
- Isaev V.I. Interpretation of High-Accuracy Gravity Exploration Data by Mathematic Programming // Russian Journal of Pacific Geology. - 2013. - V. 7. - № 2. - P. 92-106.
- Исследования баженовской свиты с применением непрерывного профилирования тепловых свойств на керне / Ю.А. Попов, Е.Ю. Попов, Е.М. Чехонин, А.В. Габова, Р.А. Ромушкевич, М.Ю. Спасенных, Д.Е. Заграновская // Нефтяное хозяйство. – 2017. – № 3. – С. 22–27.
- Zubkov M.Yu. The reservoir potential of the Bazhenov Formation: regional prediction // Russian Geology and Geophysics. – 2017. – V. 58. – № 3-4. – P. 410-415.

- 30. Эволюция температурного поля осадочного чехла Западно-Сибирской плиты / А.Д. Дучков, Ю.И. Галушкин, Л.В. Смирнов, Л.С. Соколова // Геология и геофизика. – 1990. – № 10. – С. 51–60.
- McKenzie D. Some remarks on the development of sedimentary basins // Earth and Planet. Sci. Lett. - 1978. - V. 40. - P. 25-32.
- 32. Tissot B. Preliminary Data on the Mechanisms and Kinetics of the Formation of Petroleum in Sediments. Computer Simulation of a Reaction Flowsheet // Oil & Gas Science and Technology – Rev. IFP. – 2003. – V. 58. – № 2. – P. 183–202.
- Попов С.А., Исаев В.И. Моделирование нафтидогенеза Южного Ямала // Геофизический журнал. – 2011. – Т. 33. – № 2. – С. 80–104.
- 34. Tectonic evolution of the Arctic onshore and offshore regions of the West Siberian petroleum province / V.A. Kontorovich, D.V. Ayunova, I.A. Gubin, A.Y. Kalinin, L.M. Kalinina, A.E. Kontorovich, N.A. Malyshev, M.B. Skvortsov, M.V. Solovev, E.S. Surikova // Russian Geology and Geophysics. - 2017. -V. 58. - № 3-4. - P. 343-361.
- 35. Стратиграфия нефтегазоносных бассейнов Сибири. Кн. 9: Кайнозой Западной Сибири / под ред. В.С. Волковой. – Новосибирск: Изд-во СО РАН, 2002. – 246 с.
- 36. Volkova V.S. Paleogene and neogene stratigraphy and paleotemperature trend of West Siberia (from palynological data) // Russian Geology and Geophysics. - 2011. - V. 52. - № 7. -P. 709-716.
- Базы данных Государственных геологических карт ВСЕГЕИ. Карта дочетвертичных образований R (40)-41, R-43, 44(45). URL: http://www.vsegei.ru/ru/info/georesource/ (дата обращения 13.09.2017).
- Черданцев С.Г., Огнев Д.А., Кириченко Н.В. Неотектоника Севера Западно-Сибирского региона // Горные ведомости. 2013. – № 8. – С. 64–73.
- З9. Лопатин Н.В. Концепция нефтегазовых генерационно-аккумуляционных систем как интегрирующее начало в обосновании поисково-разведочных работ // Геоинформатика. – 2006. – № 3. – С. 101–120.
- Геотермия арктических морей / М.Д. Хуторской, В.Р. Ахмедзянов, А.В. Ермаков, Ю.Г. Леонов, Л.В. Подгорных, Б.Г. Поляк, Е.А. Сухих, Л.А. Цыбуля. М.: ГЕОС, 2013. 232 с.

Поступила 15.11.2017 г.

### Информация об авторах

*Искоркина А.А.*, кандидат геолого-минералогических наук, ассистент отделения геологии Национального исследовательского томского политехнического университета.

*Прохорова* П.Н., аспирант отделения геологии Национального исследовательского томского политехнического университета.

Стоцкий В.В., аспирант, ассистент отделения геологии Национального исследовательского томского политехнического университета.

**Фомин** *А.Н.*, доктор геолого-минералогических наук, заведующий лабораторией геохимии нефти и газа Института нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН.

#### UDC 553.98(571)

# RECONSTRUCTIONS OF GEOTHERMAL MODE OF THE PETROMATERNAL KITERBUTSK SUITE OF THE ARCTIC REGION IN WESTERN SIBERIA TAKING INTO ACCOUNT THE INFLUENCE OF PALEOCLIMATE

## Albina A. Iskorkina<sup>1</sup>,

iskorkina.a@mail.ru

## Polina N. Prokhorova<sup>1</sup>,

prokhorova.polina1988@gmail.com

Vitaly V. Stoskiy<sup>1</sup>,

Stotskiy\_VV@sibmail.com

# Aleksandr N. Fomin<sup>2</sup>,

fominan@ipgg.sbras.ru

<sup>1</sup> National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050, Russia.

<sup>2</sup> Institute of Petroleum Geology and Geophysics named after A.A. Trofimuk SB RAS,
 3, Ac. Koptueg Avenue, Novosibirsk, 630090, Russia.

**The relevance.** The Arctic regions of Western Siberia became a priority area of research and exploration. They have the unique paleoclimate features, the inversion sedimentation in Paleogene-Neogene and the considerable variations of petromaternal deposit characteristics. This causes the necessity to improve schemes and determine parameters of quantitative assessment of hydrocarbon resources by volume-genetic method based on geotemperature mode paleoreconstructions of petromaternal deposit.

**The main aim** of the research is to identify and estimate the impact of paleoclimate factors – temperature secular variation of the Earth surface and Neo-Pleistocene permafrost thicknesses, glacial covers – on the settlement geothermal mode of the petromaternal Early Jurassic Kiterbutsk suite.

**Object:** Kiterbutsk deposit of Mesozoic and Cenozoic sections opened by deep wells on areas of Maloyamalskoye, Arkticheskoye and Bovanenkovskoye fields (Yamal peninsula).

**Method of the research** is based on the original computer paleotemperature modeling considering the parameters of sedimentation history and the history of thermophysical properties of sedimentary thickness, including permafrost rocks and glaciers, and not demanding aprioristic data on the origin and quantity of deep heat flow.

**Research results** of the representative Mesozoic-Cenozoic sections of the fields located in southern, central and northern regions of Yamal peninsula, allowed drawing the conclusions and making recommendations. Consideration of the paleoclimate causes the most accurate thermal history of maternal deposits, increase in 5-18 °C the calculated paleotemperature maximum in the history of Kiterbutsk deposit. The authors recommend to apply the unique for the area «arctic» secular temperature variation and take into account the dynamics of permafrost Neo-Pleistocene strata about of 300-600 meters in determining the kiterbutsk petroleum resources by volumetric-genetic method on the territory of Arctic region. The authors noted insufficient influence of glacial cover on thermal mode reconstruction. When neglecting the permafrost and paleoclimate secular temperatures variation the calculated hydrocarbon resources may be undervalued from 30 percent to triple. The reliability of conclusions is confidently controlled by the geophysical «residual» criterion, comparing with experimental heat flow data of the studied area and consistency with data of drilling and testing wells.

#### Key words:

Paleoclimate, geotemperature mode, petromaternal Kiterbutsk deposits, resources, Yamal Peninsula.

The research was partially financially supported by the RFBR within the scientific project no. 16-35-00080 мол\_a.

#### REFERENCES

- Bochkarev V.S., Brehuncov A.M., Kochergin M.O., Nesterov I.I. (Jr.), Ognev D.A. Features of a geological structure of a zone of a joint of the Kara Sea and Gydan Peninsula and forecast of its oil-and-gas potential. *Mountain sheets*, 2010, no. 10, pp. 6–18. In Rus.
- Kontorovich A.E., Burshtein L.M., Malyshev N.A., Safronov P.I., Gus'kov S.A., Ershov S.V., Kazanenkov V.A., Kim N.S., Kontorovich V.A., Kostyreva E.A., Melenevskiy V.N., Livshits V.R., Polyakov A.A., Skvortsov M.B. Historical-geological modeling of hydrocarbon generation in the Mesozoic-Cenozoic sedimentary basin of the Kara sea (basin modeling). *Russian Geology and Geophysics*, 2013, vol. 54, no. 8, pp. 1179–1226.
- Connan J. Time-temperature relation in oil genesis. AAPG Bull, 1974, vol. 58, pp. 2516–2521.
- 4. Akande S.O., Ojo O.J., Erdtmann B.D., Hetenyi M. Depositional environments, organic richness, and petroleum generating potential of the Campanian to Maastrichtian Enugu formation, Anambra basin, Nigeria. *The Pacific Journal of Science and Technolo*gy, 2009, vol. 10, pp. 614–628.
- Galushkin Y.I., Sitar K.A., Kunitsyna A.V. Numerical modeling of the organic matter transformation in the sedimentary rocks of the northeastern Sakhalin shelf. *Oceanology*, 2011, vol. 51, no. 3, pp. 491–501.
- 6. Kosakowski P., Wrobel M., Krzywiec P. Modelling hydrocarbon generation in the Palaeozoic and Mesozoic successions in the Po-

land West Ukraine. J. Petroleum Geol. Sci. Press Ltd, 2013, vol. 36, no. 2, pp. 139-162.

- Mahanjane E.S., Franke D., Lutz R., Winsemann J., Ehrhardt A. Berglar K., Reichert C. Maturity and petroleum systems modelling in the offshore Zambezi delta depression and Angoche basin, Northern Mozambique. J. Petroleum Geol. Sci. Press Ltd, 2014, vol. 37, no. 4, pp. 329–348.
- Isaev V.I., Lobova G.A., Osipova E.N. The oil and gas contents of the Lower Jurassic and Achimovka reservoirs of the Nyurol'ka megadepression. *Russian Geology and Geophysics*, 2014, v. 55, pp. 1418–1428.
- 9. Razvozzhaeva E.P., Prokhorova P.N., Lapkovskii V.V. Numerical Modeling of the Tectonic and Thermal History of the Kyndal Graben of the Bureya Basin (Far East of Russia). *Russian Journal of Pacific Geology*, 2017, vol. 11, no. 3, pp. 205–222.
- Kurchikov A.R. The geothermal regime of hydrocarbon pools in West Siberia. *Russian Geology and Geophysics*, 2001, vol. 42, no. 11-12, pp. 678-689.
- 11. Hantschel T., Kauerauf A.I. Fundamentals of basin and petroleum systems modeling. Heidelberg, Springer, 2009. 476 p.
- Safronov P.I., Ershov S.V., Kim N.S., Fomin A.N. Modeling of processes of generation, migration and accumulation of hydrocarbons in the Jurassic and cretaceous complexes of the Yenisei-Khatanga basin. Oil and gas geology, 2011, no. 5, pp. 48–55. In Rus.
- Galushkin Yu.I. Modelirovanie osadochnykh basseynov i otsenka ikh neftegazonosnosti [Modeling decantation basins and assessment of their petroleum potential]. Moscow, Nauchny mir Publ., 2007. 456 p.
- Nelskamp S., Donders T., van Wess J.-D., Abbink O. Influence of Surface Temperatures on Source Rock Maturity: An Exaple from the Russian Artic. *ROGTEC*, 2014, no. 18, pp. 26–35.
- Iskorkina A.A. Paleoclimate factors of reconstruction of thermal history of the petromaternal Bazhenov suite of the Arctic region of Western Siberia. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2016, vol. 327, no. 8, pp. 59–73. In Rus.
- 16. Isaev V.I., Iskorkina A.A., Kosygin V.Yu., Lobova G.A., Osipova E.N., Fomin A.N. Complex assessment of paleoclimatic factors of reconstruction of thermal history of the petromaternal Bazhenov suite of the Arctic districts of Western Siberia. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2017, vol. 328, no. 1, pp. 13–28.
- Bogoyavlensky V.I., Polyakova I.D. Petroleum potential of the great depths of the South Kara region. Arctic: ecology and economy, 2012, no. 3 (7), pp. 92–103. In Rus.
- Kontorovich A.E., Fomin A.N., Krasavchikov V.O., Istomin A.V. Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin. *Russian Geology and Geophysics*, 2009, vol. 50, no. 11, pp. 917–929.
- Isaev V.I., Volkova N.A., Nim T.V. Solution of direct inversedimentation heat-flow problems. *Geology of the Pacific Ocean*, 1996, vol. 12, no. 3, pp. 523-536.
- Gulenok R.Yu., Isaev V.I., Kosygin V.Yu., Lobova G.A., Starostenko V.I. Estimation of the Oil-and-Gas Potential of Sedimentary Depression in the Far East and West Siberia Based on Gravimetry and Geothermy Data. *Russian Journal of Pacific Geology*, 2011, vol. 5, no. 4, pp. 273–287.
- Osipova E.N., Lobova G.A., Isaev V.I., Starostenko V.I. Oil and gas reservoirs of Lower Nurol'ka megahollow. *Bulletin of the Tomsk Polytechnic University*, 2015, vol. 326, no. 1, pp. 14–33. In Rus.
- Isaev V.I., Fomin A.N. Loki of generation of bazhenov- and togurtype oils in the southern Nyurol'ka megadepression. *Russian Geology and Geophysics*, 2006, vol. 47, no. 6, pp. 734–745.
- 23. Isaev V.I., Starostenko V.I., Lobova G.A., Fomin A.N., Isagalieva A.K. Tectonic sedimentation interpretation of geothermic data at identification and assessment of a late Eocene erosion on the Arctic fields of hydrocarbons (the peninsula of Yamal). Bulletin

of the Tomsk Polytechnic University. Geo Assets Engineering, 2017, vol. 328, no. 7, pp. 19–31. In Rus.

- Burshteyn L.M., Zhidkova L.V., Kontorovich A.E., Melenevskiy V.N. Model katagenesis organic matter (for example, the Bazhenov formation). *Russian Geology and Geophysics*, 1997, vol. 38, no. 6, pp. 1070–1078. In Rus.
- Starostenko V.I. Ustoychivye chislennye metody v zadachakh gravimetrii [Steady numerical methods in problems of gravitation measurements]. Kiev, Naukova dumka Publ., 1978. 228 p.
- Strakhov V.N., Golizdra G.Ya., Starostenko V.I. Theory and practice of interpreting potential fields: Evolution in the 20<sup>th</sup> century. *Izvesti*ya – *Physics of the Solid Earth*, 2000, vol. 36, no. 9, pp. 742–762.
- Isaev V.I. Interpretation of High\_Accuracy Gravity Exploration Data by Mathematic Programming. *Russian Journal of Pacific Geology*, 2013, vol. 7, no. 2, pp. 92–106.
- Popov Yu.A., Popov E.Yu., Chehonin E.M., Gabova A.V., Romushkevich R.A., Spasennyh M.Yu., Zagranovskaya D.E. Researches of the Bazhenov suite with application of continuous profiling of thermal properties on a core. *Oil Industry*, 2017, no. 3, pp. 22–27. In Rus.
- Zubkov M.Yu. The reservoir potential of the Bazhenov Formation: regional prediction. *Russian Geology and Geophysics*, 2017, vol. 58, no. 3-4, pp. 410-415.
- Duchkov A.D., Galushkin Yu.I., Smirnov L.V., Sokolova L.S. The evolution of the temperature field of the sedimentary cover of the West Siberian plate. *Russian Geology and Geophysics*, 1990, vol. 10, pp. 51–60. In Rus.
- McKenzie D. Some remarks on the development of sedimentary basins. *Earth and Planet. Sci. Lett.*, 1978, vol. 40, pp. 25–32.
- 32. Tissot B. Preliminary Data on the Mechanisms and Kinetics of the Formation of Petroleum in Sediments. Computer Simulation of a Reaction Flowsheet. Oil & Gas Science and Technology – Rev. IFP, 2003, vol. 58, no. 2, pp. 183–202.
- Popov S.A., Isaev V.I. Modeling of naphthyogenesis in Southern Yamal. *Geophysical journal*, 2011, vol. 33, no. 2, pp. 80-104. In Rus.
- 34. Kontorovich V.A., Ayunova D.V., Gubin I.A., Kalinin A.Y., Kalinina L.M., Kontorovich A.E., Malyshev N.A., Skvortsov M.B., Solovev M.V., Surikova E.S. Tectonic evolution of the Arctic onshore and offshore regions of the West Siberian petroleum province. *Russian Geology and Geophysics*, 2017, vol. 58, no. 3–4, pp. 343–361.
- Stratigrafiya neftegazonosnykh basseynov Sibiri. Kn. 9: Kaynozoy Zapadnoy Sibiri [Stratigraphy of oil and gas bearing basins of Siberia. B. 9: The Cenozoic of Western Siberia]. Novosibirsk, SO RAN Publ., 2002. 246 p.
- Volkova V.S. Paleogene and neogene stratigraphy and paleotemperature trend of West Siberia (from palynological data). *Russian Geology and Geophysics*, 2011, vol. 52, no. 7, pp. 709–716.
- 37. Bazy dannykh Gosudarstvennykh geologicheskikh kart VSEGEI. Karta dochetvertichnykh obrazovany R (40)-41, R-43, 44(45) [Databases of the State geological cards of VSEGEI. Map of Pre-Quaternary formations R (40)-41, R-43, 44 (45)]. Available at: http://www.vsegei.ru/ru/info/georesource/ (accessed 13 September 2017).
- Cherdancev S.G., Ognev D.A., Kirichenko N.V. Neotektonics of the North of the West Siberian region. *Mountain sheets*, 2013, no. 8, pp. 64–73. In Rus.
- 39. Lopatin N.V. The concept of oil and gas generative and accumulative systems as the integrating beginning in justification of exploration. *Geoinformatika*, 2006, no. 3, pp. 101–120. In Rus.
- 40. Khutorskoy M.D., Akhmedzyanov V.R., Ermakov A.V., Leonov Yu.G., Podgornykh L.V., Polyak B.G., Sukhikh E.A., Cubulia L.A. *Geotermiya arkticheskikh morey* [Geothermic of the Arctic seas]. Ed. by Yu.G. Leonov. Moscow, GEOS Publ., 2013. 232 p.

Received: 15 November 2017.

### Information about the authors

Albina A. Iskorkina, assistant, National Research Tomsk Polytechnic University.

Polina N. Prokhorova, postgraduate, National Research Tomsk Polytechnic University.

Vitaly V. Stoskiy, postgraduate, assistant, National Research Tomsk Polytechnic University.

Aleksandr N. Fomin, Dr. Sc., head of the laboratory, Institute of Petroleum Geology and Geophysics named after A.A. Trofimuk SB RAS.