УДК 665.72:665.637.7

# РАЗРАБОТКА ФОРМАЛИЗОВАННОЙ СХЕМЫ ПРЕВРАЩЕНИЙ УГЛЕВОДОРОДОВ И КИНЕТИЧЕСКОЙ МОДЕЛИ ПРОЦЕССА ГИДРОДЕПАРАФИНИЗАЦИИ ДИЗЕЛЬНЫХ ТОПЛИВ

Н.С. Белинская, Г.Ю. Силко, Е.В. Францина, Е.Н. Ивашкина, Э.Д. Иванчина

Томский политехнический университет E-mail: ns belinskaya@sibmail.com

На основе квантово-химических расчетов показана термодинамическая вероятность протекания химических реакций в процессе гидродепарафинизации дизельных топлив и предложен уровень формализации схемы превращений. Разработанная схема превращений стала основой кинетической модели процесса гидродепарафинизации дизельных топлив, позволяющей учесть влияние химического состава сырья на эффективность процесса.

### Ключевые слова:

Гидродепарафинизация, углеводороды, квантово-химические расчеты, термодинамика, математическое моделирование, дизельное топливо.

### Key words:

Hydrodewaxing, hydrocarbons, quantum-chemical calculations, thermodynamics, mathematical modeling, diesel fuel.

### Введение

Важнейшими задачами развития нефтеперерабатывающей промышленности на современном этапе являются:

- 1) вовлечение в переработку «тяжелых» нефтей с повышенным содержанием высококипящих фракций и остатков серы, смол и металлов;
- 2) увеличение глубины переработки нефти;
- 3) ужесточение экологических требований к качеству топлив;
- 4) обеспечение растущего спроса на высококачественные моторные топлива.

Жесткие требования к качеству моторных топлив (в первую очередь по содержанию серы, полициклических ароматических углеводородов) определяют необходимость совершенствования технологических процессов. В то же время климатические условия Российской Федерации обусловливают большую потребность в высококачественных низкозастывающих дизельных топливах, которая на сегодняшний день обеспечивается менее чем наполовину [1].

Важными низкотемпературными характеристиками дизельного топлива являются: температура помутнения, температура застывания, предельная температура фильтруемости.

В последние годы всё большее применение на НПЗ России находит процесс каталитической депарафинизации. Данный процесс предназначен для производства экологически чистого летнего и зимнего дизельного топлива со сверхнизким содержанием серы и полиароматических углеводородов, соответствующих требованиям европейских стандартов к моторным топливам, а также с улучшенными низкотемпературными свойствами.

В настоящее время в России потребность в зимнем и арктическом дизельных топливах составляет 40 % от общего объема производства. При этом в России недостаточно мощностей каталитической депарафинизации [2]. Кроме того, в соответствии с прогнозами Министерства энергетики РФ потре-

бление дизельного топлива будет постоянно увеличиваться: примерно на 2% в год от суммарного выпуска [3].

Учитывая высокую потребность в высококачественных дизельных топливах, а также дефицит производственных мощностей, проблема повышения эффективности производства дизельных топлив с заданными характеристиками остается нерешенной не только в России, но и за рубежом и является актуальной [4].

Представляется возможным решение данной проблемы с привлечением метода математического моделирования, зарекомендовавшего себя как высокоэффективный инструмент в решении разнообразных задач нефтепереработки и нефтехимии. С использованием данного метода возможно создание компьютерной моделирующей системы процесса депарафинизации и его оптимизация с целью увеличения ресурсоэффективности производства низкотемпературных дизельных топлив [5].

# Теоретические предпосылки для проведения исследований

Первоначальным этапом создания математического описания является составление схемы превращений углеводородов в ходе процесса. При этом от степени детализации химических превращений в значительной мере зависит точность расчетов и адекватность математической модели реальному процессу, а также сложность математического описания и возможность компьютерной реализации. Поэтому с одной стороны схема превращений должна в достаточной степени отражать физико-химическую сущность процесса, а с другой — быть не слишком сложной и перегруженной большим набором реакций для ее математической и компьютерной реализации [6].

Таким образом, целью данной работы является разработка формализованной схемы превращений углеводородов в процессе гидродепарафинизации дизельных топлив.

Процесс депарафинизации осуществляется на установке, сырьем которой помимо дизельных фракций является смесь атмосферного газойля с бензином висбрекинга и бензин-отгон установок гидроочистки. Установка позволяет вовлекать в производство дизельных топлив атмосферный газойль за счет облегчения его углеводородного состава и депарафинизации, а также облагораживать бензин висбрекинга, что дает возможность получать дополнительный объем сырья для установок каталитического риформинга и изомеризации. Материальный баланс установки депарафинизации Л-24—10/2000 ООО «КИНЕФ» на 06.06.2012 представлен в табл. 1.

**Таблица 1.** Материальный баланс установки депарафинизации Л-24–10/2000 ООО «КИНЕФ»

| Технологические потоки |                                    | Расход |        |  |  |
|------------------------|------------------------------------|--------|--------|--|--|
|                        |                                    | кг/ч   | % мас. |  |  |
| П                      | Поступило:                         |        |        |  |  |
|                        | Сырье, в т. ч.                     | 202443 | 94,05  |  |  |
| 1                      | Прямогонная дизельная фракция      | 111760 | 51,92  |  |  |
|                        | Атмосферный газойль                | 90683  | 42,13  |  |  |
| 2                      | Свежий водородсодержащий газ (ВСГ) | 7408   | 3,44   |  |  |
| 3                      | Бензин-отгон гидроочисток          | 5409   | 2,51   |  |  |
| В                      | Bcero:                             |        | 100,00 |  |  |
| Получено:              |                                    |        |        |  |  |
| 1                      | Отдув ВСГ                          | 3061   | 1,42   |  |  |
| 2                      | Углеводородный газ                 | 9984   | 4,64   |  |  |
| 3                      | Легкий бензин                      | 7464   | 3,47   |  |  |
| 4                      | Стабильный бензин                  | 12543  | 5,83   |  |  |
| 5                      | Фракция 180-240 °C                 | 26737  | 12,42  |  |  |
| 6                      | Фракция 240-340 °C                 | 129591 | 60,20  |  |  |
| 7                      | Фракция выше 340 °C                | 16011  | 7,44   |  |  |
| 8                      | H <sub>2</sub> S                   | 1695   | 0,79   |  |  |
| В                      | Всего:                             |        | 96,20  |  |  |
| Потери:                |                                    | 8176   | 3,80   |  |  |
| И                      | Итого:                             |        | 100,00 |  |  |

Процесс проводят в трех реакторах: в первых двух (P-1 и P-2) протекает процесс гидроочистки, в третьем реакторе (P-3) — процесс депарафинизации. Технологические условия процесса представлены в табл. 2.

В качестве катализатора гидроочистки применяется NiO-MoO<sub>3</sub>. В процессе депарафинизации используется CoO-MoO<sub>3</sub>-катализатор. Для осуществления реакций процесса депарафинизации в реакторы поступает водородсодержащий газ (ВСГ). Также для регулирования температуры процесса между реакторами подается охлаждающий квенч ВСГ. В результате процесса получают дизельную фракцию, бензин и углеводородный газ.

Сущность рассматриваемого процесса заключается в гидрировании сернистых, азот- и кислородсодержащих соединений, полиароматических углеводородов и гидродепарафинизации углеводородов  $C_{10+}$  с целью улучшения низкотемпературных свойств продуктов [7].

Согласно материальному балансу установки гидродепарафинизации Л-24—10/2000 ООО «КИ-НЕФ» реакционный поток состоит из множества

компонентов, таких как н-алканы  $C_1 - C_{27}$ , алкены, изоалканы, циклоалканы, ароматические углеводороды, в том числе моно-, ди- и триароматические. При этом превращения данных углеводородов в процессах гидрирования-дегидрирования, изомеризации и циклизации, крекинга имеют разнонаправленный и многоступенчатый характер. Нормальные алканы изомеризуются в изоалканы, те и другие могут циклизоваться в циклоалканы. Алкены гидрируются в алканы. Моноароматические углеводороды гидрируются в циклоалканы, диароматические в моноароматические, триароматические в диароматические. При этом имеет место крекинг алкенов и полиароматики. Также экспериментальные данные показывают, что наиболее активно превращаются алкены и ароматические углеводороды, гидрируясь в алканы и циклоалканы.

**Таблица 2.** Основные параметры технологического режима процесса депарафинизации

| Технологические параметры                          | Значение      |
|----------------------------------------------------|---------------|
| 1. Расход сырья, м³/ч                              | 238           |
| 2. Расход свежего ВСГ, нм³/ч                       | 42560         |
| 3. Расход циркулирующего ВСГ, нм³/ч                | 87190         |
| 4. Объемная скорость по Р-1 и Р-2, ч <sup>-1</sup> | 0,65          |
| 5. Объемная скорость по P-3, ч <sup>-1</sup>       | 2,25          |
| 6. Температура на входе в P-1, °C                  | 322           |
| 7. Температура на выходе P-1, °C                   | 339           |
| 8. Температура на входе в Р-2, °C                  | 339           |
| 9. Температура на выходе P-2, °C                   | 348           |
| 10. Температура на входе в Р-3, °C                 | 346           |
| 11. Температура на выходе P-3, °C                  | 350           |
| 12. Давление на входе:<br>P-1, МПа<br>P-2, МПа     | 7,80<br>7,40  |
| Р-3, МПа<br>13. Отдув ВСГ, нм³/ч                   | 6,90<br>10370 |
| 14. Кратность циркуляции:                          |               |
| P-1, HM <sup>3</sup> /M <sup>3</sup>               | 368           |
| P-2, нм³/м³                                        | 428           |
| P-3, нм³/м³                                        | 458           |

Исходными данными для моделирования процесса гидродепарафинизации помимо технологических режимов и материального баланса являются экспериментальные данные по составу сырья и продукта с промышленной установки, представленные в табл. 3.

**Таблица 3.** Состав сырья и продукта процесса депарафинизации

| Группа компонентов                      | Сырье, % мас. | Изомеризат, % мас. |
|-----------------------------------------|---------------|--------------------|
| Алканы C <sub>5</sub> -C <sub>11</sub>  | 0,56          | 3,05               |
| Алканы C <sub>12</sub> -C <sub>27</sub> | 14,25         | 9,22               |
| Алкены                                  | 4,69          | 1,74               |
| Изоалканы + циклоалканы                 | 49,80         | 63,43              |
| Моноароматические                       | 19,66         | 20,99              |
| Диароматические                         | 10,13         | 1,47               |
| Триароматические                        | 0,91          | 0,10               |
| Сумма                                   | 100,00        | 100,00             |

Таким образом, на основании имеющихся теоретических представлений о химизме и механизме процесса гидродепарафинизации смеси бензина висбрекинга и атмосферного газойля, а также анализа экспериментальных данных с установки был составлен полный список возможных реакций процесса гидродепарафинизации, который включает: гидрирование алкенов в алканы, гидрокрекинг алканов  $C_{12}$ — $C_{27}$ , циклизация алкенов, изомеризация алканов  $C_{12}$ — $C_{27}$ , гидрокрекинг изоалканов  $C_{12}$ – $C_{27}$ , циклизация изоалканов, гидрирование моноароматических углеводородов, гидрирование диароматических углеводородов, образование коксогенных структур. Как было указано выше, адекватность разрабатываемой модели зависит от степени детализации схемы превращений, при этом модель должна быть чувствительна к составу перерабатываемого сырья. Лишь в этом случае она будет обладать прогнозирующей способностью. Поэтому для упрощения математического описания и сохранения при этом прогнозирующей способности компоненты сырья и продукта были объединены в группы по принадлежности к определенному классу углеводородов и реакционной способности: алкены, алканы с числом атомов углерода в молекуле от 5 до 11, алканы с числом атомов углерода от 12 до 27, изоалканы с числом атомов углерода от 12 до 27, изоалканы с числом атомов углерода от 4 до 11, циклоалканы, моноароматические углевороды, диароматические углеводороды, коксогенные структуры (коронен), водород. Согласно экспериментальным данным, содержание триароматических углеводородов в сырье и продуктах незначительно и составляет менее 1 мас. %, поэтому их решено не выделять в отдельный компонент в схеме превращений, а содержание учитывать суммарно с диароматическими углеводородами.

### Экспериментальная часть

После составления списка химических превращений, протекающих в процессе депарафинизации, был проведен их термодинамический анализ. Термодинамический анализ химических реакций помогает выяснить необходимые условия получения целевого продукта, позволяет установить возможность протекания тех или иных реакций, а также направление их протекания. Данный анализ возможен при наличии достаточно полной информации о термодинамических свойствах реагирующих веществ.

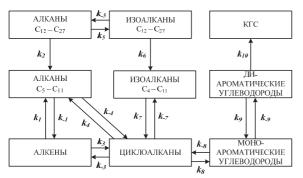
В настоящее время для предсказания молекулярных свойств химических систем широко применяются методы молекулярно-механического и квантово-химического (полуэмпирического и неэмпирического) моделирования. Они не имеют жесткой привязки к узким классам органических соединений и способны учесть множество эффектов, таких как колебательные и вращательные движения атомов, конфигурация электронных орбиталей, эффекты сопряжения двойных связей и др.

Данные методы позволяют на основе расчетов электронной структуры молекул, путем решения уравнения Шредингера, предсказать такие молекулярные свойства химических систем, как энергия, структура, спектральные характеристики, термохимические параметры, параметры ядерного магнитного резонанса и т. д. [8].

Для оценки термодинамических функций реакций процесса депарафинизации были применены квантово-химические методы расчета. Расчеты проводились с использованием программного продукта Gaussian. Модели веществ, участвующих в реакциях, были построены в программе GaussView. В качестве метода расчета выбран неэмпирический метод DFT — Density Functional Theory (теория функционала плотности). Теоретическим приближением являлась модель B3LYP (теория функционала плотности Беке (В3), использующая электронную корреляцию Ли Янга и Пара (LYP)), базис 3—21G.

Главное преимущество выбранного метода перед другими неэмпирическими методами заключается в том, что модели DFT учитывают эффект электронной корреляции, т. е. тот факт, что электроны в молекуле отталкиваются друг от друга в результате взаимодействия. Также преимуществом неэмпирических методов перед полуэмпирическими является более высокая точность расчетов без каких-либо ограничений [8].

Вероятность протекания реакций при технологических условиях процесса (температура 350 °С и давление 6,9 МПа) была оценена по значению изобарно-изотермического потенциала  $\Delta G$  (табл. 4).


**Таблица 4.** Средние значения термодинамических характеристик реакций в процессе гидродепарафинизации (при T=350 °C, P=6,9 МПа)

| Реакция                                                                      | $\Delta H$ ,<br>кДж/моль | <i>∆S</i> ,<br>кДж/моль•К | $\Delta G$ ,<br>кДж/моль |
|------------------------------------------------------------------------------|--------------------------|---------------------------|--------------------------|
| 1. Гидрирование алкенов в алканы                                             | -145,11                  | -143,36                   | -52,22                   |
| 2. Гидрокрекинг алканов C <sub>12</sub> -C <sub>27</sub>                     | -63,17                   | 30,88                     | -83,18                   |
| 3. Циклизация алкенов                                                        | -83,43                   | -65,56                    | -40,95                   |
| 4. Гидрокрекинг циклоал-<br>канов с образованием<br>алканов $C_5$ — $C_{11}$ | -61,71                   | -77,07                    | -11,77                   |
| 5. Изомеризация алканов C <sub>12</sub> -C <sub>27</sub>                     | 5,74                     | -6,33                     | 9,84                     |
| 6. Гидрокрекинг изоалканов C <sub>12</sub> =C <sub>27</sub>                  | -61,68                   | 25,38                     | -78,22                   |
| 7. Циклизация изоалканов С <sub>4</sub> –С <sub>11</sub> в циклоалканы       | 53,18                    | 100,08                    | -11,68                   |
| 8. Дегидрирование ци-<br>клоалканов в моноарома-<br>тические углеводороды    | 242,83                   | 424,92                    | -32,52                   |
| 9. Гидрирование диаро-<br>матических углеводоро-<br>дов в моноароматические  | -48,31                   | 25,98                     | -65,14                   |
| 10. Образование коксогенных структур (КГС)                                   | 87,89                    | 525,93                    | -252,92                  |

Исходя из условия обратимости реакций  $(-70 \le \Delta G \le +70 \text{ кДж/моль} [9])$  реакции гидрирования алкенов в алканы, циклизации алкенов, гидрокрекинга циклоалканов с образованием алканов  $C_5 - C_{11}$ , изомеризации алканов  $C_{12} - C_{27}$ , циклизации изоалканов, дегидрирования циклоалканов в моноароматические углеводороды, гидрирования диароматических углеводородов в моноароматические идут как в прямом, так и в обратном направлениях. Тогда как реакции гидрокрекинга алканов  $C_{12} - C_{27}$ , гидрокрекинга изоалканов  $C_{12} - C_{27}$ , образования КГС являются необратимыми.

Значение изменения энергии Гиббса в ходе реакций гидрокрекинга циклоалканов с образованием алканов  $C_5$ — $C_{11}$ , изомеризации алканов  $C_{12}$ — $C_{27}$  и циклизации изоалканов  $C_4$ — $C_{11}$  позволяет сделать вывод, что данные реакции являются равновесными.

На основании проведенных термодинамических расчетов была составлена следующая схема превращений (рисунок).



**Рисунок.** Формализованная схема превращений в процессе гидродепарафинизации:  $k_j$  – константа скорости прямой химической реакций;  $k_j$  – константа скорости обратной химической реакций

Согласно разработанной схеме превращений кинетическая модель процесса гидродепарафинизации запишется следующим образом:

$$\begin{cases} \frac{dC_{\text{Алкены}}}{d\tau} = -W_1 + W_{-1} - W_3 + W_{-3} \\ \frac{dC_{\text{Алкены}C_5 - C_{11}}}{d\tau} = W_1 - W_{-1} + W_2 + W_4 - W_{-4} \\ \frac{dC_{\text{Алкены}C_{12} - C_{27}}}{d\tau} = -W_2 - W_5 + W_{-5} \\ \frac{dC_{\text{Изоалкены}C_4 - C_{11}}}{d\tau} = W_6 - W_7 + W_{-7} \\ \frac{dC_{\text{Циклоалкены}}}{d\tau} = \\ = W_3 - W_{-3} - W_4 + W_{-4} + W_7 - W_{-7} - W_8 + W_{-8} \\ \frac{dC_{\text{Моноаром}}}{d\tau} = W_8 - W_{-8} + 2 \cdot W_9 - 2 \cdot W_{-9} \\ \frac{dC_{\text{Диаром.}}}{d\tau} = -W_9 + W_{-9} - 12 \cdot W_{10} \\ \frac{dC_{\text{КГС}}}{d\tau} = 5 \cdot W_{10} \\ \frac{dC_{\text{Водород}}}{d\tau} = \\ = -W_1 + W_{-1} - W_2 - W_4 + W_{-4} + W_7 - \\ - W_{-7} - 3 \cdot W_8 + 3 \cdot W_{-8} - W_9 + W_{-9} - 18 \cdot W_{10} \end{cases}$$

где  $dC_i$  — изменение концентрации соответствующей i-й группы углеводородов (алкены, алканы  $C_5$ — $C_{11}$ , алканы  $C_{12}$ — $C_{27}$  и т. д.);  $\tau$  — время контакта, ч;  $W_j$  — скорость прямой химической реакции, моль/л·с;  $W_{-j}$  — скорость обратной химической реакции, моль/л·с

**Таблица 5.** Выражения скоростей реакций процесса депарафинизации

| Реакция                                                              | Выражение для скорости реакции                                   |                                                                     |
|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|
| Γεακμνίκ                                                             | Прямой реакции                                                   | Обратной реакции                                                    |
| 1. Гидрирование алкенов в алканы                                     | $W_1 = k_1 C_{\text{Алкены}} C_{\text{Водород}}$                 | $W_{-1} = k_{-1} C_{A_{\Pi K a H \bowtie C_5} - C_{11}}$            |
| 2. Гидрокрекинг алканов C <sub>12</sub> -C <sub>27</sub>             | $W_2 = k_2 C_{\text{Алкены} C_{12} - C_{22}} C_{\text{Водород}}$ | -                                                                   |
| 3. Циклизация алкенов                                                | $W_3 = k_3 C_{Aлкены}$                                           | $W_{-3} = k_{-3} C_{\text{Циклоалканы}}$                            |
| 4. Гидрокрекинг циклоалканов с образованием алканов $C_5$ – $C_{11}$ | $W_4 = k_4 C_{\text{Циклоалкены}} C_{\text{Водород}}$            | $W_{-4} = k_{-4} C_{A_{JIKAH II} C_S - C_{11}}$                     |
| 5. Изомеризация алканов $C_{12}$ — $C_{27}$                          | $W_5 = k_5 C_{\text{Алканы} C_{12} - C_{27}}$                    | $W_{-5} = k_{-5} C_{Изоалканы C_{12} - C_{27}}$                     |
| 6. Гидрокрекинг изоалканов $C_{12}^{-}C_{27}$                        | $W_6 = k_6 C_{\text{Изоалканы} C_{12} - C_{27}}$                 | -                                                                   |
| 7. Циклизация изоалканов $C_4 = C_{11}$ в циклоалканы                | $W_7 = k_7 C_{\text{Изоалканы} C_4 - C_11}$                      | $W_{-7} = k_{-7} C_{\text{Циклоалканы}} C_{\text{Водород}}$         |
| 8. Дегидрирование циклоалканов в моноароматические углеводороды      | $W_8 = k_8 C_{\text{Циклоалканы}}$                               | $W_{-8} = k_{-8} C_{\text{Моноаром}} C_{\text{Водород}}^3$          |
| 9. Гидрирование диароматических углеводородов в моноароматические    | $W_9 = k_9 C_{\text{Диаром}} C_{\text{Водород}}$                 | W <sub>-9</sub> =k <sub>-9</sub> C <sup>2</sup> <sub>Моноаром</sub> |
| 10. Образование коксогенных структур (КГС)                           | $W_{10} = k_{10} C_{\text{Диаром}} C^{8}_{\text{Водород}}$       | -                                                                   |

Начальные условия  $\tau$ =0,  $C_i$ = $C_{0i}$ , где i — соответствующая группа углеводородов.

Скорости реакций, входящие в кинетическую модель, были записаны согласно закону действующих масс (табл. 5).

Полученная кинетическая модель является формализованной и квазигомогенной, следовательно, константы  $k_1-k_9$  и  $k_{-1}$ ,  $k_{-3}-k_{-8}$  являются эффективными, т. е. представляют собой комбинацию констант всех промежуточных стадий. Для применения модели необходимо сначала провести оценку этих кинетических параметров на основе экспериментальных данных, что и будет являться следующим этапом данной работы.

## Выводы

- Проведенные расчеты показали, что протекание всех реакций, входящих в схему превращений, термодинамически вероятно при технологических условиях проведения процесса депарафинизации.
- 2. Предложенный уровень формализации схемы превращений заключается в объединении компонентов в группы согласно их принадлежности к определенному классу углеводородов и реакционной способности. Выбранный уровень формализации схемы превращений не пе-

### СПИСОК ЛИТЕРАТУРЫ

- 1. Дружинин О.А. Деструктивные гидрогенизационные процессы при получении низкозастывающих дизельных топлив: автореф. дис. ... канд. хим. наук. Красноярск, 2009. 21 с.
- Митусов Т.Н., Хавкин В.А., Гуляев Л.А., Калинин М.В., Виноградов Н.Я. Современное состояние производства низкозастывающих дизельных топлив на заводах России // Мир нефтепродуктов. Вестник нефтяных компаний. 2012. № 2. С. 6–8.
- Зуйков А.В., Чернышева Е.А., Хавкин В.А., Гуляева Л.А., Виноградова Н.Я. Особенности гидрирования полициклических ароматических углеводородов в условиях получения низкосернистого дизельного топлива процессом гидроочистки // Нефтепереработка и нефтехимия. 2012. № 5. С. 23–27.
- Белинская Н.С., Францина Е.В. Кинетическая модель процесса депарафинизации дизельных топлив и ее компьютерная реализация // Молодежь и современные информационные технологии: Сборник трудов X Междунар. научно-практ. конф. студентов, аспирантов и молодых ученых. — Томск, 13–16 ноября 2012. — Томск: Изд-во ТПУ. — С. 69–71.

регружает математическое описание и в то же время позволяет учесть образование как целевых, так и побочных продуктов, а также отложение кокса на катализаторе.

#### Заключение

Составление формализованной схемы превращений и разработка на ее основе кинетической модели процесса является важнейшим этапом в создании математической модели, т. к. в ходе решения обратной кинетической задачи с применением программно реализованной кинетической модели определяются кинетические параметры, которые будут заложены в математическую модель, учитывающую физико-химические закономерности протекания процесса, позволяющую проводить прогнозные расчеты работы установки и рекомендовать оптимальные условия процесса с целью повышения ресурсоэффективности производства малосернистых низкозастывающих дизельных топлив.

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.837.21.0825 «Прогнозирование экологических свойств нефтехимических продуктов, полученных при переработке фракции углеводородов  $C_{12}$ — $C_{27}$  в промышленных реакторах, с использованием экспериментальных и квантово-химических методов».

- Ивашкина Е.Н., Долганов И.М., Иванчина Э.Д., Киргина М.В., Фалеев С.А., Кравцов А.В. Интеллектуализация нефтеперерабатывающих процессов с использованием компьютерных моделирующих систем // Известия Томского политехнического университета. 2011. Т. 319. № 5. С. 80–86.
- Шнидорова Н.О., Долганова И.О., Долганов И.М., Кочегурова Е.А. Создание компьютерной моделирующей системы процесса алкилирования со схемой превращения различного уровня детализации // Известия Томского политехнического университета. 2010. Т. 317. № 5. С. 57–61.
- 7. Баннов П.Г. Процессы переработки нефти. Ч. 1. М.: ЦНИИТЭнефтехим, 2000. 224 с.
- Полешук О.Х., Кижнер Д.М. Химические исследования методами расчета электронной структуры молекул. – Томск: Издво ТПУ, 2006. – 146 с.
- Сайкс П. Механизмы реакций в органической химии / пер. с англ. – 3-е изд. – М.: Химия, 1977. – 319 с.

Поступила 29.12.2012 г.