УДК 550.823

ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ СКВАЖИН ПРИ ИЗУЧЕНИИ МАГМАТИЧЕСКИХ КОЛЛЕКТОРОВ МЕСТОРОЖДЕНИЯ БЕЛЫЙ ТИГР

Нгуен Хыу Бинь

Томский политехнический университет E-mail: nguyenbinh862004@gmail.com

Приведены особенности и результаты интерпретации данных методов изучения литологии и пористости (акустический, гаммагамма, нейтрон-нейтронный и спектральный гамма каротажи) и методов изучения трещиноватости (электрический и акустический сканеры FMI/DSI) при оценке коллекторов нефти кристаллического фундамента месторождения Белый Тигр (Центральный свод). Целевыми параметрами изучения являются пористость (пустотность), проницаемость и морфологические характеристики трещин.

Ключевые слова:

Белый Тигр, фундамент, коллектор нефти, каротаж, сканеры, пористость, проницаемость.

Key words:

The White Tiger, foundation, oil reservoir, logging, scanners, porosity, permeability.

Введение

Изучение нефтегазоносности магматических пород в последние годы приобретает особую актуальность [1 и др.]. Считается, что в таких породах со сложной структурой порового пространства микросканеры (formation micro imager – FMI) более информативны, чем традиционные методы изучения пористости (нейтрон нейтронный каротаж – HHK) [2 и др.].

Месторождение Белый Тигр разрабатывается на поздней стадии. На коллекторы кристаллического фундамента пробурено около 150 скважин, которые дают 85 % общей добычи нефти. Поэтому актуально выявление и изучение новых резервуаров в фундаменте. Изучение характеристик таких коллекторов методами геофизических исследований скважин (ГИС) сталкивается с рядом сложностей, которые связаны с неоднородностью резервуара, сложной структурой пустотного пространства, многокомпонентным составом твердой фазы и низкими значениями фильтрационно-емкостных свойств (ФЕС). В настоящей работе представлены результаты изучения свойств гранитоидных коллекторов Белого Тигра традиционными методами ГИС, а также новыми методами электрического (FMI) и акустического (Dipole sonic imager – DSI) сканирования. Специально рассмотрена важная задача [3] – оценка проницаемости трещинных коллекторов, и приведены результаты ее решения.

Рис. 1. Положение месторождения Белый Тигр на обзорной схеме Кыулогской впадины

Стратиграфия и нефтегазоносность изучаемого объекта

Кыулонгская впадина (Cuu Long Basin) распространяется вдоль побережья Южного Вьетнама (рис. 1). Длина впадины 450...500 км, ширина 75...100 км. Мощность кайнозойских осадков во впадине достигает 6...8 км. В пределах впадины выделяются Центрально-Кыулонгская и Южно-Кыулонгская мульды, которые разделяются Центральным поднятием. В пределах Центрального поднятия с юго-запада на северо-восток прослеживается ряд положительных структур, среди которых Чом-Чом, Дракон (Rong), Белый Тигр (Bach Ho), Заря (Rang Dong) и др.

Геологический разрез месторождения Белый Тигр представлен докайнозойскими кристаллическими породами фундамента и преимущественно терригенными породами осадочного чехла. Суммарная толщина вскрытых образований фундамента по вертикали достигает 1990 м, осадочного чехла – 4740 м.

Фундамент представляет собой горстообразный батолит сложного строения, размером 30×6...8 км. Батолит состоит из трех сводов – Южного, Центрального, Северного, которые разбиты серией разломов основного субмеридионального простирания и подчиненных субширотных разломов (рис. 2).

Радиологические определения абсолютного возраста позволили выделить в составе фундамента три разновозрастных интрузивных магматических комплекса: *Хон-Хоай* — триасового возраста, *Дин-Куан* — юрского возраста, *Ка-На* — мелового возраста.

Комплекс Дин-Куан, сложенный преимущественно гранитоидами, распространен в центральной части Северного свода, а комплекс Хон-Хоай (кварцевые амфибол-биотитовые монцодиориты и амфитол-биотитовые диориты) занимает восточную часть Северного свода. Комплекс Ка-На, представленный гранитами, слагает весь Центральный свод, а также фрагментами Северный и Южный. Породы фундамента в различной степени изменены вторичными процессами. Среди вторичных минералов наиболее широко распространены цеолит и кальцит.

Большинство скважин на Белом Тигре, пробуренных на фундамент, являются высокодебитными (дебиты более 1000 т/сут). Нижняя граница залежи не установлена. Нефтесодержащими являются трещиноватые коллекторы, пустотность которых представлена трещинами, изометрическими пустотами, структурной (блоковой) пористстью.

Осадочный чехол, перекрывающий со стратиграфическим и угловым несогласием поверхность фундамента (рис. 3), представлен терригенными отложениями палеогена, неогена и четвертичной системы. Разрез осадочного чехла расчленен по литологическим, палинологическим и палеонтологическим признакам на свиты местной стратиграфической шкалы.

В разрезе *свиты* $4aky-P_3^+$ выделяются нефтеносные горизонты VI, VII+VIII, IX, X+XI, которые отделены друг от друга глинистыми разделами толщиной от нескольких метров до десятков метров. Эти горизонты характеризуются невыдержанностью мощностей и состава пород. Отложения свиты общей мощностью 300...400 м сложены чередованием песчаных пластов, пачек аргиллитов и глин речной, озерной и лагунной фаций. С погружением отложений в сторону синклиналей их мощность возрастает с одновременным ухудшением коллекторских свойств песчаных пластов.

Отложения свиты Чатан-P₃² мощностью от 50 до 1800 м несогласно залегают на отложениях свиты Чаку, а на более приподнятых участках (Центральный свод) – непосредственно на поверхности фундамента. В разрезе свиты встречаются линзы песчаников и алевролитов, объединяемые в пачки I, II, III, IV, V. В некоторых из них установлены залежи нефти. В средней части разреза глинистые породы свиты содержат массовые концентра-

Рис. 3. Схематический геологический разрез месторождения Белый Тигр: 1) тектонические нарушения; 2) залежи углеводородов осадочного чехла; 3) скважины

ции органического вещества и являются *хорошими нефтематеринскими породами* [4], а также хорошими покрышками для залежей нефти в кристаллическом фундаменте.

Свита Батьхо- N_1^{+} (мощность 750...900 м) по литолого-петрографическому составу подразделяется на две части: верхнюю и нижнюю. Верхняя часть представлена в основном глинистыми породами серого, зелено-серого цвета с чередованием и увеличением сверху вниз содержания алевролитов и песчаников. В самой верхней части разреза выделяются пачки роталиевых глин, которые распространяются почти во всей площади Кыулонгской впадины и являются региональной покрышкой для всей площади впадины. В нижней части свиты породы представлены преимущественно песчаниками и алевролитами (выше 60 %) с чередованием глинистых пропластков.

Песчанистые пласты имеют довольно хорошие ФЕС и являются основными объектами поиска и разведки в осадочном чехле Кыулонгской впадины. В разрезе свиты выделяются продуктивные горизонты 23, 24, 25, 26, 27, представленные кварцевыми и аркозовыми песчаниками. Залежи нефти горизонтов 23 и 24 имеет структурное, пластовое строение, а продуктивные горизонты 25, 26 и 27 развиты в виде отдельных линз.

В разрезе *свит* Коншон- N_1^2 (мощность 700...900 м), Донгнай- N_1^3 (мощность 650...700 м) и Бьендонг- N_2+Q (мощность 650...700 м) продуктивных пластов не установлено.

Характеристика пустотного пространства пород фундамента. Гранитоидные коллекторы по преобладающему типу пустотного пространства делятся на три основных типа [5]: трещинный, каверново-трещинный и структурный (блоковый, матричный).

К трещинному типу относятся коллекторы с хорошо развитой микро- и макротрещиноватостью, которая обычно уверенно фиксируется на кривых электрического сканирования (FMI, ARI) и акустического каротажа (AK) по сильному затуханию волн Стоунли. Каверновая и структурная пустотности имеют подчиненное значение. К каверново-трещинному типу пустотности относятся коллекторы, в которых пустотность представлена микро- и макрокавернами, микротрещинами и крупными порами, в той или иной степени связанными между собой. Трещинная пустотность имеет подчиненное значение. Коллекторы этого типа имеют повышенную общую пустотность ($K_{n.o6}$) по нейтрон-нейтронному (ННК) и гамма-гамма (ГГК) каротажу. По АК они выражены повышением интервального времени, до 210...215 мкс/м.

Породы с блоковой пустотностью обладают относительно небольшими ФЕС и по своим характеристикам близки к коллекторам с межзерновой пустотностью. Для этого типа коллекторов характерны линейная связь $K_{п.об}$ с интервальным временем по AK, относительно низкие значения пористости по ННК и ГГК.

Методы геофизических исследований скважин и их интерпретация при изучении разреза фундамента

Первая группа методов ГИС относится к методам изучения литологии и пористости. Это акустический и радиоактивный каротаж.

Методика комплексной интерпретации данных методов изучения литологии и пористости заключается в том, что с помощью математической модели при определении пористости $K_{n.o6}$ можно исключить влияние литологического состава пород путем решения следующей системы уравнений: DENS₁₀=DENS₁·V₁+DENS₂·V₂+...+DENS₂·V₂+DENS₁₀·K₁₀.

$$\begin{aligned} DT_{log} = DT_{1}V_{1} + DT_{2}V_{2} + \dots + DT_{N}V_{n} + DT_{N}V_{dn.} & \mathbf{K}_{n.o6}, \\ DT_{log} = DT_{1} \cdot V_{1} + DT_{2} \cdot V_{2} + \dots + DT_{n} \cdot V_{n} + DT_{dn.} \cdot \mathbf{K}_{n.o6}, \\ W_{log} = W_{1} \cdot V_{1} + W_{2} \cdot V_{2} + \dots + W_{n} \cdot V_{n} + W_{dn.} \cdot \mathbf{K}_{n.o6}, \\ Pe_{log} = Pe_{1} \cdot V_{1} + Pe_{2} \cdot V_{2} + \dots + Pe_{n} \cdot V_{n}, + Pe_{dn.} \cdot \mathbf{K}_{n.o6}, \\ U_{log} = U_{1} \cdot V_{1} + U_{2} \cdot V_{2} + \dots + U_{n} \cdot V_{n}, \\ THOP_{n} = THOP_{n} \cdot V_{n} + THOP_{n} \cdot V_{n} + THOP_{n} \cdot V_{n}. \end{aligned}$$

*THOR*_{log}=*THOR*₁·*V*₁+*THOR*₂·*V*+...+*THOR*_n·*V*_n, где $DENS_{log}$, $DENS_{\phi\pi}$. – плотность пород, измеряемая прибором, и плотность флюида в пустотном пространстве $K_{n.o6}$; $DENS_1, DENS_2, ..., DENS_n$ и $V_1, V_2, ..., V_n$ – плотности и объемные содержания первого, второго... и *n*-го минералов, соответственно. $DT_{log}, DT_{\phi\pi}$ – интревальное время через породы, измеряемое прибором, и интервальное время через флюид в пустотном пространстве; $DT_1, DT_2, ..., DT_n$ – интервальное время через первый, второй... и *n*-й минералы; $W_{log}, W_{\phi\pi}$ – водородные индексы пород и флюида; $W_1, W_2, ..., W_n$ – водородные индексы первого, второго ... и *n*-ого минералов. $Pe_{log}, Pe_{\phi\pi}$ – фотоэффекты первого, второго ... и *n*-го минералов. $U_{log}, U_1, U_2, ..., U_n$ – содержания урана в породе, в первом, втором... и *n*-м минералах. *THOR*_{log}, *THOR*₁, *THOR*₂,..., *THOR*_n – содержания тория в породе, в первом, втором... и *n*-м минералах. Значение *n* может достигать 5-ти (до 5-ти групп минералов).

Методы «литологии—пористости» применяются с высокой эффективностью в разрезе магматических пород фундамента только в случае одновременного применения этих методов. Определяется состав минералов и соотношения между ними.

Методы электрического и акустического сканирования

Вторая группа — методы изучения трещиноватости пород — включает методы удельного сопротивления (боковой каротаж) и сканирования (FMI — электрическое сканирование, DSI — акустический сканирующий каротаж, UBI — ультразвуковое акустическое зондирование, FWSL — полнокартинный акустический каротаж). Методы, входящие во вторую группу, позволяют выявить зоны дробления, трещиноватости и определить трещинную пористость, параметры трещин (угол падения, плотность трещин, азимут простирания, раскрытость).

Электрическое сканирование, выполненное приборами FMI фирмы Шлюмберже, достигается регистрацией плотности электрического поля с высоким дискретным разрешением (2,5 мм) и используется для создания образа (image) проводимости стенок скважины. Ориентированность изображения относительно географических координат позволяет определить угол падения, азимут простирания трещин и плоскость напластования. Выделение трещин основано на изменении проводимости трещин относительно вмещающих пород.

Раскрытость трещины расчитывается с помощью программы FracView (фирма Шлюмберже) из допущения, что проводимость по FMI пропорциональна раскрытости трещин. Полагается, что в открытой трещине после бурения остается только один тип флюида – фильтрат с сопротивлением бурового раствора ρ_p . Кроме того, при расчете раскрытости трещины полагается наличие следующих условий: 1) постоянство блоковой пористости; 2) постоянство насыщения в интервале исследований прибором; 3) отсутствие проводящих минералов (пирит и др.) в изучаемых породах; 4) высокий контраст между проводимостью трещин и матрицы.

В разрезе ряда скважин для изучения гранитоидного фундамента применяется *акустический сканирующий каротаж* аппаратурой DSI с записью поперечной, продольной волны и волн Стоунли. Последняя рассматриавется как волна, характеризую-

щая проницаемость пород, а в трещиноватых коллекторах может использоваться для выделения трещин. Длина волны порядка 0,76 м (~3,5 диаметра скважины). В этом случае волна Стоунли переходит в трубную волну, которую можно условно представить действием поршня, связанным с радиальным сокращением и расширением его стенок. Если открытая трещина пересекает ствол скважины, волна Стоунли вызывает «закачку» скважиной жидкости в эту трещину, что сопровождается рассеиванием энергии - происходит ослабление волны. Одновременно с этим происходит изменение акустического сопротивления, что вызывает отражение части сигнала волны Стоунли. Таким образом, наличие открытой трещины в скважине ведет: 1) к ослаблению амплитуды волны Стоунли; 2) отражению волны Стоунли.

Совместная интерпретация данных FMI и DSI имеет важное значение. Во-первых, информация из данных двух методов даёт возможность лучше определить зоны вторичного изменения. Во-вторых, можно исключить ошибки при регистрации из-за технических осложнений стенки скважины.

Некоторые результаты исследования пород-коллекторов фундамента методам геофизических исследований скважин

Интерпретация материалов традиционных методов ГИС выполняется с использованием программы Basroc 3.0, разработаной в НИПИморнефтегаз СП «Вьетсовпетро» [5]. Для пород разреза фундамента определяются следующие параметры, характеризующие ФЕС: вторичная ($K_{\text{пкт}}$) и трещинная ($K_{\pi\pi\pi}$) пористости, эффективная мощность ($H_{3\phi}$) и проницаемость (К_{пр}). По результатам интерпретации и исследованиям керна принято нижнее граничное значение вторичной пористости $K_{\text{пвт}}=0,3\%$, принимаемое при подсчете запасов. Проникновение раствора в трещины снижает сопротивление трещиноватых пород. Поэтому для определения К_{птр} по данным электрометрии применяется уравнение, которое в большей степени подходит для чисто трещинных коллекторов. Для повышения достоверности результатов определения эффективных толщин применяются дополнительные критерии – $DT_{log} > DT_{log Ma}$, где $DT_{log Ma}$ – измеренное интервальное время для пород с матричной пористостью, и К_{птр}≥0,05 %.

Комплексная интерпретация материалов сканирования FMI и DSI выполняется программой Porospect [6] и решает следующие задачи: 1) выделение и определение плотности трещин; 2) определение параметров трещин — раскрытости и трещинной пористости; 3) определение ориентации и угла падения трещин.

При интерпретации FMI и DSI пород фундамента выявлено (по морфологии) пять главных типов трещин, которые обуславливают ФЕС коллекторов: 1) непрерывные (без каверн); 2) прерывистые; 3) брекчиевидные; 4) контактные; 5) кавернозные.

Таблица 1. Пустотность (К_{пат}), раскрытость и плотность трещин пород фундамента по 50-метровым интервалам по результатам интерпретации данных ГИС и FMI/DSI (осредненные данные 17-ти скважин Центрального купола Белого Тигра)

Глубина, м				, Кб	₽≥	- P	Ξ	υĽ	_
от	до	К _{пвт} , % (по ГИС)	К _{пвт} , % (по FMI)	Раскрытость обща мм	Средяя раскрытос по 4-м типам*, м	Каверновая раскр тость, мм	Плотность трещи тр./м	Плотность трещин 4-м типам*, тр./	Плотность каверн кав./м
3150	3200	2,45	-	-	-	-	1,04	0,20	0,24
3200	3250	2,32	1,49	0,746	0,622	0,828	4,78	0,74	1,82
3250	3300	1,37	1,09	0,555	1,511	0,400	6,68	1,06	2,43
3300	3350	1,26	0,56	0,835	0,331	0,164	9,17	1,72	2,28
3350	3400	1,63	0,72	0,737	0,672	1,378	10,02	1,79	2,88
3400	3450	2,10	0,90	0,638	0,751	0,488	16,86	3,01	4,81
3450	3500	2,22	1,37	0,841	0,540	0,267	17,29	2,80	6,08
3500	3550	1,57	0,72	0,666	1,325	0,714	28,56	5,63	6,05
3550	3600	1,50	0,72	1,037	0,457	0,685	34,41	6,32	9,14
3600	3650	1,35	0,66	0,840	0,377	0,319	39,63	7,80	8,45
3650	3700	1,43	0,65	0,891	0,485	0,307	31,69	7,01	9,88
3700	3750	1,37	0,84	0,729	0,305	0,215	21,11	5,18	9,18
3750	3800	1,86	0,84	0,856	1,524	0,983	53,30	5,67	9,98
3800	3850	1,14	0,70	0,848	0,324	0,223	31,26	5,66	9,46
3850	3900	1,13	0,75	0,673	0,219	0,154	29,65	5,44	7,87
3900	3950	1,25	0,60	0,544	0,322	0,857	32,90	5,95	9,52
3950	4000	1,23	0,55	0,828	0,304	0,314	25,64	4,83	6,22
4000	4050	1,36	0,58	0,632	0,417	0,412	25,36	4,65	6,10
4050	4100	1,35	0,63	0,891	0,547	0,590	23,89	4,28	6,52
4100	4150	1,00	0,34	0,572	0,205	0,215	15,35	2,68	3,99
4150	4200	1,22	0,40	0,534	0,229	0,232	17,41	3,36	4,23
4200	4250	0,83	0,39	0,474	0,294	0,162	16,20	3,30	3,39
4250	4300	0,63	0,28	0,580	0,243	0,116	13,12	2,74	3,65
4300	4350	0,90	0,50	0,614	0,273	0,193	13,55	3,10	2,37
4350	4400	0,81	0,47	0,778	0,385	0,226	12,18	2,36	2,59
4400	4450	0,86	0,44	0,732	0,208	0,096	10,71	1,97	2,26
4450	4500	0,94	0,55	0,049	0,786	0,123	7,71	1,27	1,76
4500	4550	0,76	0,83	0,067	0,581	0,801	6,15	0,65	2,73
4550	4600	0,73	0,62	0,067	0,395	0,310	3,75	0,52	1,57
4600	4650	0,53	0,49	0,053	0,205	0,556	3,08	0,55	1,14
4650	4700	0,19	0,52	0,052	0,441	0,236	0,91	0,13	0,33
4700	4750	0,30	0,69	0,044	1,087	0,209	1,67	0,29	0,37
4750	4800	0,02	0,26	0,364	1,167	0,004	2,15	0,20	0,06
4800	4850	-	0,03	-	0,022	0,033	0,52	0,03	0,03
4850	4900	-	-	-	0,017	0,021	1,21	0,08	0,12
4900	4950	-	-	-	0,038	0,032	0,20	0,05	0,14
4950	5000	-	-	-	0,020	0,042	0,15	0,04	0,05

*Приведены данные по следующим 4-м типам трещин – непрерывные, прерывистые, брекчевидные, контактные.

Раскрытость трещин определяется методом инверсии данных FMI/DSI. По данным FMI получается видимая (кажущаяся) раскрытость, а по DSI – значение раскрытости (линия ортогонального пересечения открытой трещины). Средние значения раскрытости по скважинам изменяются в широком диапазоне – от 0,001 до 1,664 мм. Не установлено явной связи между средней раскрытостью и продуктивностью скважин.

Средняя раскрытость по 50-метровым интервалам изменяется в пределе от 1,037 (интервалы глубин 3550...3600 м) до 0,044 мм (4700...4750 м). Раскрытость кавернозных трещин лежит в пределах от 1,378 (интервал 3350...3400 м) до 0,004 мм (4750...4800 м). Ниже отметок 4450 м средние значения раскрытости быстро уменьшаются.

Пористость трещиноватых пород определяется по данным электрического сканирования FMI. Пористость тесно связана с изменчивостью пород. Для интервалов, где блоковая часть пород не изменена, полученная пористость показывает величину кавернознотрещиноватой пористости $K_{\text{пвт}}$. Значение $K_{\text{пвт}}$ по 50-метровым интервалам колеблются от 0,03 до 1,49 %.

Определение ориентации и угла падения трещин. Основным направлением трещин (максимальная плотность) является: юго-запад-северо-восток и северо-запад-юго-восток. Угол падения и азимут простирания трещин соответствуют направлениям основных нарушений (рис. 2). Эти результаты являются важными данными для последующего гидродинамического моделирования. Сводные *осредненные* результаты интерпретации данных FMI и DSI приведены в табл. 1.

Рис. 4. Изменения с глубиной осредненной по 50-метровым интервалам вторичной пустотности (К_{пат}) по: 1) результатам интерпретации данных FMI; 2) ГИС

Явная закономерность изменения (уменьшения) значения вторичной пористости с глубиной, как по FMI таки по ГИС, демонстрируется рис. 4. Хотя видна большая разница значений вторичной пористости по FMI и по ГИС, две кривые изменения вторичной пористости по глубине достаточно уверенно коррелируют. Результаты интерпретации данных FMI не полностью отражают величину трещинной пустотности.

По сопоставлению результатов интерпретации FMI/DSI с данными промысловой геологии и данными разработки установлено, что нефтеотдающие интервалы месторождения Белый Тигр обладают следующими признаками: 1) интенсивная аномалия волны Стоунли; 2) раскрытость трещин более 1 мм; 3) каверны, видимые на имиджах электрических сканеров; 4) $K_{\text{пыт}}$ в интервале 2...4%; 5) умеренная плотность трещин, преимущественно 2...5 трещин на метр.

Определение проницаемости коллекторов в кристаллическом фундаменте

На основе кинематического и динамического анализа систем трещин установлено [7], что *дебиты* скважин тесно связаны с *проницаемостью*. Этот вывод хорошо согласуется с данными, приведенными в табл. 2. Здесь видна тесная прямая корреляционная связь удельных дебитов (*G*) работающих интервалов в породах кристаллического фундамента и проницаемости (K_{np}), определенной по результатам гидродинамических исследований скважин. Коэффициент корреляции R=1,00.

Результаты гидродинамических исследований имеются далеко не по всем скважинам. Поэтому для создания интерпретационно-прогностической базы ГИС, учитывая тесную прямую связь проницаемости и удельных дебитов работающих интервалов, построена зависимость *G* от геофизических параметров пустотности $K_{п.об}$, $K_{пвт}$ (рис. 5). Для построения зависимостей использованы результаты комплексной интерпретации данных методов ГИС и результаты 23-х испытаний 84-х работающих интервалов кристаллического фундамента в 16-ти скважинах.

Выводы

- Приведена краткая характеристика стратиграфии, литологии, нефтегазоносности и пустотного пространства коллекторов осадочного чехла и кристаллического фундамента Кыулонгской впадины на шельфе Южного Въетнама.
- Охарактеризованы традиционные методы ГИС и методы сканирования стенки скважины FMI/DSI, применяемые для выделения и изучения коллекторов в кристаллическом фундаменте геологического разреза месторождения Белый Тигр.

то фундамента и проницаемости (R _{пр})											
Условный но- мер скважины	Глубин тающе терва от	а рабо- его ин- ала, м до	Дебит нефти, м³/сут.	Работающая мощность, м	Диаметр шту- цера, мм	Удельный де- 5ит нефти (<i>G</i>), м³∕сут./м∕мм	Проница- емость (К _{пр}), Д				
11	3348	3358	3.4	10		0.019	0.055				
	3358	3377	2,5	19	10	0,077	0,216				
	3387	3407	10,4	20		0,293	0,859				
	3427	3447	6,0	20		0,181	0,530				
	3457	3467	4,1	10	18	0,262	0,768				
	3477	3516	30,5	39		0,428	1,225				
	3526	3556	20,4	30		0,388	1,138				
	3566	3586	140,7	20		0,391	1,147				
12	3470	3500	24,6	30		0,059	0,056				
	3510	3530	62,3	20	14	0,223	0,212				
	3540	3560	61,5	20		0,220	0,209				
	3570	3590	19,0	20		0,068	0,065				
	3600	3620	25,1	20		0,090	0,086				
12	3650	3660	53,3	10		0,381	0,363				
	3670	3680	83,5	10		0,596	0,569				
	3690	3720	18,2	30		0,043	0,042				
	3730	3761	41,4	31		0,095	0,094				
	3781	3811	254,3	30		0,605	0,577				
14	3263	3281	27,8	18		0,077	0,028				
	3300	3319	33,3	19		0,088	0,033				
	3376	3395	29,1	19	20	0,077	0,029				
	3433	3452	16,4	19		0,043	0,016				
	3490	3509	29,5	19		0,078	0,029				
	3529	3548	27,7	19		0,073	0,028				
	3567	3625	54,4	58		0,047	0,018				
	3723	3820	573,8	97		0,296	0,114				

Таблица 2. Сопоставление величин удельного дебита (G) работающих интервалов в породах кристаллического фундамента и проницаемости (K_п)

- 3. Приведены сводные результаты комплексной интерпретации данных ГИС и сканирования по определению ФЕС трещинно-кавернозных коллекторов фундамента.
- 4. Результаты интерпретация данных ГИС и FMI/DSI 17-ти скважин, вскрывших фундамент Центрального свода месторождения по вертикали до 2 км, позволили установить закономерное уменьшение вторичной пустотности с глубиной, сходящей на нет на абсолютных отметках порядка 5 км.
- 5. Данные сканирования не полностью отражают величину трещинной пустотности. Комплексная интерпретация данных FMI/DSI дает важ-

Рис. 5. Кросс-плоты и зависимости удельных дебитов (G) работающих интервалов в породах кристаллического фундамента от геофизических параметров пустотности К_{п.об}, К_{пвт}. Количество определений дебитов N=106

ную *качественную* характеристику трещиннокавернозной пустотности для выделения нефтеотдающих интервалов.

- Комплексная интерпретация данных традиционных методов ГИС (АК, ГГК, ННК ГК-С) позволяет количественно оценить величину общей и вторичной пористости коллекторов в кристаллическом фундаменте.
- Существует прямая тесная корреляционная связь величины удельных дебитов работающих интервалов и величины их проницаемости. Для прогнозной оценки продуктивности вскрытых

СПИСОК ЛИТЕРАТУРЫ

- 1. Кошляк В.А. Нефтегазоносность магматических пород // Каротажник. 2005. № 10–11. С. 232–239.
- Лукина Т.Ю., Лухминский Т.Ю. Сравнение данных стандартных методов ГИС и результатов обработки измерений микросканером FMI // Каротажник. – 2008. – № 3. – С. 3–7.
- Нгуен Х.Б., Исаев В.И. Выявление и изучение методами ГИС нефтегазовых коллекторов в кристаллическом фундаменте // Увеличение нефтеотдачи – приоритетное направление воспроизводства углеводородного сырья: Матер. Междунар. научно-практ. конф. – Казань: Изд-во «Фэн» АН РТ, 2011. – С. 360–363.
- Серебренникова О.В., Ву В.Х., Савиных Ю.В., Красноярова Н.А. Генезис нефтей месторождения Белый Тигр (Вьетнам) по данным о составе насыщенных ациклических углеводородов // Известия Томского политехнического университета. 2012. Т. 320. № 1. С. 134–137.

интервалов в кристаллическом фундаменте разработаны зависимости удельных дебитов от геофизических параметров пористости.

При выполнении исследований использован фактический геолого-геофизический материал по 28 скважинам, вскрывшим кристаллический фундамент Центрального свода Белого Тигра, а также данные промысловой геологии и разработки.

Автор выражает благодарность заместителю директора по геологии НИПИморнефтегаз СП «Вьетсовпетро» Son P.X., предоставившему возможность использовать фондовые геолого-геофизические материалы.

- Son P.X., Quy H.V., Nhan D.D. Basroc 3.0 A special software for processing wireline log in fractured basement // Fractured basement reservoir. – Ha Noi: Science and Technics Publishing House, 2006. – P. 459–467.
- Тухтаев Р.И., Свихнушин Н.М., Сыгаевский А.Е., Шмыгля К.О. Применение микроэлектрических имиджеров и сканеров при изучении сложных коллекторов и решении некоторых нефтепромысловых задач // Каротажник. – 2002. – Вып. 99. – С. 10–37.
- Тимурзиев А.И. Технология прогнозирования трещиноватости на основе трехмерной геомеханической и кинематической модели трещинного коллектора // Геофизика. – 2008. – № 3. – С. 41–60.

Поступила 18.12.2012 г.