рис. 2, в. При рассмотрении результатов видно, что наибольшее развитие процессы наложенного эпигенеза получили в отложениях Западно-Лодочной скв. 1. Несколько слабее интенсивность реакций наложенного эпигенеза наблюдается в разрезах скв. Восточно-Лодочной скв-1, Хикиглинской скв-1 и Ванкорской скв-11. Минимальные постседиментационные преобразования пород отмечаются в разрезе Туколандо-Вадинской скв.-320.

Результаты литогеохимических исследований малышевской свиты представлены на рис. 2, г. При рассмотрении закономерностей пространственного распределения литогеохимических характеристик видно, что максимальная интенсивность реакций наложенного эпигенеза в отложениях малышевской свиты наблюдается в разрезах Западно-Лодочной скв-1, Туколандо-Вадинской скв-320,

СПИСОК ЛИТЕРАТУРЫ

- 1. Лебедев Б.А. Геохимия эпигенетических процессов в осадочных бассейнах. Л.: Недра, 1992. 239 с.
- Колокольцев В.Г., Ларичев А.И., Скачек Д.К. Метасоматиты в мезозойских нефтеносных отложениях Западно-Сибирского бассейна // Концептуальные проблемы литологических исследований в России: Матер. VI Всеросс. совещания. – Казань: Казанский университет, 2011. – Т. 1. – С. 376–379.

Ванкорской скв-11. Несколько меньшая интенсивность процессов флюидомиграции наблюдается в разрезах Хикиглинской скв-1.

Таким образом, результаты проведенных литогеохимических исследований разрезов глубоких скважин свидетельствуют о том, что меловые отложения, вскрытые Туколандо-Вадинской скв-320, были в меньшей степени затронуты процессами флюидомиграции по сравнению с другими скважинами, пробуренными в тектонически более активных районах. При исследовании отложений суходудинской и малышевской свит различие менее существенно. Это может быть обусловлено изменением характера и интенсивности процессов флюидомиграции в районе Туколандо-Вадинской скв-320, лежащей в стороне от зоны тектонической активизации.

- Основные черты геохимии урана / под ред. А.П. Виноградова. М.: Изд-во. АН СССР, 1963. 300 с.
- Определение урана методом запаздывающих нейтронов / Инструкция НСАМ. – М.: Мингео СССР, 1982. – 16 с.
- Кринин В.А. Прогноз нефтегазоносности структур Ванкорской лицензионной площади. – Красноярск.: КрасГеоНАЦ, 2000. – 87 с.

Поступила 25.04.2013 г.

УДК 552.545 + (571.513)

НОВЫЕ НАХОДКИ ПАЛЕОТРАВЕРТИНОВ В ЧЕБАКОВО-БАЛАХТИНСКОЙ ВПАДИНЕ МИНУСИНСКОГО ПРОГИБА (ЗАПАДНАЯ СИБИРЬ)

Г.С. Федосеев, В.В. Благовидов*, А.А. Воронцов**, И.А. Вишневская

Институт геологии и минералогии СО РАН, г. Новосибирск "Новосибирский государственный университет "Институт геохимии СО РАН, г. Иркутск E-mail: fedoseev@igm.nsc.ru

Дана геолого-петрографическая характеристика палеотравертинов, обнаруженных на Родниковом и Сисимском участках в Чебаково-Балахтинской впадине Минусинского прогиба. Показано различное стратиграфическое их положение в вулканогенном основании быскарской серии (D_1), и отмечены некоторые литогеохимические особенности. Установлено двухстадийное формирование травертинов с участием растительного детрита в качестве одного из компонентов пород второй фазы. Сделан вывод о приуроченности травертинов к скрытому стратиграфическому перерыву в Сисимском разрезе.

Ключевые слова:

Травертины, литогеохимия известняков, Минусинский прогиб.

Key words:

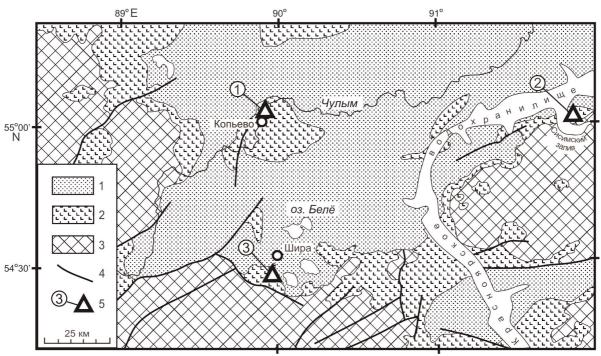
Travertines, limestone lithogeochemistry, Minusa Basin.

Травертины — один из видов карбонатных натечных образований, широко распространенных среди отложений разного возраста. Их образование связано с действием минерализованных источников, температура растворов в которых колеблется в довольно широких пределах и нередко свидетельствует об угасающей гидротермальной активности

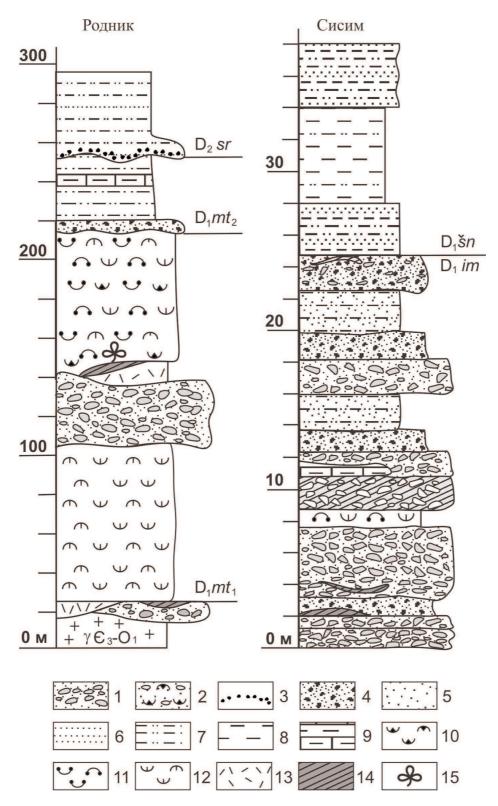
вулканических областей. Погребенные травертины (палеотравертины) обладают тонкослоистым строением и внешне похожи на строматолитовые известняки. Повышенный интерес к палеотравертинам диктуется и тем, что они являются надежным признаком существования устойчивых периодов субаэральных условий при формировании разно-

образных отложений в континентальных обстановках осадконакопления.

Благодаря разнообразию состава, структурнотекстурных особенностей и обстановок формирования травертины издавна привлекали внимание исследователей. Общеизвестна их научная значимость при реконструкции флюидного режима, динамики солевого состава растворов и геохимической подвижности элементов в системе вода-порода, а также роль в качестве специфических «прокси-серверов» палеоклиматических обстановок [1-6]. К этому следует добавить и практическое их использование как строительного и декоративного материала [7, 8]. Классические травертины (lapis tiburtinus) издавна называются известковыми туфами, т. к. обладают пористой, нередко ноздреватой текстурой. Их геохимические особенности зависят в основном от состава пород, в которых происходила циркуляция гидротермальных растворов. Поэтому в качестве классификационного признака современных травертинов обычно принимается минеральный состав подстилающих пород: карбонатный, карбонатно-терригенный, глинисто-терригенный, алюмо-силикатный и т. п. Установление такой зависимости для палеотравертинов является проблематичным, поскольку отсутствует прямая информация о составе минералообразующих флюидов, а многие детали их строения затушеваны вторичными процессами.


В Минусинском прогибе палеотравертины впервые были описаны в Чебаково-Балахтинской впадине (Копьевский участок, рис. 1) в 1961 г. Н.А. Охапкиным [1] и до настоящего времени считались здесь единственной находкой среди ранне-

девонских образований быскарской серии. Темнокоричневые палеотравертины на этом участке слагают несколько линз, которые приурочены к единому горизонту в верхней части копьевской толщи, состоящей из серии маломощных (5–8 м) андезито-базальтовых пластовых тел. Протяженность линз, подстилающихся иногда алевролитами, достигает 1,5 км, а мощность — до 70—80 м.


Как показали наши исследования, среди быскарских отложений палеотравертины встречаются и в других местах Чебаково-Балахтинской впадины (рис. 1).

В частности они располагаются в базальной части и кровле матаракской свиты на Родниковом участке и приурочены к границе имирской и шунетской свит — на Сисимском (рис. 2).

На Родниковом участке, находящемся в 1,5 км к юго-западу от оз. Иткуль, тонкослоистые корковые образования обволакивают отдельные глыбы и обломки крупнопорфировых долеритов (лабрадоровых порфиритов) размером от 40 до 10 см, рассеянных в русле небольшого ручья, в непосредственной близости от коренного обнажения порфиритов. Детальным картированием установлено, что порфириты входят в состав нижней подсвиты матаракской свиты, которая сопоставляется нами с имирской свитой, развитой на Сисимском участке. Подстилаются порфириты валунными конгломератами и в верхней части склона перекрыты толщей литокластических туфов с туфобрекчиями в основании, а ниже по склону, в районе родника, на них залегают глинисто-карбонатные отложения с маломощным горизонтом серых известняков, содержащих остатки псилофитовой флоры (рис. 2).

Рис. 1. Схема местонахождений травертинов в Чебаково-Балахтинской впадине: 1 — терригенно-осадочная серия (D_{2gv} — D_{3fm}), 2 — осадочно-вулканогенная (быскарская) серия (D_1 — D_{2ef}), 3 — метаморфогенная серия (фундамент, ϵ_{1-2}), 4 — тектонические нарушения, 5 — участки с травертинами: 1 — Копьевский, 2 — Сисимский, 3 —Родниковый

Рис. 2. Стратиграфическая приуроченность палеотравертинов на Родниковом и Сисимском участках: 1 – конгломераты и конгломерато-брекчии с глинисто-песчано-гравийным цементом, 2 – вулканомиктовые туфобрекчии, 3 – полимиктовые базальные гравелиты, 4 – вулканомиктовые гравелиты, 5 – разнозернистые песчаники, 6 – параллельно- и волнисто-слоистые мелкозернистые песчаники, 7 – тонкослоистые алевролиты, 8 – тонкослоистые и массивные аргиллиты, 9 – тонкозернистые глинистые известняки и мергели, 10 – туфобрекчии, 11 – литокластические и кристаллолитокластические туфы, 12 – кристаллокластические туфы, 13 – крупнопорфировые долериты, 14 – палеотравертины, 15 – местонахождение флоры

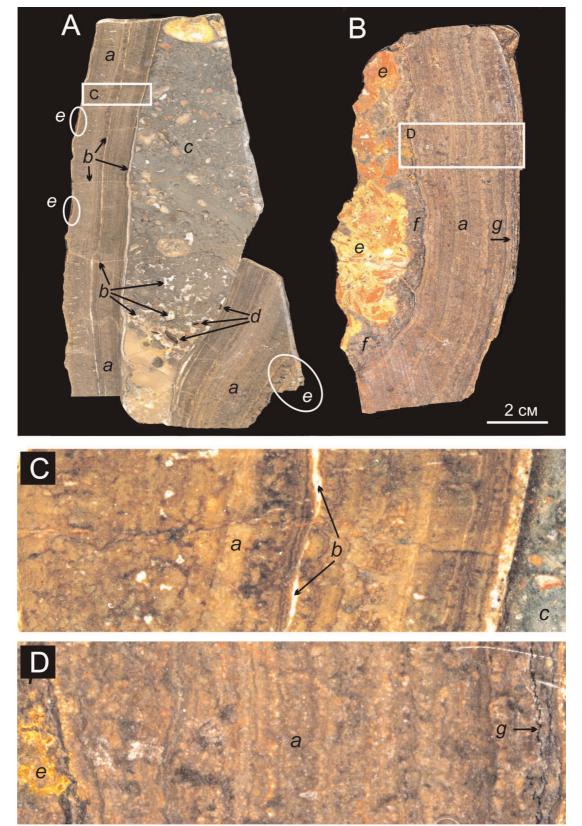


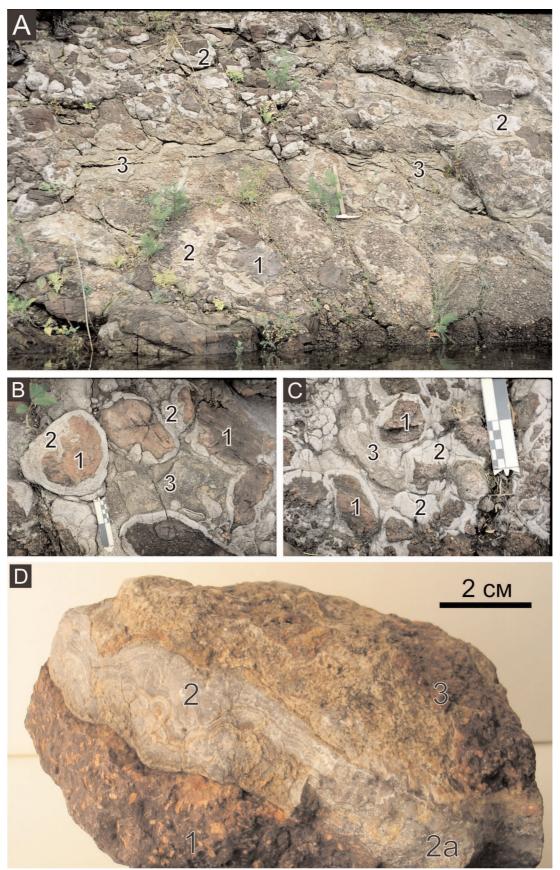
Рис. 3. Палеотравертины Родникового участка: А) карбонатные корки, покрывающие долеритовые обломки и глыбы, от которых сохранились только небольшие фрагменты (показаны в овалах); В) карбонатная корка, облекающая сцементированные обломки долерита; С, D) увеличенные фрагменты корок А и В (длина 2 и 4 см соответственно). а − микрослоистый палеотравертин, b − кальцитовые прожилки, линзы и цемент в песчанике, с − гравелистый известковистый песчаник с раннедевонской флорой, d − растительный детрит, е − фрагменты долеритовых обломков и глыб, f − промежуточный слой, g − пленки тонкодисперсного непрозрачного материала. Красными стрелками показан растительный детрит

Остаточные полости между корками заполнены гидротермально проработанным обломочно-карбонатным материалом, имеющим грубослоистое строение (рис. 3, А, В). В нижней части одной из таких полостей располагается небольшой слой розовых скрытокристаллических известняков с локально развитой брекчиевидной текстурой. В качестве цемента в брекчиях выступает прозрачный прожилковый кальцит. Слой известняка сменяется гравелистыми известковыми песчаниками с прослоями зеленовато-серого микритового известняка. В составе обломков, размер которых достигает 1-1,5 см, устанавливаются алевролиты и гелеподобные розовато-серые карбонатные сгустки изометрической формы, а также красновато-коричневый алевролит, содержащий флористический детрит. Среди растительных остатков обнаружен фрагмент, внешне напоминающий стробил Jenisseiphyton, описанный А.Р. Ананьевым [9]. К межзерновым участкам приурочена тонкая вкрапленность пирита. Кальцит в виде редких послойных и поперечных прожилков пронизывает натечные корки, а местами образует цемент выполнения в песчанике.

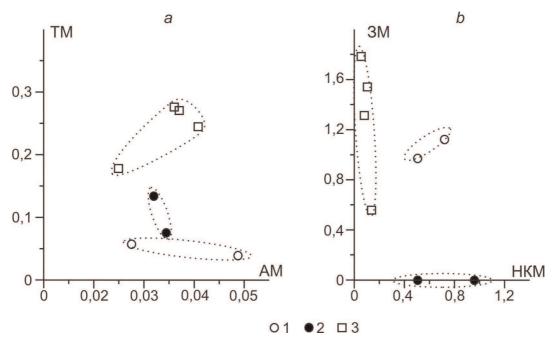
На свежих сколах травертины имеют серую окраску с темно-коричневым оттенком, однако при сканировании приполировок на изображениях появляются красноватые оттенки разной интенсивности. Насчитывается до двадцати и более слоев толщиной 1—2 мм с расплывчатыми границами, каждая из которых имеет комковато-пятнистое строение, подчеркнутое тонкой вкрапленностью светло-серых карбонатных микрозерен, тяготеющих к верхним поверхностям отдельных слойков. В слойках повсеместно отмечается алевропелитовый материал, а также черные тонкодисперсные пленки углистого состава (рис. 3, C, D).

Сисимский участок находится в средней части правого берега одноименного залива. Травертины связаны с кисло-средним вулканизмом быскарской серии. Они представляют собой цементирующую массу и угловатые фрагменты обломков тонкослоистых корок в валунных вулканомиктовых конгломератах, верхней части имирской свиты (рис. 2). В целом имирская свита сложена пирокластическими образованиями и разнообразными, главным образом грубообломочными, породами аллювиальных конусов выноса, а шунетская - мелководно-морскими сероцветными алевролитами, песчаниками и конгломератами с участием мергелистых известняков [10]. Следует заметить, что палеотравертиновый горизонт располагается у самого уреза воды и доступен для изучения только в малую воду (рис. 4, А).

Внешне конгломерато-брекчии напоминают скопления строматолитовых «ячеек», в ядерных частях которых находятся обломки эффузивных пород (рис. 4, В, С). Обломки составляют не менее 50 % и имеют однородный состав — андезибазальты и андезиты с пузыристой текстурой. Количество плагиоклазовых фенокристаллов в них меняется от


20—30 % до полного исчезновения, структура основной массы гиалиновая. В строении цемента участвуют два известковых компонента — тонкослоистые натечные корки (І стадия) и доломитоизвестняковый материал, загрязненный туфогенной алевропесчаной примесью (ІІ стадия). Обычными являются колломорфные текстуры, аналогичные родниковым (рис. 4, D). Отличие состоит только в отсутствии растительного детрита. Структурными аналогами сисимских палеотравертинов можно считать линзы и пласты брекчий и конгломератов, сцементированные натечными известняками в Горном Алтае [11].

Образованные на первой стадии карбонатные корки имеют тонкослоистое строение и практически лишены механической примеси. Обычно они развиты по всему периметру обломков, их толщина колеблется от нескольких миллиметров до 7-10 см, при этом увеличение толщины происходит только с одной стороны обломков. На второй стадии оставшееся пространство заполняется разнообломочной вулканической крошкой, погруженной в карбонатный цемент с грубослоистой текстурой базального типа. В обломках есть фрагменты, образованные в первую стадию, что свидетельствует о подвижках во время формирования палеотравертинов. Наряду с параллельно- и волнисто-слоистой текстурой в некоторых местах развита кокардовая текстура, обусловленная почти идеальными полусферами.


Таблица. Результаты химического анализа и растворения палеотравертинов

Компо- ненты	M-3	Рд-2	F-247	F-248	Ox-1	Ox-2	Ox-3	Ox-4
SiO ₂	21,32	18,94	9,35	7,68	6,98	8,05	8,02	22,56
TiO ₂	0,04	0,03	0,04	0,02	0,07	0,08	0,08	0,10
Al ₂ O ₃	0,82	1,09	1,25	0,58	1,89	2,22	1,96	4,01
Fe ₂ O ₃	0,7	0,64	0,29	0,22	0,37	0,61	0,68	0,74
FeO	0,8	0,66	Н.опр.	Н.опр.	0,57	0,80	0,38	1,32
MnO	0,36	0,59	0,06	0,08	0,57	0,46	0,28	0,21
MgO	1,58	1,45	0,49	0,40	8,66	6,94	5,58	4,51
CaO	40,96	41,69	49,97	51,52	40,83	41,56	42,96	34,43
Na ₂ O	0,47	0,35	0,4	0,45	0,16	0,13	0,23	0,13
K ₂ O	0,08	0,2	0,23	0,10	0,04	0,05	Н.обн.	0,09
P ₂ O ₅	0,07	0,07	0,03	0,02	0,05	0,07	0,04	0,07
S _{общ.}	0,22	0,08	0,02	0,02	Н.обн.	0,03	0,01	0,01
П.п.п.	32,99	34,36	37,68	38,73	40,27	39,12	39,19	31,39
Сумма	100,41	100,15	99,81	99,82	100,3	100,12	99,41	99,57
H.O.	25,1	21,8	17,7	8,9	Н.опр.	Н.опр.	Н.опр.	Н.опр.

Примечание: М-3, Рд-2 — темно-коричневые палеотравертины (Родник, юго-западный склон долины оз. Иткуль); F-247, F-248 — светло-серые палеотравертины — цемент тефроидных конгломерато-брекчий (правый борт Сисимского залива), анализы выполнены в ИГХ СО РАН, методом РФА. Ох-1 и Ох-2 — серо-коричневые травертины (юг Копьевского поднятия и р. Шелоболка в 3 км от устья [1]); Ох-3 и Ох-4 — коричневый и серый травертины (запад Копьевского поднятия, правобережье р. Чулым [1]). Н.О. — нерастворимый остаток (вес. %), Н.опр. — не определялось, Н.обн. — не обнаружено.

Рис. 4. Палеотравертиновый цемент в вулканических конгломерато-брекчиях на Сисимском участке: 1 — андезиты и андезибазальты, 2 — текстура карбонатной корки на выветрелой поверхности, 2а — корка в свежем сколе; 3 — терригенно-карбонатный материал

Рис. 5. Модульные диаграммы для палеотравертинов Чебаковско-Балахтинской впадины: пробы с 1) Родникового; 2) Сисимского; 3) Копьевского участков. Модули: АМ — алюмокремниевый (Al_2O_3/SiO_2), ТМ — титановый (TiO_2/Al_2O_3), НКМ — нормированной щелочности ((Na_2O+K_2O)/ Al_2O_3), ЗМ — закисный (FeO/Fe_2O_3). Пунктиром обозначены условные контуры

Химический анализ указывает на неоднородность состава палеотравертинов (таблица). Это связано с разнообразием примесного терригенного материала и разной степенью окремнения: нерастворенный остаток (алюмосиликокластика и наложенный кремнезем) составляет от 8,9 до 25,1 вес. %. В изученных палеотравертинах отмечено повышенное содержание марганца в (0,36–0,59 вес. %), что, кстати сказать, является особенностью некоторых современных травертинов [12–14].

Значения некоторых литохимических модулей, обычно применяющихся для диагностики карбонатных пород [15] и взятых по отдельности, свидетельствуют о принадлежности изученных травертинов к единой группе (таксону). Однако на некоторых модульных диаграммах достаточно четко проявлены и внутригрупповые различия (рис. 5, а). Их рассмотрение показывает, что главным различающим модулем является титановый, ЗМ и НКМ имеют вспомогательное значение.

В приведенных диаграммах отсутствует коррелятивная связь модулей, поэтому кластеры располагаются в основном равномерно по всему полю диаграмм. Нулевые значения, полученные по закисному модулю, связаны с тем, что содержания

СПИСОК ЛИТЕРАТУРЫ

- Охапкин Н.А. Девонские травертины района Копьево (Минусинский межгорный прогиб) // Геология и геофизика. 1961. № 5. С. 80–82.
- Chafetz Henry S., Folk Robert L. Travertines: depositional morphology and the bacterially constructed constituents // J. Sediment. Research. – 1984. – V. 54. – № 1. – P. 289–316.
- Calcareous Algae and Stromatolites / ed. by R. Riding. Berlin: Springer-Verlag, 1991. – 194 p.

железа в сисимских травертинах настолько низкие, что в пределах точности анализа не поддаются разделению на закисное и окисное. Следует отметить также, что величина титанового модуля закономерно повышается от родниковых палеотравертинов к копьевским, для которых также характерны минимальные значения модуля нормированной щелочности (рис. 5, b).

Таким образом, найденные карбонатно-корковые образования являются фрагментами травертиновых построек, которые формировались в субаэральных условиях и приурочены к определенным уровням имирской и матаракской свит. Широкое распространение травертинов в составе изученных нижнедевонских отложений еще раз подтверждает большую роль внутриформационных перерывов и несогласий в строении осадочно-вулканогенных серий Минусинского прогиба [16].

Авторы выражают благодарность Е.В. Лазаревой и Е.Ф. Летниковой (ИГМ СО РАН) за ценные замечания к рукописи, В.И. Краснову (СНИИГГиМС) и О.А. Орловой (МГУ) за помощь в диагностике флористических фрагментов, указывающих на раннедевонский возраст нижней части быскарской серии.

Работа выполнена при финансовой поддержке гранта РФФИ 10-05-00055.

- Chafetz H.S., Utech N.M., Fitzmaurice S.P. Differences in the Δ¹³O and Δ¹⁸C signatures of seasonal laminae comprising travertine stromatolites // J. Sediment. Petrol. 1991. V. 61. P. 1015–1028.
- 5. Pentecost A. Travertine. Berlin: Springer, 2005. 446 p.
- Шварцев С.Л., Рыженко Б.Н., Алексеев В.А., Дутова Е.М., Кондратьева И.А., Копылова Ю.Г., Лепокурова О.Е. Геологическая эволюция и самоорганизация системы вода—порода. Т. 2. Система вода—порода в условиях зоны гипергенеза. — Новосибирск: Изд-во СО РАН, 2007. — 389 с.

- Guo L., Riding R. Microbial micritic carbonates in uppermost Permian reefs, Sichuan Basin, southern China: some similarities with Recent travertines // Sedimentology. 1992. V. 39. № 1. P. 37–53.
- Freytet P., Plet A. Modern freshwater microbial carbonates: the *Phormidium* stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France) // Facies. – 1996. – V. 34. – P. 219–237.
- Ананьев А.Р. О возрасте изыкской и шунетской свит по ископаемой флоре на северном склоне Батеневского кряжа // V науч. конф. Том. гос. ун-та, посвященная 350-летию г. Томска. Секция геологическая. – Томск, 27 ноября – 4 декабря 1954. – Томск: Тр. ТГУ, 1960. – Т. 146. – С. 5–28.
- Бабин Г.А., Владимиров А.Г., Крук Н.Н., Сергеев С.А., Сенников Н.В., Гибшер А.С., Советов Ю.К. Возраст заложения Минусинских впадин (Южная Сибирь) // Докл. РАН. 2004. Т. 395. № 3. С. 367—370.
- Бутвиловский В.В. Палеогеография позднего оледенения и голоцена Алтая: событийно-катастрофическая модель. Томск: Изд-во ТГУ, 1993. 253 с.
- 12. Карданова О.Ф., Сергеева С.Ф., Карташёва Е.В. Марганец в термальной воде источников и хемогенных осадках из неё в районе Кихпинычского долгоживущего вулканического центра

- (КДВЦ) // Вулканизм и связанные с ним процессы: Матер. традиц. рег. науч. конф., посвященной Дню вулканолога. Петропавловск-Камчатский, 30 марта 1 апреля 2011. Петропавловск-Камчатский: ИВиС, 2011. С. 129—133.
- Баженов В.А., Соколова М.Ф. Бернессит в травертинах Томской области // Вопросы генезиса эндогенных месторождений. Минералогия и геохимия. – Л: ЛГУ, 1988. – Вып. 7. – С. 157–163.
- Петрова О.Е., Копылова Ю.Г., Мартынова Т.Е. Геохимические условия травертиноообразования (на примере бассейна р. Тугояковка) // Известия Томского политехнического университета. – 2002. – Т. 305. – № 6. – С. 304–319.
- Юдович Я.Э., Тетрис М.П. Основы литохимии. СПб.: Наука, 2000. – 479 с.
- Шнейдер Е.А., Зубкус Б.П. Стратиграфия нижне- и среднедевонских отложений Северо-Минусинской и Сыдо-Ербинской впадин // Матер. по геол. и полезным ископаемым Красноярского края / под ред. А.С. Аладышкина. Вып. 3. Красноярск: Красноярское книжное изд-во, 1962. С. 54—61.

Поступила 28.12.2012 г.

УДК 552.543

СВЯЗЬ НЕФТЕНАСЫЩЕНИЯ КАРБОНАТНЫХ КОЛЛЕКТОРОВ С ПРОЦЕССАМИ ФОРМИРОВАНИЯ ПУСТОТНОГО ПРОСТРАНСТВА (НА ПРИМЕРЕ ДРЕВНИХ ОТЛОЖЕНИЙ ВОСТОЧНОЙ СИБИРИ)

М.Н. Лемешко, Е.А. Жуковская*, И.В. Вараксина**

Томский политехнический университет E-mail: tiger15@sibmail.com *OOO «Газпромнефть-НТЦ», г. Санкт-Петербург **ИНГГ СО РАН, г. Новосибирск

Определены и охарактеризованы литогенетические типы венд-кембрийских отложений усть-кутского горизонта скважины В, кратко описаны условия их осадконакопления, проведена оценка нефтенасыщения пород по результатам люминесцентно-ми-кроскопического анализа. При помощи специализированного программного обеспечения «Керн С7» по петрографическим шлифам выделено 3 интервала повышенной пористости. Рассмотрена связь нефтенасыщения с литогенетическими типами карбонатных пород, фильтрационно-емкостными свойствами и вторичными процессами преобразования отложений.

Ключевые слова:

Доломиты, породы-коллекторы, литогенетические типы, усть-кутский горизонт.

Key words:

Dolomite, reservoirs, lithogenetic types, Ust-Kut horizon.

Для прогноза распределения коллекторов в древних карбонатных отложениях Восточно-Сибирского региона необходимо всесторонне изучить все перспективные горизонты разреза. В северо-восточной части Непско-Ботуобинской антеклизы находится скважина В, где одним из продуктивных горизонтов, вскрытых в интервале 1651,85—1731,01 м по стволу скважины, является усть-кутский горизонт тэтэрской свиты венд-кембрийского возраста. В целом горизонт имеет весьма неоднородное строение и неравномерное нефтенасыщение, в связи с этим была поставлена задача выделить зоны с повышенным нефтенасыщением, определить литогенетические типы пород, которые соответ-

ствуют этим участкам, оценить связь нефтенасыщения с вторичными процессами и проследить их изменчивость в разрезе. В ходе исследования были использованы материалы описания керна скважины и седиментолого-петрографического изучения пород, выполненные сотрудниками ИНГГ СО РАН Е.М. Хабаровым и И.В. Вараксиной. Для оценки нефтенасыщения люминесцентно-микроскопическим анализом, сотрудниками лаборатории седиментологии ОАО «ТомскНИПИнефть» было изучено 85 пришлифовок керна.

Детальное макроописание керна позволяет проследить цикличность разреза, в нижней части каждого циклита, как правило, располагаются ма-